Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (330)

Search Parameters:
Keywords = International Tables

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 642 KiB  
Article
A Quantitative Study on the Interactive Changes Between China’s Final Demand Structure and Forestry Industry Production Structure
by Wenting Jia, Fuliang Cao and Xiaofeng Jia
Forests 2025, 16(8), 1212; https://doi.org/10.3390/f16081212 - 23 Jul 2025
Viewed by 181
Abstract
The effects of changes in China’s final demand structure on its forestry sector and associated supply chains have not been thoroughly examined. This study aims to provide a detailed analysis of the quantitative relationships and underlying mechanisms between these interactive changes. Using China’s [...] Read more.
The effects of changes in China’s final demand structure on its forestry sector and associated supply chains have not been thoroughly examined. This study aims to provide a detailed analysis of the quantitative relationships and underlying mechanisms between these interactive changes. Using China’s 153-sector input–output tables from the National Bureau of Statistics and applying a Leontief-based input–output model, we conducted scenario simulations through three distinct schemes, generating both quantitative and qualitative results. Our findings indicate that (1) For China’s forestry sector and its entire value chain to thrive, policymakers should boost consumer demand. This can better stimulate the development of forestry and the “agriculture-forestry-animal husbandry-fishery services” sector and related service industries; (2) Increased investment demand effectively stimulates the development of tertiary industries and secondary industries within the forestry supply chain and boosts the demand and production of intermediate products; (3) Changes in net exports have a significant impact on forestry and the forestry industry chain. To reduce dependence on foreign timber resources, China should strategically expand commercial plantation development; (4) Regarding intermediate product production, investment has a more pronounced effect on increasing total volume compared to consumption. Additionally, the Sino–US tariff disputes negatively impact the forestry industries of both countries. China needs to accelerate import substitution strategies for timber products, adjust international trade markets, and expand domestic consumption and investment to ensure the healthy and stable development of its forestry sector. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
15 pages, 3197 KiB  
Article
Experimental and Numerical Investigation of Seepage and Seismic Dynamics Behavior of Zoned Earth Dams with Subsurface Cavities
by Iman Hani Hameed, Abdul Hassan K. Al-Shukur and Hassnen Mosa Jafer
GeoHazards 2025, 6(3), 37; https://doi.org/10.3390/geohazards6030037 - 17 Jul 2025
Viewed by 303
Abstract
Earth fill dams are susceptible to internal erosion and instability when founded over cavity-prone formations such as gypsum or karstic limestone. Subsurface voids can significantly compromise dam performance, particularly under seismic loading, by altering seepage paths, raising pore pressures, and inducing structural deformation. [...] Read more.
Earth fill dams are susceptible to internal erosion and instability when founded over cavity-prone formations such as gypsum or karstic limestone. Subsurface voids can significantly compromise dam performance, particularly under seismic loading, by altering seepage paths, raising pore pressures, and inducing structural deformation. This study examines the influence of cavity presence, location, shape, and size on the behavior of zoned earth dams. A 1:25 scale physical model was tested on a uniaxial shake table under varying seismic intensities, and seepage behavior was observed under steady-state conditions. Numerical simulations using SEEP/W and QUAKE/W in GeoStudio complemented the experimental work. Results revealed that upstream and double-cavity configurations caused the greatest deformation, including crest displacements of up to 0.030 m and upstream subsidence of ~7 cm under 0.47 g shaking. Pore pressures increased markedly near cavities, with peaks exceeding 2.7 kPa. Irregularly shaped and larger cavities further amplified these effects and led to dynamic factors of safety falling below 0.6. In contrast, downstream cavities produced minimal impact. The excellent agreement between experimental and numerical results validates the modeling approach. Overall, the findings highlight that cavity geometry and location are critical determinants of dam safety under both static and seismic conditions. Full article
Show Figures

Figure 1

20 pages, 4028 KiB  
Article
Exploring the 3D Printability of Engineered Cementitious Composites with Internal Curing for Resilient Construction in Arid Regions
by Tayyab Zafar, Muhammad Saeed Zafar and Maryam Hojati
Materials 2025, 18(14), 3327; https://doi.org/10.3390/ma18143327 - 15 Jul 2025
Viewed by 351
Abstract
This study investigates the feasibility of pumice-based internal curing based on the 3D printability of engineered cementitious composites (ECCs) for water-scarce environments and arid regions. Natural river sand was partially replaced with the presoaked pumice lightweight aggregates (LWAs) at two different levels, 30% [...] Read more.
This study investigates the feasibility of pumice-based internal curing based on the 3D printability of engineered cementitious composites (ECCs) for water-scarce environments and arid regions. Natural river sand was partially replaced with the presoaked pumice lightweight aggregates (LWAs) at two different levels, 30% and 60% by volume, and 50% of the cement was replaced with slag to enhance sustainability. Furthermore, 2% polyethylene (PE) fibers were used to improve the mechanical characteristics and 1% methylcellulose (MC) was used to increase the rheological stability. Pumice aggregates, presoaked for 24 h, were used as an internal curing agent to assess their effect on the printability. Three ECC mixes, CT-PE2-6-10 (control), P30-PE2-6-10 (30% pumice), and P60-PE2-6-10 (60% pumice), were printed using a 3D gantry printing system. A flow table and rheometer were used to evaluate the flowability and rheological properties. Extrudability was measured in terms of dimensional consistency and the coefficient of variation (CV%) to evaluate printability, whereas buildability was determined in terms of the maximum number of layers stacked before failure. All of the mixes met the extrudability criterion (CV < 5%), with P30-PE2-6-10 demonstrating superior printing quality and buildability, having 16 layers, which was comparable with the control mix that had 18 layers. Full article
Show Figures

Figure 1

33 pages, 7555 KiB  
Article
A Quasi-Bonjean Method for Computing Performance Elements of Ships Under Arbitrary Attitudes
by Kaige Zhu, Jiao Liu and Yuanqiang Zhang
Systems 2025, 13(7), 571; https://doi.org/10.3390/systems13070571 - 11 Jul 2025
Viewed by 211
Abstract
Deep-sea navigation represents the future trend of maritime navigation; however, complex seakeeping conditions often lead to unconventional ship attitudes. Conventional calculation methods are insufficient for accurately assessing hull performance under heeled or extreme trim conditions. Drawing inspiration from Bonjean curve principles, this study [...] Read more.
Deep-sea navigation represents the future trend of maritime navigation; however, complex seakeeping conditions often lead to unconventional ship attitudes. Conventional calculation methods are insufficient for accurately assessing hull performance under heeled or extreme trim conditions. Drawing inspiration from Bonjean curve principles, this study proposes a Quasi-Bonjean (QB) method to compute ship performance elements in arbitrary attitudes. Specifically, the QB method first constructs longitudinally distributed hull sections from the Non-Uniform Rational B-Spline (NURBS) surface model, then simulates arbitrary attitudes through dynamic waterplane adjustments, and finally calculates performance elements via sectional integration. Furthermore, an Adaptive Surface Tessellation (AST) method is proposed to optimize longitudinal section distribution by minimizing the number of stations while maintaining high geometric fidelity, thereby enhancing the computational efficiency of the QB method. Comparative experiments reveal that the AST-generated 100-station sections achieve computational precision comparable to 200-station uniform distributions under optimal conditions, and the performance elements calculated by the QB method under multi-attitude conditions meet International Association of Classification Societies accuracy thresholds, particularly excelling in the displacement and vertical center of buoyancy calculations. These findings confirm that the QB method effectively addresses the critical limitations of traditional hydrostatic tables, providing a theoretical foundation for analyzing damaged ship equilibrium and evaluating residual stability. Full article
Show Figures

Figure 1

28 pages, 516 KiB  
Article
Evaluation and Selection of Public Transportation Projects in Terms of Urban Sustainability Through a Multi-Criteria Decision-Support Methodology
by Konstantina Anastasiadou and Nikolaos Gavanas
Future Transp. 2025, 5(3), 90; https://doi.org/10.3390/futuretransp5030090 - 9 Jul 2025
Viewed by 333
Abstract
Climate change, the consequences of which have been more intense than ever in the last few decades, makes the need for sustainable transportation even more imperative. The promotion of public transportation and the discouragement of private car use are among the main priorities [...] Read more.
Climate change, the consequences of which have been more intense than ever in the last few decades, makes the need for sustainable transportation even more imperative. The promotion of public transportation and the discouragement of private car use are among the main priorities of sustainable transport planning in modern urban areas. However, the selection of the most appropriate transport project, apart from significant opportunities, is also accompanied by significant challenges, especially under the demand of compromising—often conflicting—social, environmental, and economic criteria, as well as different stakeholders’ interests. The aim of the present paper is to provide decision analysts and policy-makers with a decision-support tool for the prioritization and optimum selection of public transport projects for an urban area within the framework of sustainability. For this purpose, a comprehensive inventory of criteria for the evaluation of urban public transport systems (alternatives), along with a standardized table with the relevant performance of the most common alternatives (i.e., metro, tram, monorail, and BRT) are provided based on international literature review. A multi-criteria decision-aiding methodology based on TOPSIS (Technique for Order Preference by Similarity to Ideal Solution), allowing for the direct exclusion of an alternative not meeting certain “binding” criteria from further evaluation, thus saving time, effort and cost, taking into account different stakeholders’ interests and preferences, as well as the particularities and special characteristics of the study area, is then proposed and tested through a theoretical case study. Full article
Show Figures

Figure 1

18 pages, 2724 KiB  
Article
Anthropometric Evaluation of NFPA 1977 Sizing System for U.S. Female Wildland Firefighters: A Contingency Table Analysis
by Ziwen Qiu, Josephine Bolaji, Meredith McQuerry and Cassandra Kwon
Fire 2025, 8(7), 270; https://doi.org/10.3390/fire8070270 - 8 Jul 2025
Viewed by 592
Abstract
Ensuring proper sizing and fit for U.S. female firefighters’ personal protective clothing and equipment (PPE) is a crucial challenge for researchers and manufacturers. The National Fire Protection Association (NFPA) establishes design and performance standards in the U.S., with NFPA 1977 specifying sizing guidelines [...] Read more.
Ensuring proper sizing and fit for U.S. female firefighters’ personal protective clothing and equipment (PPE) is a crucial challenge for researchers and manufacturers. The National Fire Protection Association (NFPA) establishes design and performance standards in the U.S., with NFPA 1977 specifying sizing guidelines for wildland firefighting gear. However, the absence of an anthropometric database representing female firefighters limits the effectiveness of these standards. This research evaluates the effectiveness of NFPA 1977 sizing system by investigating whether correlated body measurements maintain internal consistency and provide data-driven recommendations for improvement. Anthropometric data from 187 U.S. female firefighters were analyzed to assess the 2016 and 2022 NFPA 1977 upper and lower torso sizing systems. Correlation analysis was performed between body measurements and corresponding sizes. Contingency tables presented proportion of participants accommodated. Results indicated significant correlations between chest and wrist measurements and sizes in the upper torso, though these were the only available measurements. In the lower torso, hip size strongly correlated with thigh and knee sizes. However, the system inadequately accommodates female firefighters with larger waist and hip measurements. Furthermore, rise sizes demonstrated inconsistent, weak relationships with hip circumference. Overall, the NFPA 1977 sizing requires revision to better serve U.S. female firefighters. Full article
Show Figures

Figure 1

23 pages, 2444 KiB  
Review
A Comprehensive Review on the Integration of Renewable Energy Through Advanced Planning and Optimization Techniques
by Carlos Barrera-Singaña, María Paz Comech and Hugo Arcos
Energies 2025, 18(11), 2961; https://doi.org/10.3390/en18112961 - 4 Jun 2025
Viewed by 899
Abstract
The expanding integration of wind and photovoltaic (PV) energy is disrupting the power system planning processes. Their incorporation poses limitations to forecasting due to their inherent variability. This review compiles a total of ninety studies conducted and published between 2019 and 2025, presenting [...] Read more.
The expanding integration of wind and photovoltaic (PV) energy is disrupting the power system planning processes. Their incorporation poses limitations to forecasting due to their inherent variability. This review compiles a total of ninety studies conducted and published between 2019 and 2025, presenting for the first time an integrated approach that simultaneously optimizes the generation, transmission, storage, and flexibility of resources given high ratios of renewable generation. We present a systematic taxonomy of conflicting optimization approaches—deterministic, stochastic, robust, and AI-enhanced optimization—outlining meaningful mathematical formulations, real-world case studies, and the achieved trade balance between optimality, scale, and runtime. Emerging international cooperation clusters are identified through quantitative bibliometric analysis, and method selection in practice is illustrated using a table with concise snapshots of case study excerpts. Other issues analyzed include long-duration storage, centralized versus decentralized roadmap delineation, and regulatory and market drivers of grid expansion. Finally, we identified gaps in the literature—namely, resilience, sector coupling, and policy uncertainty—that warrant further investigation. This review provides critical insights for researchers and planners by systematically integrating methodological perspectives to tackle real-world, application-oriented problems related to generation and transmission expansion models amid significant uncertainty. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

22 pages, 403 KiB  
Review
A Review of the Microbial Dynamics of Natural and Traditional Fermentations of Table Olive
by Fátima Martins, Nuno Rodrigues and Elsa Ramalhosa
Appl. Microbiol. 2025, 5(2), 52; https://doi.org/10.3390/applmicrobiol5020052 - 30 May 2025
Cited by 1 | Viewed by 1320
Abstract
The traditional fermentation of table olives is a complex and dynamic, process, carried out by a consortium of microorganisms that interact with each other and contribute to the uniqueness and attractiveness of the final product. Fermentation is conducted by yeasts and lactic acid [...] Read more.
The traditional fermentation of table olives is a complex and dynamic, process, carried out by a consortium of microorganisms that interact with each other and contribute to the uniqueness and attractiveness of the final product. Fermentation is conducted by yeasts and lactic acid bacteria (LAB) that coexist in olive fruits. The succession of one microbial population to the detriment of others depends on internal and external factors that affect the process, e.g., the maturation degree of fruits, cultivar, endophytic, or epiphytic state of microorganisms, pH, water activity, temperature, and salt concentration. Thus, studying microbiota evolution and their identification in natural table olive fermentations is paramount. This review aims to provide an overview of the knowledge on the natural fermentation of table olives, namely regarding microbial dynamics, as to report the main species involved in the fermentation process, highlight the influence of the olive oil ecosystem on the origin of the microbiota and consequently on the obtaining of the final product. The results report a total of 97 yeast species and 45 LAB species described in olives and brine over the last few decades. Full article
33 pages, 779 KiB  
Review
Review: Axial Motion of Material in Rotary Kilns
by Elmira Fedorova, Vladimir Morgunov, Kirill Lobko and Elena Pupysheva
Eng 2025, 6(6), 106; https://doi.org/10.3390/eng6060106 - 22 May 2025
Viewed by 729
Abstract
The article examines the parameters of axial motion of bulk material in rotary kilns, including bed height, axial velocity, and mean residence time. The review includes summary tables of experiments from the scientific literature, detailing the conditions and ranges of operating parameter variations. [...] Read more.
The article examines the parameters of axial motion of bulk material in rotary kilns, including bed height, axial velocity, and mean residence time. The review includes summary tables of experiments from the scientific literature, detailing the conditions and ranges of operating parameter variations. Mathematical models from the literature are presented for each of the parameters discussed. The materials of the article cover studies from 1927 to 2025, including analysis of numerous works that were not published in international sources. Based on the review, the necessity of studying the impact of coating formation on the axial motion parameters is highlighted, along with the need for experiments on real facilities and pilot plants. Full article
(This article belongs to the Special Issue Women in Engineering)
Show Figures

Figure 1

25 pages, 1190 KiB  
Systematic Review
A Systematic Review of Reimagining Fashion and Textiles Sustainability with AI: A Circular Economy Approach
by Hiqmat Nisa, Rebecca Van Amber, Julia English, Saniyat Islam, Georgia McCorkill and Azadeh Alavi
Appl. Sci. 2025, 15(10), 5691; https://doi.org/10.3390/app15105691 - 20 May 2025
Cited by 1 | Viewed by 1446
Abstract
Artificial intelligence (AI) is revolutionizing the fashion, textile, and clothing industries by enabling automated assessment of garment quality, condition, and recyclability, addressing key challenges in sustainability. This systematic review explores the applications of AI in evaluating clothing quality and condition within the framework [...] Read more.
Artificial intelligence (AI) is revolutionizing the fashion, textile, and clothing industries by enabling automated assessment of garment quality, condition, and recyclability, addressing key challenges in sustainability. This systematic review explores the applications of AI in evaluating clothing quality and condition within the framework of a circular economy, with a focus on supporting second-hand clothing resale, charitable donations by NGOs, and sustainable recycling practices. A total of 135 research resources were identified through searching academic databases including Google Scholar, Springer, ScienceDirect, IEEE, Taylor and Francis, and Sage journals. These publications were subsequently refined down to 49 based on selected inclusion criteria. The selection of these sources from diverse databases was undertaken to mitigate any potential bias in the selection process. By analyzing the effectiveness and challenges of related peer-reviewed articles, conference papers, and technical reports, this study highlights state-of-the-art methodologies such as convolutional neural networks (CNNs), hybrid models, and other machine vision systems. A critical aspect of this review is the examination and analysis of datasets used for model development, categorized and detailed in a comprehensive table to guide future research. Whilst the findings emphasize the potential of AI to enhance quality assurance in second-hand clothing markets, streamline textile sorting for donations and recycling, and reduce waste in the fashion industry, they also highlight gaps in the available datasets, often due to limited size and scope. The types of textiles captured were most commonly swatches of fabric, with 20 studies examining these, whereas whole garments were less frequently studied, with only 7 instances. This review concludes with insights into future research directions and the promising use of AI within fashion and textiles to facilitate a transition to a circular economy. This project was supported through RMIT University’s School of Fashion and Textiles internal seed funding (2024). Full article
Show Figures

Figure 1

54 pages, 21776 KiB  
Review
Mechanical, Thermal, and Environmental Energy Harvesting Solutions in Fully Electric and Hybrid Vehicles: Innovative Approaches and Commercial Systems
by Giuseppe Rausa, Maurizio Calabrese, Ramiro Velazquez, Carolina Del-Valle-Soto, Roberto De Fazio and Paolo Visconti
Energies 2025, 18(8), 1970; https://doi.org/10.3390/en18081970 - 11 Apr 2025
Viewed by 1527
Abstract
Energy harvesting in the automotive sector is a rapidly growing field aimed at improving vehicle efficiency and sustainability by recovering wasted energy. Various technologies have been developed to convert mechanical, thermal, and environmental energy into electrical power, reducing dependency on traditional energy sources. [...] Read more.
Energy harvesting in the automotive sector is a rapidly growing field aimed at improving vehicle efficiency and sustainability by recovering wasted energy. Various technologies have been developed to convert mechanical, thermal, and environmental energy into electrical power, reducing dependency on traditional energy sources. This manuscript provides a comprehensive review of energy harvesting applications/methodologies, aiming to trace the research lines and future developments. This work identifies the main categories of harvesting solutions, namely mechanical, thermal, and hybrid/environmental solar–wind systems; each section includes a detailed review of the technical and scientific state of the art and a comparative analysis with detailed tables, allowing the state of the art to be mapped for identification of the strengths of each solution, as well as the challenges and future developments needed to enhance the technological level. These improvements focus on energy conversion efficiency, material innovation, vehicle integration, energy savings, and environmental sustainability. The mechanical harvesting section focuses on energy recovery from vehicle vibrations, with emphasis on regenerative suspensions and piezoelectric-based solutions. Specifically, solutions applied to suspensions with electric generators can achieve power outputs of around 1 kW, while piezoelectric-based suspension systems can generate up to tens of watts. The thermal harvesting section, instead, explores methods for converting waste heat from an internal combustion engine (ICE) into electrical power, including thermoelectric generators (TEGs) and organic Rankine cycle systems (ORC). Notably, ICEs with TEGs can recover above 1 kW of power, while ICE-based ORC systems can generate tens of watts. On the other hand, TEGs integrated into braking systems can harvest a few watts of power. Then, hybrid solutions are discussed, focusing on integrated mechanical and thermal energy recovery systems, as well as solar and wind energy harvesting. Hybrid solutions can achieve power outputs above 1 kW, with the main contribution from TEGs (≈1 kW), compared to piezoelectric systems (hundreds of W). Lastly, a section on commercial solutions highlights how current scientific research meets the automotive sector’s needs, providing significant insights for future development. For these reasons, the research results aim to be guidelines for a better understanding of where future studies should focus to improve the technological level and efficiency of energy harvesting solutions in the automotive sector. Full article
(This article belongs to the Special Issue Advances in Energy Harvesting Systems)
Show Figures

Figure 1

24 pages, 419 KiB  
Article
Improving Temporal Characteristics of Mealy FSM with Composite State Codes
by Alexander Barkalov, Larysa Titarenko, Kazimierz Krzywicki and Svetlana Saburova
Electronics 2025, 14(7), 1406; https://doi.org/10.3390/electronics14071406 - 31 Mar 2025
Viewed by 317
Abstract
In this paper, we proposed a new state assignment method focusing on Mealy finite state machines (FSMs). The method makes it possible to improve the temporal characteristics of the circuits of FSMs, the internal states of which are encoded by the composite state [...] Read more.
In this paper, we proposed a new state assignment method focusing on Mealy finite state machines (FSMs). The method makes it possible to improve the temporal characteristics of the circuits of FSMs, the internal states of which are encoded by the composite state codes (CSCs). These codes consist of class codes and partial state codes. Both class and partial state codes are maximum binary codes. We propose to encode classes by one-hot codes. The main goal of the method is improving the value of the FSM cycle time without any significant degradation of spatial characteristics. The method can be applied if FSM circuits are implemented using look-up table (LUT) elements of field-programmable gate arrays (FPGAs). The resulting FSM circuit includes two logic blocks. The first block generates partial input memory functions and FSM outputs depending on maximum binary state codes and one-hot class codes. The choice of partial codes allows minimizing the systems of partial functions. This allows generating most partial functions by single-LUT circuits. Some partial functions require using dedicated multiplexers. The second block generates final values of input memory functions and FSM outputs. This block does not require class codes to generate functions, which is the case of CSC-based FSMs. The proposed approach allows reducing the number of series-connected LUTs in comparison with CSC-based FSMs. Due to this reduction, the temporal characteristics are improved. The paper includes an example of FSM synthesis through applying the proposed method. The experiments are conducted using standard benchmark FSMs. The results of experiments show that the proposed method allows improving the temporal characteristics (by an average of 9.15%). In relation to CSC-based FSMs, the number of LUTs increases by an average of 10.03%, and the power consumption increases by an average of 7.63%. Full article
Show Figures

Figure 1

30 pages, 1874 KiB  
Article
Material Flow Optimization as a Tool for Improving Logistics Processes in the Company
by Juraj Čamaj, Zdenka Bulková and Jozef Gašparík
Appl. Sci. 2025, 15(6), 3116; https://doi.org/10.3390/app15063116 - 13 Mar 2025
Cited by 1 | Viewed by 2553
Abstract
Advancements in transport engineering and technology play a crucial role in improving multimodal transport systems and optimizing logistics operations. This study focuses on efficient material flow management in an industrial enterprise, directly supporting the goals of sustainable transport and innovative logistics strategies. The [...] Read more.
Advancements in transport engineering and technology play a crucial role in improving multimodal transport systems and optimizing logistics operations. This study focuses on efficient material flow management in an industrial enterprise, directly supporting the goals of sustainable transport and innovative logistics strategies. The manufacturing plant in Veselí nad Lužnicí was selected as a case study because of the identified inefficiencies in its logistics processes and the availability of detailed operational data, allowing for an accurate analysis of material flows. The research identifies weaknesses in the current material flow and proposes the following two optimization solutions: replacing an external operator for semi-finished goods transport with in-house logistics and substituting external transport providers for finished goods transportation with an internally managed fleet. The proposed methodology introduces a novel integration of analytical tools, including checkerboard table analysis, cost modeling, and return-on-investment (ROI) assessment, to evaluate logistics efficiency and minimize material handling costs. This study demonstrates how optimized material flows, particularly using railway logistics, can contribute to cost-effective and sustainable supply chains. The research reflects current trends in transport system planning, emphasizing transport modeling, digital twin simulations, and smart railway technologies to enhance operational efficiency and resilience. The results provide practical recommendations for companies seeking to integrate rail transport into their logistics processes, contributing to broader objectives of environmental sustainability and digital transformation in the transport sector. Full article
(This article belongs to the Special Issue Current Advances in Railway and Transportation Technology)
Show Figures

Figure 1

23 pages, 2625 KiB  
Review
Problems and Solutions Concerning the Distance Protection of Transmission Lines Connected to Inverter-Based Resources
by Juan David Hernández-Santafé and Elmer Sorrentino
Energies 2025, 18(6), 1375; https://doi.org/10.3390/en18061375 - 11 Mar 2025
Viewed by 1236
Abstract
This article presents a review of the problems and solutions concerning the distance protection of transmission lines connected to inverter-based resources (IBRs). After a brief description of IBRs and distance protection, the reported problems are classified based on their causes and effects. The [...] Read more.
This article presents a review of the problems and solutions concerning the distance protection of transmission lines connected to inverter-based resources (IBRs). After a brief description of IBRs and distance protection, the reported problems are classified based on their causes and effects. The causes are related to IBR behavior, and the effects are related to distance protection. The effects are classified as overall effects (observable wrong trips or an observable lack of activation of distance functions) and specific effects (related to the particular internal relay elements that failed, causing the observable overall effects). Furthermore, special attention is paid to clearly describe the research literature from relay manufacturers, since it should be closer to the current trends related to real-life problems and solutions. The causes and specific effects particularly mentioned in the reviewed literature are summarized in corresponding tables, including information about those papers where such causes and effects cannot be clearly identified. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 3rd Edition)
Show Figures

Figure 1

19 pages, 3261 KiB  
Article
Risk Assessment of Hydrogen Fuel System Leakage in Ships Based on Noisy-OR Gate Model Bayesian Network
by Gen Li, Haidong Zhang, Shibo Li and Chunchang Zhang
J. Mar. Sci. Eng. 2025, 13(3), 523; https://doi.org/10.3390/jmse13030523 - 9 Mar 2025
Cited by 3 | Viewed by 1207
Abstract
To mitigate the risk of hydrogen leakage in ship fuel systems powered by internal combustion engines, a Bayesian network model was developed to evaluate the risk of hydrogen fuel leakage. In conjunction with the Bow-tie model, fuzzy set theory, and the Noisy-OR Gate [...] Read more.
To mitigate the risk of hydrogen leakage in ship fuel systems powered by internal combustion engines, a Bayesian network model was developed to evaluate the risk of hydrogen fuel leakage. In conjunction with the Bow-tie model, fuzzy set theory, and the Noisy-OR Gate model, an in-depth analysis was also conducted to examine both the causal factors and potential consequences of such incidents. The Bayesian network model estimates the likelihood of hydrogen leakage at approximately 4.73 × 10−4 and identifies key risk factors contributing to such events, including improper maintenance procedures, inadequate operational protocols, and insufficient operator training. The Bow-tie model is employed to visualize the causal relationships between risk factors and their potential consequences, providing a clear structure for understanding the events leading to hydrogen leakage. Fuzzy set theory is used to address the uncertainties in expert judgments regarding system parameters, enhancing the robustness of the risk analysis. To mitigate the subjectivity inherent in root node probabilities and conditional probability tables, the Noisy-OR Gate model is introduced, simplifying the determination of conditional probabilities and improving the accuracy of the evaluation. The probabilities of flash or pool fires, jet fires, and vapor cloud explosions following a leakage are calculated as 4.84 × 10−5, 5.15 × 10−5, and 4.89 × 10−7, respectively. These findings highlight the importance of strengthening operator training and enforcing stringent maintenance protocols to mitigate the risks of hydrogen leakage. The model provides a valuable framework for safety evaluation and leakage risk management in hydrogen-powered ship fuel systems. Full article
Show Figures

Figure 1

Back to TopTop