Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (106)

Search Parameters:
Keywords = InterBeta

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1454 KB  
Article
Machine Learning Model for Predicting Multidrug Resistance in Clinical Escherichia coli Isolates: A Retrospective General Surgery Study
by Hüseyin Kerem Tolan, İrfan Aydın, Handan Tanyildizi-Kokkulunk, Mehmet Karakuş, Yüksel Akkaya, Osman Kaya and Ferruh Kemal İşman
Antibiotics 2025, 14(10), 969; https://doi.org/10.3390/antibiotics14100969 - 26 Sep 2025
Abstract
Background/Objectives: Escherichia coli is one of the leading causes of surgical site infections (SSIs) and poses a growing public health concern due to its increasing antimicrobial resistance. High rates of extended-spectrum beta-lactamase (ESBL) production among E. coli strains complicate treatment outcomes and [...] Read more.
Background/Objectives: Escherichia coli is one of the leading causes of surgical site infections (SSIs) and poses a growing public health concern due to its increasing antimicrobial resistance. High rates of extended-spectrum beta-lactamase (ESBL) production among E. coli strains complicate treatment outcomes and emphasize the need for effective surveillance and control strategies. Methods: A total of 691 E. coli isolates from general surgery clinics (2020–2025) were identified using MALDI-TOF MS. Antibiotic susceptibility data and patient variables were cleaned, encoded, and used to predict resistance using the Random Forest, CatBoost, and Naive Bayes algorithms. SMOTE addressed class imbalance, and model performance was assessed through various validation methods. Results: Among the three machine learning models tested, Random Forest (RF) showed the best performance in predicting antibiotic resistance of E. coli, achieving median accuracy, precision, recall, and F1-scores of 0.90 and AUC values up to 0.99 for key antibiotics. CatBoost performed similarly but was less stable with imbalanced data, while Naive Bayes showed lower accuracy. Feature importance analysis highlighted strong inter-antibiotic resistance links, especially among β-lactams, and some influence of demographic factors. Conclusions: This study highlights the potential of simple, high-performing models using structured clinical data to predict antimicrobial resistance, especially in resource-limited clinical settings. By incorporating machine learning into antimicrobial resistance (AMR) surveillance systems, our goal is to support the advancement of rapid diagnostics and targeted antimicrobial stewardship approaches, which are essential in addressing the growing challenge of multidrug resistance. Full article
(This article belongs to the Section Antibiotics Use and Antimicrobial Stewardship)
Show Figures

Figure 1

19 pages, 1921 KB  
Systematic Review
Application of the HOMA Index in Diabetic Dogs and Cats: A Systematic Review of Current Evidence
by Luminița Diana Hrițcu, Vasile Boghian, Geta Pavel, Teodor Daniel Hrițcu, Alexandru Spataru, Liviu Cătălin Burtan and Mihaela Claudia Spataru
Appl. Sci. 2025, 15(19), 10342; https://doi.org/10.3390/app151910342 - 24 Sep 2025
Viewed by 222
Abstract
The use of the HOMA (Homeostatic Model Assessment) index in veterinary medicine is emerging as a promising and valuable method for evaluating insulin resistance and beta-cell function in companion animals, particularly in dogs and cats. Originally developed for use in human medicine, HOMA [...] Read more.
The use of the HOMA (Homeostatic Model Assessment) index in veterinary medicine is emerging as a promising and valuable method for evaluating insulin resistance and beta-cell function in companion animals, particularly in dogs and cats. Originally developed for use in human medicine, HOMA enables a minimally invasive assessment of glucose and insulin homeostasis, offering clinicians a practical tool for diagnosing and monitoring diabetes mellitus in animals. Its application in veterinary practice brings several advantages, including cost-effectiveness, ease of use, and the potential for early detection of metabolic disturbances before clinical symptoms appear. Nonetheless, important limitations persist, such as inter-individual variability, the effects of stress and comorbidities on glucose and insulin values, and the absence of standardized, species-specific reference ranges. These factors highlight the need for methodological refinement and the establishment of validated protocols tailored to the unique physiological characteristics of dogs and cats. Despite these challenges, HOMA represents a promising avenue for advancing the understanding of diabetes pathophysiology in veterinary patients. Future longitudinal studies and controlled trials are essential to confirm its reliability and enhance its clinical relevance. With further development, the HOMA index could become an essential tool in improving diagnostic accuracy and optimizing the management of diabetes in companion animal practice. Full article
Show Figures

Figure 1

18 pages, 10187 KB  
Article
High-Fat-Diet-Induced Kidney Injury in Rats: The Role of Tart Cherry Supplementation
by Ilenia Martinelli, Proshanta Roy, Vincenzo Bellitto, Maria Vittoria Micioni Di Bonaventura, Carlo Cifani, Seyed Khosrow Tayebati and Daniele Tomassoni
Antioxidants 2025, 14(9), 1102; https://doi.org/10.3390/antiox14091102 - 10 Sep 2025
Viewed by 390
Abstract
The kidney plays a crucial role in the complex inter-organ communication that occurs during obesity, leading to the development of oxidative stress, inflammation, and fibrosis. Dysfunction of the transient receptor potential (TRP) ion channels contributes to this pathophysiology. This study was designed to [...] Read more.
The kidney plays a crucial role in the complex inter-organ communication that occurs during obesity, leading to the development of oxidative stress, inflammation, and fibrosis. Dysfunction of the transient receptor potential (TRP) ion channels contributes to this pathophysiology. This study was designed to evaluate the effects of antioxidant-rich fruit tart cherry (Prunus cerasus L.) on kidney morphology and protein expression in rats with diet-induced obesity (DIO). Methods include histological staining and immunohistochemical and Western blot assays. Obese rodents were fed with seed powder (DS) and seed powder plus juice (DJS) of the tart cherry. Results demonstrated that rats fed a high-fat-diet (HFD) showed a significant reduction in renal expression of the pro-inflammatory cytokines interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) following tart cherry supplementation. Furthermore, the study provided evidence that TRP channels, specifically TRP canonical 1 (TRPC1) and TRP melastatin 2 (TRPM2), were significantly upregulated in obese animals (p < 0.05 vs. CHOW rats) and markedly downregulated following tart cherry supplementation (p < 0.05 vs. DIO rats). In conclusion, these TRP proteins offer new insights for identifying targets and biomarkers for developing therapeutic strategies against HFD-induced renal damage, characterized by glomerulosclerosis, fibrosis, and inflammation. Tart cherries supplementation exerted a protective effect on the kidneys by reducing protein oxidation and pro-inflammatory cytokine expression. Full article
(This article belongs to the Special Issue Antioxidant Therapy for Obesity-Related Diseases)
Show Figures

Figure 1

27 pages, 1152 KB  
Article
Mapping the Cognitive Architecture of Health Beliefs: A Multivariate Conditional Network of Perceived Salt-Related Disease Risks
by Stanisław Surma, Łukasz Lewandowski, Karol Momot, Tomasz Sobierajski, Joanna Lewek, Bogusław Okopień and Maciej Banach
Nutrients 2025, 17(17), 2728; https://doi.org/10.3390/nu17172728 - 22 Aug 2025
Viewed by 666
Abstract
Background: Public beliefs about dietary risks, such as excessive salt intake, are often not isolated misconceptions but part of structured cognitive systems. This study aimed to explore how individuals organize their beliefs and misperceptions regarding salt-related health consequences. Material and Methods: Using data [...] Read more.
Background: Public beliefs about dietary risks, such as excessive salt intake, are often not isolated misconceptions but part of structured cognitive systems. This study aimed to explore how individuals organize their beliefs and misperceptions regarding salt-related health consequences. Material and Methods: Using data from an international online survey, we applied a system of multivariate proportional odds logistic regression (POLR) models to estimate conditional associations among beliefs about salt’s links to various diseases—including cardiovascular, metabolic, renal, neuropsychiatric, and mortality outcomes. In addition, exploratory and confirmatory factor analyses (EFA and CFA) were conducted to identify and validate latent constructs underlying the belief items. Beliefs were modeled as interdependent, controlling for latent constructs, sociodemographics, and self-reported health awareness. Statistically significant associations (p < 0.05) were visualized via a heatmap of beta coefficients. Results: Physicians showed almost universal agreement that salt contributes to hypertension (µ = 0.97), compared to non-medical respondents (µ = 0.85; p < 0.0001). Beliefs about mortality (µ = 1.55 for MDs vs. 0.99 for non-medical; p < 0.0001) emerged as central hubs in the belief network. Strong inter-item associations were observed, such as between hypertension and heart failure (β = −0.39), and between obesity and type 2 diabetes (β = −0.94). Notably, cognitive gaps were found, including a lack of association between atrial fibrillation and stroke, and non-reciprocal links between hypertension and heart failure. Conclusions: Beliefs about the health effects of salt are structured and sometimes asymmetrical, reflecting underlying reasoning patterns rather than isolated ignorance. Understanding these structures provides a systems-level view of health literacy and may inform more effective public health communication and education strategies. Full article
(This article belongs to the Special Issue Nutritional Aspects of Cardiovascular Disease Risk Factors)
Show Figures

Figure 1

17 pages, 1802 KB  
Article
Longitudinal Profiling of the Human Milk Microbiome from Birth to 12 Months Reveals Overall Stability and Selective Taxa-Level Variation
by Ruomei Xu, Zoya Gridneva, Matthew S. Payne, Mark P. Nicol, Ali S. Cheema, Donna T. Geddes and Lisa F. Stinson
Microorganisms 2025, 13(8), 1830; https://doi.org/10.3390/microorganisms13081830 - 5 Aug 2025
Viewed by 870
Abstract
Human milk bacteria contribute to gut microbiome establishment in breastfed infants. Although breastfeeding is recommended throughout infancy, temporal variation in the milk microbiome—particularly beyond solid food introduction—remains understudied. We analyzed 539 milk samples from 83 mother–infant dyads between 1 week and 12 months [...] Read more.
Human milk bacteria contribute to gut microbiome establishment in breastfed infants. Although breastfeeding is recommended throughout infancy, temporal variation in the milk microbiome—particularly beyond solid food introduction—remains understudied. We analyzed 539 milk samples from 83 mother–infant dyads between 1 week and 12 months postpartum using full-length 16S rRNA gene sequencing. The microbiota was dominated by Streptococcus (34%), Cutibacterium (12%), and Staphylococcus (9%), with marked inter-individual variation. Microbiome profiles remained largely stable across lactation, with only six taxa showing temporal fluctuations, including increases in typical oral bacteria such as Streptococcus salivarius, Streptococcus lactarius, Rothia mucilaginosa, and Granulicatella adiacens. Richness and evenness were higher at 1 week compared to 1 month postpartum (p = 0.00003 and p = 0.007, respectively), then stabilized. Beta diversity also remained stable over time. Maternal pre-pregnancy BMI was positively associated with Gemella haemolysans (p = 0.016), while Haemophilus parainfluenzae was more abundant in milk from mothers with allergies (p = 0.003) and those who gave birth in autumn or winter (p = 0.006). The introduction of solid food was linked to minor taxonomic shifts. Overall, the milk microbiome remained robustly stable over the first year of lactation, with limited but notable fluctuations in specific taxa. This study supports the role of human milk as a consistent microbial source for infants and identifies maternal BMI, allergy status, and birth season as key variables warranting further investigation. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

16 pages, 1317 KB  
Systematic Review
Association Between Oral Dysbiosis and Depression: A Systematic Review
by Paula García-Rios, Miguel R. Pecci-Lloret, María Pilar Pecci-Lloret, Laura Murcia-Flores and Nuria Pérez-Guzmán
J. Clin. Med. 2025, 14(14), 5162; https://doi.org/10.3390/jcm14145162 - 21 Jul 2025
Viewed by 855
Abstract
Background: Depression is a mental disorder characterized by a combination of somatic and cognitive disturbances, in which a predominantly sad or irritable mood significantly interferes with the patient’s functioning. This condition can affect individuals of all ages and socioeconomic backgrounds. Currently, various [...] Read more.
Background: Depression is a mental disorder characterized by a combination of somatic and cognitive disturbances, in which a predominantly sad or irritable mood significantly interferes with the patient’s functioning. This condition can affect individuals of all ages and socioeconomic backgrounds. Currently, various studies are exploring a possible association between oral dysbiosis and depression—an increasingly relevant topic, as confirmation of such a relationship could position the oral microbiota as a potential etiological or diagnostic factor for depression, given its accessibility and ease of analysis. Aim: To present a qualitative synthesis of studies addressing how oral dysbiosis influences the onset of depression, as well as the importance of controlling this alteration of the oral microbiota to aid in the prevention of the disease. Materials and Methods: The PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) outline the procedures to be followed for conducting this systematic review. The article search was carried out on 22 May 2025, across the PubMed, Scopus, Scielo, and The Cochrane Library databases, using terms related to “depression” and “oral dysbiosis”. Studies published within the last 10 years that addressed the potential association between oral dysbiosis, and depression were included. Furthermore, the quality of the studies was assessed using various tools depending on their design: the Newcastle–Ottawa Scale (NOS) was applied to case-control and cohort studies; the Joanna Briggs Institute (JBI) critical appraisal checklist was used for cross-sectional studies; and experimental studies were evaluated using SYRCLE’s Risk of Bias Tool. Results: A total of eleven studies were included in this systematic review. The findings suggest the presence of alterations in the oral microbiota of patients with depression, particularly in terms of composition, structure, and diversity. A reduction in alpha diversity—an indicator of local microbial balance—was observed, along with an increase in beta diversity, indicating greater inter-individual variability, which may be associated with inflammatory processes or immunological dysfunctions. Some studies reported differing results, which may be attributable to methodological variability regarding study design, or the populations sampled. Conclusions: This systematic review suggests that the oral microbiome could be considered a diagnostic biomarker and therapeutic target for depression, as the analyzed studies demonstrate a significant association between oral microbiome dysbiosis and this mental disorder. However, the methodological heterogeneity among the studies highlights the need for further research to confirm this potential relationship. Full article
Show Figures

Figure 1

15 pages, 2623 KB  
Article
Preliminary Insights into the Gut Microbiota of Captive Tigers in Republic of Korea: Influence of Geographic and Individual Variation
by Beoul Kim, Saebom Lee, You-Jeong Lee, Yong-Myung Kang, Man Hee Rhee, Dongmi Kwak, Yong-Gu Yeo, Ju Won Kang, Taehwan Kim and Min-Goo Seo
Microorganisms 2025, 13(6), 1427; https://doi.org/10.3390/microorganisms13061427 - 19 Jun 2025
Viewed by 600
Abstract
The gut microbiome plays a crucial role in the health and physiology of tigers (Panthera tigris), influencing digestion, immune function, and overall well-being. While numerous studies have characterized the gut microbiota of domestic carnivores and some wild felids, comparative analyses across [...] Read more.
The gut microbiome plays a crucial role in the health and physiology of tigers (Panthera tigris), influencing digestion, immune function, and overall well-being. While numerous studies have characterized the gut microbiota of domestic carnivores and some wild felids, comparative analyses across different tiger subspecies under varying environmental contexts remain limited. In this exploratory study, we investigated the gut microbiome diversity and composition of 15 captive tigers, including both Siberian (P. tigris altaica) and Bengal (P. tigris tigris) subspecies, housed in two different regions in Korea. Using 16S rRNA gene sequencing of fecal samples, we analyzed microbial diversity across multiple taxonomic levels. Preliminary analyses revealed significant differences in microbial composition between geographic locations, whereas sex-based differences appeared minimal. Alpha and beta diversity metrics demonstrated substantial inter-individual variability, likely influenced by regional and environmental factors. Given the small sample size and the confounding between subspecies and housing location, the findings should be regarded as preliminary and not generalized beyond this specific cohort. Nevertheless, these insights highlight the potential utility of gut microbiome profiling for health monitoring and management in captive-tiger populations. Future research incorporating larger, more diverse cohorts will be essential to validate these trends and clarify the roles of diet, health status, and enrichment in shaping the gut microbiota. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

8 pages, 447 KB  
Article
Impact of Time-to-Treatment Initiation and First Inter-Cycle Delay in Patients with Hodgkin Lymphoma
by Deniz Donmez, Yasemin Evlendi, Taha Koray Sahin, Ibrahim Barista and Serkan Akin
J. Clin. Med. 2025, 14(12), 4085; https://doi.org/10.3390/jcm14124085 - 10 Jun 2025
Cited by 1 | Viewed by 841
Abstract
Background: Delays in treatments are frequent in real-world lymphoma management. This study evaluates the impact of diagnosis-to-treatment intervals (DTIs) and first inter-cycle delay (IcD) on outcomes in patients with Hodgkin lymphoma (HL) receiving ABVD chemotherapy. Methods: We retrospectively analyzed 137 patients [...] Read more.
Background: Delays in treatments are frequent in real-world lymphoma management. This study evaluates the impact of diagnosis-to-treatment intervals (DTIs) and first inter-cycle delay (IcD) on outcomes in patients with Hodgkin lymphoma (HL) receiving ABVD chemotherapy. Methods: We retrospectively analyzed 137 patients with classical HL treated with ABVD at a single institution between 2015 and 2022. Results: The median age was 34 years (range: 18–73), and 62% were male. The median DTI was 14 days, with 24.1% of patients experiencing a delay of >7 days between the first and second chemotherapy cycles. The most frequent reason for delay was neutropenia, observed in 69% of delayed cases. Neither DTI nor IcD was significantly associated with PFS or OS. Multivariate analysis identified elevated beta-2 microglobulin as an independent predictor of both inferior PFS and OS. Conclusions: This is the first study to evaluate both DTI and first IcD as independent prognostic factors in HL. Modest delays in treatment initiation or early cycle administration did not negatively affect survival. Timely but flexible scheduling of ABVD may be appropriate in HL. Prospective studies are warranted in the era of novel therapeutic agents. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

16 pages, 1562 KB  
Article
Gut Microbiota Variation in Aging Dogs with Osteoarthritis
by Fatemeh Balouei, Christina de Rivera, Andrea Paradis, Bruno Stefanon, Stephanie Kelly, Noelle McCarthy and Paolo Mongillo
Animals 2025, 15(11), 1619; https://doi.org/10.3390/ani15111619 - 30 May 2025
Viewed by 823
Abstract
Gut microbiota composition plays a crucial role in host health and may be influenced by age and disease conditions. This study investigates the gut microbiota diversity of 175 dogs across three age groups (Junior (20–46 months, 43 dogs), Adult (47–92 months, 58 dogs), [...] Read more.
Gut microbiota composition plays a crucial role in host health and may be influenced by age and disease conditions. This study investigates the gut microbiota diversity of 175 dogs across three age groups (Junior (20–46 months, 43 dogs), Adult (47–92 months, 58 dogs), and Senior (93–168 months, 74 dogs), and examined the impact of osteoarthritis on microbial composition. Alpha diversity analysis using the Shannon and Chao1 indices were significant (p < 0.05) in Senior dogs Beta diversity analysis based on Bray–Curtis dissimilarity indices demonstrated substantial overlap in gut microbiota composition across age groups, with no significant clustering observed (p > 0.05). A second analysis compared the microbiota of 69 healthy dogs and 81 dogs affected by osteoarthritis (OA) in the three classes of age. No significant differences were shown for alpha diversity and beta diversity between healthy and OA dogs. This indicates that aging and osteoarthritis do not induce significant shifts in microbial beta diversity, although high inter-individual variability was noted. Linear Discriminant Analysis (LDA) Effect Size (LEfSe) analysis identified distinct bacterial taxa associated with different age groups. Linear Discriminant Analysis (LDA) Effect Size (LEfSe) analysis identified distinct bacterial taxa associated with different age groups. Junior dogs exhibited enrichment in Blautia, Erysipelotrichaceae, and Clostridium, while Adult dogs were characterized by higher abundances of Prevotella, Streptococcus, and Ruminococcaceae. Senior dogs had increased representation of Prevotella and Ruminococcus. In OA dogs, Peptococcus, Peptostreptococcus, Clostridiaceae, and Coprobacillus were significantly enriched in comparison to healthy dogs, suggesting potential microbiota shifts associated with osteoarthritis. Overall, these findings indicate that gut microbiota diversity varies across different life stages, specific bacterial taxa were differentially enriched in relation to age and OA. This study enhances our understanding of gut microbiota dynamics in dogs and provides insights into potential age- and disease-related microbial signatures. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

27 pages, 2964 KB  
Article
Approaches for Reducing Expert Burden in Bayesian Network Parameterization
by Bodille P. M. Blomaard, Gabriela F. Nane and Anca M. Hanea
Entropy 2025, 27(6), 579; https://doi.org/10.3390/e27060579 - 29 May 2025
Viewed by 552
Abstract
Bayesian networks (BNs) are popular models that represent complex relationships among variables. In the discrete case, these relationships can be quantified by conditional probability tables (CPTs). CPTs can be derived from data, but if data are not sufficient, experts can be involved to [...] Read more.
Bayesian networks (BNs) are popular models that represent complex relationships among variables. In the discrete case, these relationships can be quantified by conditional probability tables (CPTs). CPTs can be derived from data, but if data are not sufficient, experts can be involved to assess the probabilities in the CPTs through Structured Expert Judgment (SEJ). This is often a burdensome task due to the large number of probabilities that need to be assessed and the structured protocols that need to be followed. To lighten the elicitation burden, several methods have previously been developed to construct CPTs using a limited number of input parameters, such as InterBeta, the Ranked Nodes Method (RNM), and Functional Interpolation. In this study, the burden/accuracy trade-off of InterBeta is researched by applying the method to reconstruct previously elicited CPTs and simulated CPTs, first by comparing these CPTs to ones constructed using RNM and Functional Interpolation. After that, InterBeta extensions are proposed and tested, including an extra mean function (shifted geometric mean), the elicitation of additional middle rows, and the newly proposed extension ExtraBeta. InterBeta with parent weights is found to be the best-performing method, and the ExtraBeta extension is found to be promising and is proposed for further exploration. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

17 pages, 1419 KB  
Article
Electrophysiological Hyperscanning of Negotiation During Group-Oriented Decision-Making
by Laura Angioletti, Katia Rovelli, Carlotta Acconito, Angelica Daffinà and Michela Balconi
Appl. Sci. 2025, 15(11), 6073; https://doi.org/10.3390/app15116073 - 28 May 2025
Viewed by 795
Abstract
Background: This study investigates the electrophysiological (EEG) correlates underlying negotiation dynamics in dyads engaged in a shared decision-making process. Methods: Using EEG hyperscanning, we examined single-brain and inter-brain neural activity in 26 participants (13 dyads) during a structured negotiation task. The participants, selected [...] Read more.
Background: This study investigates the electrophysiological (EEG) correlates underlying negotiation dynamics in dyads engaged in a shared decision-making process. Methods: Using EEG hyperscanning, we examined single-brain and inter-brain neural activity in 26 participants (13 dyads) during a structured negotiation task. The participants, selected for their group-oriented decision-making preference, discussed a realistic group decisional scenario while their EEG activity was recorded. EEG frequency bands (delta, theta, alpha, beta, and gamma) were analyzed and Euclidean Distances were computed for measuring dissimilarity at the inter-brain neural level. Results: At the single-brain level, the results show increased delta and theta power in frontal regions, reflecting emotional engagement and goal-directed control, alongside heightened beta and gamma activity in parieto-occipital areas, linked to cognitive integration and decision-monitoring during the negotiation process. At the inter-brain neural level, we observed significant dissimilarity in frontal delta activity compared to temporo-central and parieto-occipital one, suggesting that negotiation involves independent cognitive regulation within the members of the dyads rather than complete neural synchrony. Conclusions: These findings highlight the dual role of negotiation as both a cooperative and cognitively demanding process, requiring emotional alignment and strategic adaptation. This study advances our understanding of the neurophysiological bases of negotiation and provides insights into how inter-brain dynamics shape collaborative decision-making. Full article
(This article belongs to the Special Issue Brain Functional Connectivity: Prediction, Dynamics, and Modeling)
Show Figures

Figure 1

17 pages, 3542 KB  
Article
Preventive Activity of an Arginine-Based Surfactant on the Formation of Mixed Biofilms of Fluconazole-Resistant Candida albicans and Extended-Spectrum-Beta-Lactamase-Producing Escherichia coli on Central Venous Catheters
by Lourdes Pérez, Cecília Rocha da Silva, Lívia Gurgel do Amaral Valente Sá, João Batista de Andrade Neto, Vitória Pessoa de Farias Cabral, Daniel Sampaio Rodrigues, Lara Elloyse Almeida Moreira, Maria Janielly Castelo Branco Silveira, Thais Lima Ferreira, Anderson Ramos da Silva, Bruno Coêlho Cavalcanti, Nágila Maria Pontes Silva Ricardo, Francisco Alessandro Marinho Rodrigues and Hélio Vitoriano Nobre Júnior
Antibiotics 2025, 14(3), 227; https://doi.org/10.3390/antibiotics14030227 - 24 Feb 2025
Viewed by 1237
Abstract
Background/Objectives: Mixed bloodstream infections associated with central venous catheter (CVC) use are a growing problem. The aim of this study was to evaluate the activity of a cationic arginine-based gemini surfactant, C9(LA)2, against mixed biofilms of fluconazole-resistant Candida albicans [...] Read more.
Background/Objectives: Mixed bloodstream infections associated with central venous catheter (CVC) use are a growing problem. The aim of this study was to evaluate the activity of a cationic arginine-based gemini surfactant, C9(LA)2, against mixed biofilms of fluconazole-resistant Candida albicans and extended-spectrum beta-lactamase (ESBL)-producing E. coli, and the preventive effect of this surfactant impregnated in CVCs on the formation of inter-kingdom biofilms. Methods: Broth microdilution assays were performed along with evaluation of the effect against mixed biofilms in formation. The impregnation of CVCs with the surfactant and with a hydrogel containing the cationic surfactant was investigated to assess their potential to prevent the formation of mixed biofilms. Scanning electron microscopy (SEM) was also utilized. Results: Minimum inhibitory concentrations (MICs) for resistant C. albicans ranged from 4–5.3 µg/mL, while for E. coli, the MICs varied from 85.3 to 298.7 µg/mL. Fungicidal and bactericidal action patterns were obtained. In mixed biofilm formation in 96-well plates, there was a significant reduction in the colony-forming unit (CFU) count. The impregnation of the CVC with C9(LA)2 alone resulted in a biofilm reduction of 62% versus C. albicans and 48.7% against E. coli in terms of CFUs. When the CVC was impregnated with the surfactant hydrogel, the effect was improved with an inhibition of 71.7% for C. albicans and 86.7% for E. coli. The images obtained by SEM corroborated the results. Conclusions: C9(LA)2 has potential for use in CVC impregnation to prevent the formation of mixed biofilms of fluconazole-resistant C. albicans and ESBL-producing E. coli. Full article
(This article belongs to the Section Antimicrobial Materials and Surfaces)
Show Figures

Figure 1

28 pages, 7769 KB  
Article
Impact of African-Specific ACE2 Polymorphisms on Omicron BA.4/5 RBD Binding and Allosteric Communication Within the ACE2–RBD Protein Complex
by Victor Barozi and Özlem Tastan Bishop
Int. J. Mol. Sci. 2025, 26(3), 1367; https://doi.org/10.3390/ijms26031367 - 6 Feb 2025
Cited by 3 | Viewed by 1452
Abstract
Severe acute respiratory symptom coronavirus 2 (SARS-CoV-2) infection occurs via the attachment of the spike (S) protein’s receptor binding domain (RBD) to human ACE2 (hACE2). Natural polymorphisms in hACE2, particularly at the interface, may alter RBD–hACE2 interactions, potentially affecting viral infectivity across populations. [...] Read more.
Severe acute respiratory symptom coronavirus 2 (SARS-CoV-2) infection occurs via the attachment of the spike (S) protein’s receptor binding domain (RBD) to human ACE2 (hACE2). Natural polymorphisms in hACE2, particularly at the interface, may alter RBD–hACE2 interactions, potentially affecting viral infectivity across populations. This study identified the effects of six naturally occurring hACE2 polymorphisms with high allele frequency in the African population (S19P, K26R, M82I, K341R, N546D and D597Q) on the interaction with the S protein RBD of the BA.4/5 Omicron sub-lineage through post-molecular dynamics (MD), inter-protein interaction and dynamic residue network (DRN) analyses. Inter-protein interaction analysis suggested that the K26R variation, with the highest interactions, aligns with reports of enhanced RBD binding and increased SARS-CoV-2 susceptibility. Conversely, S19P, showing the fewest interactions and largest inter-protein distances, agrees with studies indicating it hinders RBD binding. The hACE2 M82I substitution destabilized RBD–hACE2 interactions, reducing contact frequency from 92 (WT) to 27. The K341R hACE2 variant, located distally, had allosteric effects that increased RBD–hACE2 contacts compared to WThACE2. This polymorphism has been linked to enhanced affinity for Alpha, Beta and Delta lineages. DRN analyses revealed that hACE2 polymorphisms may alter the interaction networks, especially in key residues involved in enzyme activity and RBD binding. Notably, S19P may weaken hACE2–RBD interactions, while M82I showed reduced centrality of zinc and chloride-coordinating residues, hinting at impaired communication pathways. Overall, our findings show that hACE2 polymorphisms affect S BA.4/5 RBD stability and modulate spike RBD–hACE2 interactions, potentially influencing SARS-CoV-2 infectivity—key insights for vaccine and therapeutic development. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

15 pages, 1055 KB  
Article
Metagenomic Insights into Microbial Signatures in Thrombi from Acute Ischemic Stroke Patients Undergoing Endovascular Treatment
by Kasthuri Thirupathi, Sherief Ghozy, Abdullah Reda, Wasantha K. Ranatunga, Mars A. Ruben, Zarrintan Armin, Oana M. Mereuta, Sekhon Prabhjot, Daying Dai, Waleed Brinjikji, David F. Kallmes and Ramanathan Kadirvel
Brain Sci. 2025, 15(2), 157; https://doi.org/10.3390/brainsci15020157 - 6 Feb 2025
Cited by 1 | Viewed by 1212
Abstract
Background: Variability in recanalization success during endovascular treatment for acute ischemic stroke (AIS) has led to increased interests in thrombus composition and associated cellular materials. While evidence suggests that bacteria may influence thrombus characteristics, limited data exist on microbiological profiles of thrombi in [...] Read more.
Background: Variability in recanalization success during endovascular treatment for acute ischemic stroke (AIS) has led to increased interests in thrombus composition and associated cellular materials. While evidence suggests that bacteria may influence thrombus characteristics, limited data exist on microbiological profiles of thrombi in stroke patients. Objectives: Characterization of bacterial communities present in thrombi of AIS patients undergoing mechanical thrombectomy, providing insights into microbial contributions to stroke pathogenesis and treatment outcomes. Methods: Thrombi were collected from 20 AIS patients. After extracting metagenome, 16S rDNA sequencing was performed. Bioinformatic analysis included taxonomy and diversity assessments. The presence of bacterial DNA and viable bacteria in thrombi was validated using polymerase chain reaction (PCR) and bacterial culturing followed by matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) analysis, respectively. Results: 16S rDNA was amplified in 19/20 thrombi (95%). Analysis identified a diverse microbial community, with Corynebacterium spp. as the most prevalent genus, followed by Staphylococcus spp., Bifidobacterium spp., Methylobacterium spp., and Anaerococcus spp. Alpha diversity analyses (Shannon index: 4.0–6.0 and Simpson index: 0.8–1.0) revealed moderate to high microbial diversity across samples; beta diversity demonstrated distinct clustering, indicating inter-patient variability in microbial profiles. PCR confirmed the presence of DNA specific to dominant bacterial taxa identified through sequencing. Culturing showed the presence of Staphylococcus epidermidis and Enterococcus faecalis in some clots as identified through MALDI analysis. Conclusions: This study shows bacterial communities present in AIS patients’ thrombi, suggesting a potential link between microbial signatures and thrombus characteristics. Full article
(This article belongs to the Section Neurorehabilitation)
Show Figures

Figure 1

19 pages, 14475 KB  
Article
Human Milk Archaea Associated with Neonatal Gut Colonization and Its Co-Occurrence with Bacteria
by Maricarmen Salas-López, Juan Manuel Vélez-Ixta, Diana Laura Rojas-Guerrero, Alberto Piña-Escobedo, José Manuel Hernández-Hernández, Martín Noé Rangel-Calvillo, Claudia Pérez-Cruz, Karina Corona-Cervantes, Carmen Josefina Juárez-Castelán and Jaime García-Mena
Microorganisms 2025, 13(1), 85; https://doi.org/10.3390/microorganisms13010085 - 4 Jan 2025
Cited by 1 | Viewed by 1757
Abstract
Archaea have been identified as early colonizers of the human intestine, appearing from the first days of life. It is hypothesized that the origin of many of these archaea is through vertical transmission during breastfeeding. In this study, we aimed to characterize the [...] Read more.
Archaea have been identified as early colonizers of the human intestine, appearing from the first days of life. It is hypothesized that the origin of many of these archaea is through vertical transmission during breastfeeding. In this study, we aimed to characterize the archaeal composition in samples of mother-neonate pairs to observe the potential vertical transmission. We performed a cross-sectional study characterizing the archaeal diversity of 40 human colostrum-neonatal stool samples by next-generation sequencing of V5–V6 16S rDNA libraries. Intra- and inter-sample analyses were carried out to describe the Archaeal diversity in each sample type. Human colostrum and neonatal stools presented similar core microbiota, mainly composed of the methanogens Methanoculleus and Methanosarcina. Beta diversity and metabolic prediction results suggest homogeneity between sample types. Further, the co-occurrence network analysis showed associations between Archaea and Bacteria, which might be relevant for these organisms’ presence in the human milk and neonatal stool ecosystems. According to relative abundance proportions, beta diversity, and co-occurrence analyses, the similarities found imply that there is vertical transmission of archaea through breastfeeding. Nonetheless, differential abundances between the sample types suggest other relevant sources for colonizing archaea to the neonatal gut. Full article
(This article belongs to the Special Issue Advances in Diet–Host–Gut Microbiome Interactions)
Show Figures

Figure 1

Back to TopTop