Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = In vitro/in situ anti-inflammatory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1915 KiB  
Communication
Performance of Imidazoquinoline Glycoconjugate BAIT628 as a TLR7 Agonist Prodrug for Prostate Cancer
by Seyedeh A. Najibi, S. M. Al Muied Pranto, Muhammad Haroon, Amy E. Nielsen and Rock J. Mancini
Pharmaceuticals 2025, 18(6), 804; https://doi.org/10.3390/ph18060804 - 27 May 2025
Viewed by 890
Abstract
Despite broad anti-cancer efficacy as Toll-Like Receptor (TLR) 7/8 agonists, imidazoquinolines remain limited in use via systemic administration or in situ vaccination therapies due to inflammatory toxicity. One approach to address this challenge involves better targeting the action of imidazoquinolines by caging them [...] Read more.
Despite broad anti-cancer efficacy as Toll-Like Receptor (TLR) 7/8 agonists, imidazoquinolines remain limited in use via systemic administration or in situ vaccination therapies due to inflammatory toxicity. One approach to address this challenge involves better targeting the action of imidazoquinolines by caging them as glycoconjugate prodrugs. Within cancer cells, imidazoquinoline glycoconjugates are activated by hydrolases prior to efflux by ABC transport proteins, where they then elicit tumoricidal effects from the assistance of bystander immune cells, such as tumor-infiltrating lymphocytes and associated macrophages, in local proximity. While this concept of Bystander-Assisted ImmunoTherapy (BAIT) has been established at a molecular level in vitro, tolerability or efficacy of BAIT has not been reported in vivo. Here, we evaluate the MTD and tumor growth delay efficacy of a lead BAIT prodrug (BAIT628) in a male C57BL/6 mouse TRAMP-C2 prostate cancer model to further establish this methodology. Overall, we find that systemic BAIT628 is well tolerated at over 5-fold the dose-limiting inflammatory toxicity of the parent imidazoquinoline (up to 5 mg/mouse/day I.P. for 10 days). Analyzing serum cytokines reveals that IL-10 production, elicited by the mannoside caging group, likely contributes to the enhanced MTD. Using BAIT628 as an in situ vaccination immunotherapy (seven times over 3 weeks) resulted in significant tumor growth delay and increased survival, both alone and in combination with a murinized α-PD-L1 checkpoint blockade. The tumor histology of tumor-infiltrating immune cell subsets (CD4+, CD8+, CD11c+) reveals significant increases in CD11c+ populations, consistent with TLR7/8 agonism. Overall, BAIT628 is well tolerated and exhibits significant efficacy in the TRAMP-C2 model. These results demonstrate how the BAIT approach can optimize imidazoquinolines for in vivo tolerability and subsequent efficacy as cancer immunotherapeutics. Full article
Show Figures

Figure 1

47 pages, 2636 KiB  
Review
Unveiling the Future: Opportunities in Long-Acting Injectable Drug Development for Veterinary Care
by HariPriya Koppisetti, Sadikalmahdi Abdella, Deepa D. Nakmode, Fatima Abid, Franklin Afinjuomo, Sangseo Kim, Yunmei Song and Sanjay Garg
Pharmaceutics 2025, 17(5), 626; https://doi.org/10.3390/pharmaceutics17050626 - 8 May 2025
Cited by 1 | Viewed by 1684
Abstract
Long-acting injectable (LAI) formulations have revolutionized veterinary pharmaceuticals by improving patient compliance, minimizing dosage frequency, and improving therapeutic efficacy. These formulations utilize advanced drug delivery technologies, including microspheres, liposomes, oil solutions/suspensions, in situ-forming gels, and implants to achieve extended drug release. Biodegradable polymers [...] Read more.
Long-acting injectable (LAI) formulations have revolutionized veterinary pharmaceuticals by improving patient compliance, minimizing dosage frequency, and improving therapeutic efficacy. These formulations utilize advanced drug delivery technologies, including microspheres, liposomes, oil solutions/suspensions, in situ-forming gels, and implants to achieve extended drug release. Biodegradable polymers such as poly(lactic-co-glycolic acid) (PLGA), and polycaprolactone (PCL) have been approved by the USFDA and are widely employed in the development of various LAIs, offering controlled drug release and minimizing the side effects. Various classes of veterinary medicines, including non-steroidal anti-inflammatory drugs (NSAIDs), antibiotics, and reproductive hormones, have been successfully formulated as LAIs. Some remarkable LAI products, such as ProHeart® (moxidectin), Excede® (ceftiofur), and POSILACTM (recombinant bovine somatotropin), show clinical relevance and commercial success. This review provides comprehensive information on the formulation strategies currently being used and the emerging technologies in LAIs for veterinary purposes. Additionally, challenges in characterization, in vitro testing, in vitro in vivo correlation (IVIVC), and safety concerns regarding biocompatibility are discussed, along with the prospects for next-generation LAIs. Continued advancement in the field of LAI in veterinary medicine is essential for improving animal health. Full article
(This article belongs to the Special Issue Long Acting Drug Delivery Formulations)
Show Figures

Figure 1

25 pages, 3505 KiB  
Article
Phenolic Acid Investigation and In Vitro Antioxidant and Antiacetylcholinesterase Potentials of Galeopsis spp. (Lamiaceae) from Romanian Flora
by Roxana Maria Golu, Cornelia Bejenaru, Ludovic Everard Bejenaru, Adina-Elena Segneanu, Andrei Biţă, Antonia Radu, Adriana Cosmina Tîrnă, Maria Viorica Ciocîlteu, George Dan Mogoşanu, Johny Neamţu and Oana Elena Nicolaescu
Pharmaceuticals 2025, 18(4), 599; https://doi.org/10.3390/ph18040599 - 20 Apr 2025
Viewed by 492
Abstract
Background/Objectives Galeopsis spp. (Lamiaceae) are widely distributed across extensive areas in Romania, being used mainly for their sedative, neuroprotective, antioxidant, anti-inflammatory, expectorant, astringent, and diuretic properties. The paper reports for the first time the investigation of the total phenolic content [...] Read more.
Background/Objectives Galeopsis spp. (Lamiaceae) are widely distributed across extensive areas in Romania, being used mainly for their sedative, neuroprotective, antioxidant, anti-inflammatory, expectorant, astringent, and diuretic properties. The paper reports for the first time the investigation of the total phenolic content (TPC), total flavonoid content (TFC), and phenolic acid profile in the roots, aerial parts, and leaves from three wild-grown Galeopsis spp. (G. bifida Boenn., G. speciosa Mill., and G. tetrahit L.), along with their antioxidant and acetylcholinesterase (AChE) inhibitory potentials. Methods: The ultra-high-performance liquid chromatography/ultraviolet/mass spectrometry (HPLC/UV/MS) method was used for the identification and quantification of key phenolic acids. The spectrophotometric method was applied for the determination of TPC, TFC, 2,2-diphenyl-1-picrylhydrazyl (DPPH), and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activities and also the ferric-reducing antioxidant power (FRAP). High-performance thin-layer chromatography (HPTLC) was employed for the assessment of in situ antioxidant (DPPH assay) and AChE inhibitory potentials. Results: Galeopsis spp. exhibit significant polyphenol accumulation. Chlorogenic acid was the most abundant compound, with the highest levels detected in G. tetrahit leaves (22,347.907 ± 1117.395 μg/g), followed by G. tetrahit aerial parts (11,678.509 ± 583.925 μg/g) and G. speciosa leaves (8712.628 ± 435.631 μg/g). G. tetrahit leaves had the highest DDPH radical scavenging activity, with a half-maximal inhibitory concentration (IC50) of 0.458 ± 0.03 mg/mL, demonstrating a markedly stronger antioxidant effect. Leaves consistently showed the strongest DPPH activity across all species, with G. speciosa leaves also displaying a low IC50 value of 0.789 ± 0.03 mg/mL, comparable to G. tetrahit. Aerial parts exhibited an intermediate effect, with G. bifida aerial parts showing an IC50 of 8.102 ± 0.49 mg/mL, while G. tetrahit aerial parts demonstrated stronger activity at 1.511 ± 0.11 mg/mL. AChE inhibition activity increased progressively from the roots to aerial parts to leaves, with leaves consistently exhibiting the strongest inhibitory effects across all Galeopsis spp. G. tetrahit leaves had the strongest inhibition, with an IC50 of 4.002 ± 0.32 mg/mL, followed by G. speciosa leaves (6.92 ± 0.14 mg/mL) and G. bifida leaves (6.97 ± 0.68 mg/mL). Conclusions: Our study provides a comprehensive analysis of the phenolic acid content, in vitro antioxidant activity, and neuroprotective potential of three Galeopsis spp. (G. bifida, G. speciosa, and G. tetrahit) from the southwestern Romanian flora. Full article
Show Figures

Graphical abstract

17 pages, 1191 KiB  
Review
Impact of Peptide Transport and Memory Function in the Brain
by Lihong Cheng, Caiyue Shi, Xixi Li and Toshiro Matsui
Nutrients 2024, 16(17), 2947; https://doi.org/10.3390/nu16172947 - 2 Sep 2024
Cited by 3 | Viewed by 4343
Abstract
Recent studies have reported the benefits of food-derived peptides for memory dysfunction. Beyond the physiological effects of peptides, their bioavailability to the brain still remains unclear since the blood-brain barrier (BBB) strictly controls the transportation of compounds to the brain. Here, updated transportation [...] Read more.
Recent studies have reported the benefits of food-derived peptides for memory dysfunction. Beyond the physiological effects of peptides, their bioavailability to the brain still remains unclear since the blood-brain barrier (BBB) strictly controls the transportation of compounds to the brain. Here, updated transportation studies on BBB transportable peptides are introduced and evaluated using in vitro BBB models, in situ perfusion, and in vivo mouse experiments. Additionally, the mechanisms of action of brain health peptides in relation to the pathogenesis of neurodegenerative diseases, particularly Alzheimer’s disease, are discussed. This discussion follows a summary of bioactive peptides with neuroprotective effects that can improve cognitive decline through various mechanisms, including anti-inflammatory, antioxidative, anti-amyloid β aggregation, and neurotransmitter regulation. Full article
Show Figures

Figure 1

18 pages, 3690 KiB  
Article
Nutritional Value, Major Chemical Compounds, and Biological Activities of Petromarula pinnata (Campanulaceae)—A Unique Nutraceutical Wild Edible Green of Crete (Greece)
by Kyriakos Michail Dimitriadis, Sofia Karavergou, Olga S. Tsiftsoglou, Eleftherios Karapatzak, Konstantinos Paschalidis, Dimitra Hadjipavlou-Litina, Despina Charalambous, Nikos Krigas and Diamanto Lazari
Horticulturae 2024, 10(7), 689; https://doi.org/10.3390/horticulturae10070689 - 28 Jun 2024
Cited by 3 | Viewed by 2395
Abstract
The Mediterranean diet is mostly based on high intakes of olive oil, vegetables, legumes, and fruits, with limited amounts of red meat and sweets, and is related to lower risk of cardiovascular diseases, mainly due to the health benefits of antioxidants of wild [...] Read more.
The Mediterranean diet is mostly based on high intakes of olive oil, vegetables, legumes, and fruits, with limited amounts of red meat and sweets, and is related to lower risk of cardiovascular diseases, mainly due to the health benefits of antioxidants of wild greens, fruits, and vegetables. Petromarula pinnata (L.) A. DC. is a unique (monotypic) and threatened local endemic wild edible green of Crete which is consumed raw in salads or cooked as an ingredient of the Mediterranean (Cretan) diet. In this study, we aimed to examine the nutritional value of P. pinnata with reference to wild-growing material; moreover, we investigated its chemical composition with 1H NMR spectra and its in vitro total phenolics and flavonoids (TPC, TF assays), and we evaluated the antioxidant (TAC, DPPH, and inhibition of lipid peroxidation), antimicrobial (MIC), and anti-inflammatory (inhibition of soybean lipoxygenase) in vitro activity during two different developmental stages (winter and summer collections), all referring to ex situ cultivated material (air-dried or frozen in liquid nitrogen). Our results showed that P. pinnata has good nutritional value, being rich in terpenoids and poor in phenolic compounds and flavonoids. Furthermore, the extracts showed high antioxidant activity for TAC and DPPH and some of the extracts had higher antioxidant activities than the standard compounds. The summer plant materials had higher antioxidant activity than the winter ones. The methanol/water extracts were the strongest inhibitors of the lipid peroxidation, and the methanol extracts were not found to be active. None of the extracts inhibited the soybean lipoxygenase, and thus they were devoid of anti-inflammatory activity. Finally, the extracts showed a moderate to strong bacterial inhibition. These findings consolidate that P. pinnata has a novel nutraceutical interest with high nutritional value and high antioxidant activity combined with bactericidal effect, thus updating the evaluation of its exploitation potential in the medicinal sector from below average (37%) to high (67%). Full article
(This article belongs to the Collection Prospects of Using Wild Plant Species in Horticulture)
Show Figures

Figure 1

15 pages, 3888 KiB  
Article
Cellular and Structural Changes in Achilles and Patellar Tendinopathies: A Pilot In Vivo Study
by Dimitrios Kouroupis, Carlotta Perucca Orfei, Diego Correa, Giuseppe Talò, Francesca Libonati, Paola De Luca, Vincenzo Raffo, Thomas M. Best and Laura de Girolamo
Biomedicines 2024, 12(5), 995; https://doi.org/10.3390/biomedicines12050995 - 30 Apr 2024
Cited by 3 | Viewed by 2064
Abstract
Tendinopathies continue to be a challenge for both patients and the medical teams providing care as no universal clinical practice guidelines have been established. In general, tendinopathies are typically characterized by prolonged, localized, activity-related pain with abnormalities in tissue composition, cellularity, and microstructure [...] Read more.
Tendinopathies continue to be a challenge for both patients and the medical teams providing care as no universal clinical practice guidelines have been established. In general, tendinopathies are typically characterized by prolonged, localized, activity-related pain with abnormalities in tissue composition, cellularity, and microstructure that may be observed on imaging or histology. In the lower limb, tendinopathies affecting the Achilles and the patellar tendons are the most common, showing a high incidence in athletic populations. Consistent diagnosis and management have been challenged by a lack of universal consensus on the pathophysiology and clinical presentation. Current management is primarily based on symptom relief and often consists of medications such as non-steroidal anti-inflammatories, injectable therapies, and exercise regimens that typically emphasize progressive eccentric loading of the affected structures. Implementing the knowledge of tendon stem/progenitor cells (TSPCs) and assessing their potential in enhancing tendon repair could fill an important gap in this regard. In the present pilot in vivo study, we have characterized the structural and cellular alterations that occur soon after tendon insult in models of both Achilles and patellar tendinopathy. Upon injury, CD146+ TSPCs are recruited from the interfascicular tendon matrix to the vicinity of the paratenon, whereas the observed reduction in M1 macrophage polarization is related to a greater abundance of reparative CD146+ TSPCs in situ. The robust TSPCs’ immunomodulatory effects on macrophages were also demonstrated in in vitro settings where TSPCs can effectively polarize M1 macrophages towards an anti-inflammatory therapeutic M2 phenotype. Although preliminary, our findings suggest CD146+ TSPCs as a key phenotype that could be explored in the development of targeted regenerative therapies for tendinopathies. Full article
(This article belongs to the Special Issue Recent Advances in Arthritis and Tendinopathy)
Show Figures

Graphical abstract

16 pages, 3187 KiB  
Article
Development of Ciprofloxacin-Loaded Electrospun Yarns of Application Interest as Antimicrobial Surgical Suture Materials
by Jorge Teno, Maria Pardo-Figuerez, Zoran Evtoski, Cristina Prieto, Luis Cabedo and Jose M. Lagaron
Pharmaceutics 2024, 16(2), 220; https://doi.org/10.3390/pharmaceutics16020220 - 3 Feb 2024
Cited by 7 | Viewed by 2622
Abstract
Surgical site infections (SSI) occur very frequently during post-operative procedures and are often treated with oral antibiotics, which may cause some side effects. This type of infection could be avoided by encapsulating antimicrobial/anti-inflammatory drugs within the surgical suture materials so that they can [...] Read more.
Surgical site infections (SSI) occur very frequently during post-operative procedures and are often treated with oral antibiotics, which may cause some side effects. This type of infection could be avoided by encapsulating antimicrobial/anti-inflammatory drugs within the surgical suture materials so that they can more efficiently act on the site of action during wound closure, avoiding post-operative bacterial infection and spreading. This work was aimed at developing novel electrospun bio-based anti-infective fibre-based yarns as novel suture materials for preventing surgical site infections. For this, yarns based on flying intertwined microfibres (1.95 ± 0.22 µm) were fabricated in situ during the electrospinning process using a specially designed yarn collector. The electrospun yarn sutures (diameter 300–500 µm) were made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with different contents of 3HV units and contained ciprofloxacin hydrochloride (CPX) as the antimicrobial active pharmaceutical ingredient (API). The yarns were then analysed by scanning electron microscopy, Fourier transform infrared spectroscopy, wide-angle X-ray scattering, differential scanning calorimetry, and in vitro drug release. The yarns were also analysed in terms of antimicrobial and mechanical properties. The material characterization indicated that the varying polymer molecular architecture affected the attained polymer crystallinity, which was correlated with the different drug-eluting profiles. Moreover, the materials exhibited the inherent stiff behaviour of PHBV, which was further enhanced by the API. Lastly, all the yarn sutures presented antimicrobial properties for a time release of 5 days against both Gram-positive and Gram-negative pathogenic bacteria. The results highlight the potential of the developed antimicrobial electrospun yarns in this study as potential innovative suture materials to prevent surgical infections. Full article
(This article belongs to the Special Issue Novel Technologies for Buccal and Transdermal Drug Delivery)
Show Figures

Graphical abstract

14 pages, 5626 KiB  
Article
Leptin-Mediated Induction of IL-6 Expression in Hofbauer Cells Contributes to Preeclampsia Pathogenesis
by Asli Ozmen, Chinedu Nwabuobi, Zhonghua Tang, Xiaofang Guo, Kellie Larsen, Seth Guller, Jacqueline Blas, Monica Moore, Umit A. Kayisli, Charles J. Lockwood and Ozlem Guzeloglu-Kayisli
Int. J. Mol. Sci. 2024, 25(1), 135; https://doi.org/10.3390/ijms25010135 - 21 Dec 2023
Cited by 5 | Viewed by 2380
Abstract
Leptin plays a crucial role in regulating energy homoeostasis, neuroendocrine function, metabolism, and immune and inflammatory responses. The adipose tissue is a main source of leptin, but during pregnancy, leptin is also secreted primarily by the placenta. Circulating leptin levels peak during the [...] Read more.
Leptin plays a crucial role in regulating energy homoeostasis, neuroendocrine function, metabolism, and immune and inflammatory responses. The adipose tissue is a main source of leptin, but during pregnancy, leptin is also secreted primarily by the placenta. Circulating leptin levels peak during the second trimester of human pregnancy and fall after labor. Several studies indicated a strong association between elevated placental leptin levels and preeclampsia (PE) pathogenesis and elevated serum interleukin-6 (IL-6) levels in PE patients. Therefore, we hypothesized that a local increase in placental leptin production induces IL-6 production in Hofbauer cells (HBCs) to contribute to PE-associated inflammation. We first investigated HBCs-specific IL-6 and leptin receptor (LEPR) expression and compared their immunoreactivity in PE vs. gestational age-matched control placentas. Subsequently, we examined the in vitro regulation of IL-6 as well as the phosphorylation levels of intracellular signaling proteins STAT3, STAT5, NF-κB, and ERK1/2 by increasing recombinant human leptin concentrations (10 to 1000 ng/mL) in primary cultured HBCs. Lastly, HBC cultures were incubated with leptin ± specific inhibitors of STAT3 or STAT5, or p65 NF-κB or ERK1/2 MAPK signaling cascades to determine relevant cascade(s) involved in leptin-mediated IL-6 regulation. Immunohistochemistry revealed ~three- and ~five-fold increases in IL-6 and LEPR expression, respectively, in HBCs from PE placentas. In vitro analysis indicated that leptin treatment in HBCs stimulate IL-6 in a concentration-dependent manner both at the transcriptional and secretory levels (p < 0.05). Moreover, leptin-treated HBC cultures displayed significantly increased phosphorylation levels of STAT5, p65 NF-κB, and ERK1/2 MAPK and pre-incubation of HBCs with a specific ERK1/2 MAPK inhibitor blocked leptin-induced IL-6 expression. Our in situ results show that HBCs contribute to the pathogenesis of PE by elevating IL-6 expression, and in vitro results indicate that induction of IL-6 expression in HBCs is primarily leptin-mediated. While HBCs display an anti-inflammatory phenotype in normal placentas, elevated levels of leptin may transform HBCs into a pro-inflammatory phenotype by activating ERK1/2 MAPK to augment IL-6 expression. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

20 pages, 2480 KiB  
Article
Exploring the Phytochemical Composition and Biological Potential of Balkan Endemic Species Stachys scardica Griseb
by Desislava I. Mantovska, Miroslava K. Zhiponova, Detelina Petrova, Kalina Alipieva, Georgi Bonchev, Irina Boycheva, Yana Evstatieva, Dilyana Nikolova, Ivanka Tsacheva, Svetlana Simova and Zhenya P. Yordanova
Plants 2024, 13(1), 30; https://doi.org/10.3390/plants13010030 - 21 Dec 2023
Cited by 5 | Viewed by 2314
Abstract
Stachys scardica Griseb. is a Balkan endemic species listed in The Red Data Book of Bulgaria with the conservation status “endangered”. Successful micropropagation was achieved on MS medium supplemented with 1.5 mg/L benzyladenine (BA), followed by a subsequent ex vitro adaptation in an [...] Read more.
Stachys scardica Griseb. is a Balkan endemic species listed in The Red Data Book of Bulgaria with the conservation status “endangered”. Successful micropropagation was achieved on MS medium supplemented with 1.5 mg/L benzyladenine (BA), followed by a subsequent ex vitro adaptation in an experimental field resulting in 92% regenerated plants. Using nuclear magnetic resonance (NMR), phenylethanoid glycosides (verbascoside, leucosceptoside A), phenolic acids (chlorogenic acid), iridoids (allobetonicoside and 8-OAc-harpagide), and alkaloids (trigonelline) were identified, characteristic of plants belonging to the genus Stachys. High antioxidant and radical scavenging activities were observed in both in situ and ex vitro acclimated S. scardica plants, correlating with the reported high concentrations of total phenols and flavonoids in these variants. Ex vitro adapted plants also exhibited a well-defined anti-inflammatory potential, demonstrating high inhibitory activity against the complement system. Employing a disk diffusion method, a 100% inhibition effect was achieved compared to positive antibiotic controls against Staphylococcus epidermidis and Propionibacterium acnes, with moderate activity against Bacillus cereus. The induced in vitro and ex vitro model systems can enable the conservation of S. scardica in nature and offer future opportunities for the targeted biosynthesis of valuable secondary metabolites, with potential applications in the pharmaceutical and cosmetic industries. Full article
(This article belongs to the Special Issue Plant Biotechnology Applications in Secondary Metabolite Production)
Show Figures

Figure 1

17 pages, 2526 KiB  
Article
Antioxidant and Antitumor Potential of Micropropagated Balkan Endemic Sideritis scardica Griseb
by Krasimira Tasheva, Ani Georgieva, Petko Denev, Lyudmila Dimitrova, Margarita Dimitrova, Svetlana Misheva, Polina Petkova-Kirova, Maria Lazarova and Maria Petrova
Plants 2023, 12(23), 3924; https://doi.org/10.3390/plants12233924 - 21 Nov 2023
Cited by 3 | Viewed by 2482
Abstract
Sideritis scardica Griseb. is a critically endangered Balkan endemic species, known for its antioxidant, neuroprotective and anti-inflammatory properties. The aim of the present study was to detail an efficient protocol for the micropropagation of S. scardica. In vitro cultures were initiated from [...] Read more.
Sideritis scardica Griseb. is a critically endangered Balkan endemic species, known for its antioxidant, neuroprotective and anti-inflammatory properties. The aim of the present study was to detail an efficient protocol for the micropropagation of S. scardica. In vitro cultures were initiated from the shoot tips of 40 days-old in vivo seedlings and the effects of different plant growth regulator treatments were examined. A Murashige and Skoog nutrient medium (MS) containing 1 mg/L zeatin and 0.1 mg/L indole-3-acetic acid (IAA) proved to be the most efficient for shoot multiplication as it produced quality, vigorous shoots with a mean number of six shoots per explant. For the first time, the antioxidant and antitumor activities of extracts from in vitro-obtained plants were evaluated. In vitro cultivated plants grown in the field revealed a higher total polyphenol content (3929.1 ± 112.2 mg GAE/100 g vs. 3563.5 ± 52.8 mg GAE/100 g) and higher ORAC antioxidant activity (1211.6 ± 27.3 µmol TE/g vs. 939.9 ± 52.4 µmol TE/g) than in situ cultivated plants. A comparison of the antitumor activities of extracts from in vitro propagated shoots, field-grown in vitro-obtained plants and in situ plants on HeLa (cervical adenocarcinoma), HT-29 (colorectal adenocarcinoma) and MCF-7 (breast cancer) human cancer cell lines showed that in vitro propagated shoots had a significant concentration-dependent cytotoxic effect on the cervical adenocarcinoma cell line HeLa, while the field-grown in vitro-obtained and in situ-collected samples induced the highest reduction in the viability of the mammary carcinoma cell line MCF-7. In both cases, the cells of the control non-tumor cell line, BALB/3T3, were significantly less affected. The results showed that the in vitro multiplication protocol ensured the obtainment of numerous plants with antioxidant and antitumor potential. Full article
(This article belongs to the Special Issue Antioxidant Activity of Medicinal and Aromatic Plants 2023)
Show Figures

Figure 1

13 pages, 2124 KiB  
Article
Super-Antioxidant Vitamin A Derivatives with Improved Stability and Efficacy Using Skin-Permeable Chitosan Nanocapsules
by Hyeryeon Oh, Jin Sil Lee, Sunghyun Kim, Jeung-Hoon Lee, Yong Chul Shin and Won Il Choi
Antioxidants 2023, 12(11), 1913; https://doi.org/10.3390/antiox12111913 - 26 Oct 2023
Cited by 8 | Viewed by 2760
Abstract
Retinyl palmitate (RP) is a retinol ester with strong antioxidant and anti-inflammatory properties as an antiwrinkle agent. However, it has poor aqueous solubility and easily degrades into inactive forms for topical applications. Therefore, we developed chitosan-coated nanocapsules (ChiNCs) to encapsulate RP using a [...] Read more.
Retinyl palmitate (RP) is a retinol ester with strong antioxidant and anti-inflammatory properties as an antiwrinkle agent. However, it has poor aqueous solubility and easily degrades into inactive forms for topical applications. Therefore, we developed chitosan-coated nanocapsules (ChiNCs) to encapsulate RP using a simple nanoprecipitation method for protection against physiological conditions and to enable deep skin penetration. The as-prepared RP-loaded nanocapsules (RP@ChiNCs) loaded with approximately 5 wt.% RP exhibited a hydrodynamic diameter of 86 nm and surface charge of 24 mV. They had adequate stability to maintain their physicochemical properties after lyophilization in a biological buffer. Notably, ChiNCs provided RP with remarkable protection against degradation for 4 weeks at 37 °C. Thus, RP@ChiNCs exhibited good antioxidant activity in situ for sufficiently long periods without considerable changes in their efficacy. Furthermore, ChiNCs enhanced the skin penetration of lipophilic RP based on the inherent nature of chitosan. RP@ChiNCs exhibited good in vitro antioxidant and anti-inflammatory effects without causing any cytotoxicity in dermal fibroblasts. Accordingly, they promoted cell proliferation in a wound-scratch test and enhanced collagen synthesis. These results suggest that RP@ChiNCs are promising candidates for cosmetic and biomedical applications. Full article
(This article belongs to the Special Issue Nanoantioxidants Volume II)
Show Figures

Figure 1

26 pages, 4744 KiB  
Article
Tailoring Risperidone-Loaded Glycethosomal In Situ Gels Using Box–Behnken Design for Treatment of Schizophrenia-Induced Rats via Intranasal Route
by Marwa H. Abdallah, Hemat El-Sayed El-Horany, Hanan M. El-Nahas and Tarek M. Ibrahim
Pharmaceutics 2023, 15(11), 2521; https://doi.org/10.3390/pharmaceutics15112521 - 24 Oct 2023
Cited by 13 | Viewed by 1921
Abstract
Schizophrenic patients often face challenges with adherence to oral regimens. The study aimed to highlight the potentiality of intranasal ethanol/glycerin-containing lipid-nanovesicles (glycethosomes) incorporated into in situ gels for sustaining anti-psychotic risperidone (RS) release. The Box–Behnken Design (BBD) was followed for in vitro characterization. [...] Read more.
Schizophrenic patients often face challenges with adherence to oral regimens. The study aimed to highlight the potentiality of intranasal ethanol/glycerin-containing lipid-nanovesicles (glycethosomes) incorporated into in situ gels for sustaining anti-psychotic risperidone (RS) release. The Box–Behnken Design (BBD) was followed for in vitro characterization. Glycethosomal-based in situ gels were examined by physical, ex vivo, and in vivo investigations. The ethanol impact on minimizing the vesicle size (VS) and enhancing the zeta potential (ZP) and entrapment efficiency (EE%) of nanovesicles was observed. Glycerin displayed positive action on increasing VS and ZP of nanovesicles, but reduced their EE%. After incorporation into various mucoadhesive agent-enriched poloxamer 407 (P407) in situ gels, the optimized gel containing 20% P407 and 1% hydroxypropyl methyl cellulose-K4M (HPMC-K4M) at a 4:1 gel/glycethosomes ratio showed low viscosity and high spreadability with acceptable pH, gel strength, and mucoadhesive strength ranges. The ethanol/glycerin mixture demonstrated a desirable ex vivo skin permeability of RS through the nasal mucosa. By pharmacokinetic analysis, the optimized gel showed eight-fold and three-fold greater increases in RS bioavailability than the control gel and marketed tablet, respectively. Following biochemical assessments of schizophrenia-induced rats, the optimized gel boosted the neuroprotective, anti-oxidant, and anti-inflammatory action of RS in comparison to other tested preparations. Collectively, the intranasal RS-loaded glycethosomal gel offered a potential substitute to oral therapy for schizophrenic patients. Full article
(This article belongs to the Special Issue Hydrogel Systems for Efficient Drug Delivery)
Show Figures

Figure 1

21 pages, 8030 KiB  
Article
A Reversibly Thermoresponsive, Theranostic Nanoemulgel for Tacrolimus Delivery to Activated Macrophages: Formulation and In Vitro Validation
by Riddhi Vichare, Caitlin Crelli, Lu Liu, Amit Chandra Das, Rebecca McCallin, Fatih Zor, Yalcin Kulahci, Vijay S. Gorantla and Jelena M. Janjic
Pharmaceutics 2023, 15(10), 2372; https://doi.org/10.3390/pharmaceutics15102372 - 22 Sep 2023
Cited by 6 | Viewed by 2194
Abstract
Despite long-term immunosuppression, organ transplant recipients face the risk of immune rejection and graft loss. Tacrolimus (TAC, FK506, Prograf®) is an FDA-approved keystone immunosuppressant for preventing transplant rejection. However, it undergoes extensive first-pass metabolism and has a narrow therapeutic window, which [...] Read more.
Despite long-term immunosuppression, organ transplant recipients face the risk of immune rejection and graft loss. Tacrolimus (TAC, FK506, Prograf®) is an FDA-approved keystone immunosuppressant for preventing transplant rejection. However, it undergoes extensive first-pass metabolism and has a narrow therapeutic window, which leads to erratic bioavailability and toxicity. Local delivery of TAC directly into the graft, instead of systemic delivery, can improve safety, efficacy, and tolerability. Macrophages have emerged as promising therapeutic targets as their increased levels correlate with an increased risk of organ rejection and a poor prognosis post-transplantation. Here, we present a locally injectable drug delivery platform for macrophages, where TAC is incorporated into a colloidally stable nanoemulsion and then formulated as a reversibly thermoresponsive, pluronic-based nanoemulgel (NEG). This novel formulation is designed to undergo a sol-to-gel transition at physiological temperature to sustain TAC release in situ at the site of local application. We also show that TAC-NEG mitigates the release of proinflammatory cytokines and nitric oxide from lipopolysaccharide (LPS)-activated macrophages. To the best of our knowledge, this is the first TAC-loaded nanoemulgel with demonstrated anti-inflammatory effects on macrophages in vitro. Full article
(This article belongs to the Special Issue Nanoparticles for Targeting and Treating Macrophages)
Show Figures

Figure 1

17 pages, 1523 KiB  
Article
Helichrysum stoechas (L.) Moench Inflorescence Extract for Tomato Disease Management
by Eva Sánchez-Hernández, Javier Álvarez-Martínez, Vicente González-García, José Casanova-Gascón, Jesús Martín-Gil and Pablo Martín-Ramos
Molecules 2023, 28(15), 5861; https://doi.org/10.3390/molecules28155861 - 3 Aug 2023
Cited by 11 | Viewed by 3042
Abstract
Helichrysum stoechas is a singular halophyte that has been shown to have anti-inflammatory, antioxidant, and allelopathic properties. In the work presented herein, we have characterized its inflorescences hydromethanolic extract and assessed its antifungal activity for the pre- and postharvest management of tomato crop [...] Read more.
Helichrysum stoechas is a singular halophyte that has been shown to have anti-inflammatory, antioxidant, and allelopathic properties. In the work presented herein, we have characterized its inflorescences hydromethanolic extract and assessed its antifungal activity for the pre- and postharvest management of tomato crop diseases. Gas chromatography–mass spectrometry characterization of the extract showed that 4-ethenyl-1,3-benzenediol, 2,3-dihydro-benzofuran, quinic acid, 3,5-dihydroxy-6,7,8-trimethoxy-2-phenyl-4H-1-benzopyran-4-one, 1,6-anhydro-β-D-glucopyranose, catechol, scopoletin, and maltol were the main constituents. The co-occurrence of pyranones, benzenediols, and quinic acids as phytoconstituents of H. stoechas extract resulted in promising in vitro minimum inhibitory concentrations of 500, 375, 500, 187.5, 187.5, and 375 μg·mL−1 against mycelia of Alternaria alternata, Colletotrichum coccodes, Fusarium oxysporum f. sp. lycopersici, Rhizoctonia solani, Sclerotinia sclerotiorum, and Verticillium dahliae, respectively. Further, to assess the potential of H. stoechas inflorescence extract for postharvest tomato crop protection, ex situ tests were conducted against C. coccodes, obtaining high protection at a dose of 750 μg·mL−1. Taking into consideration that the demonstrated activity is among the highest reported to date for plant extracts and comparable to that of the synthetic fungicides tested as positive controls, H. stoechas inflorescence extract may be put forward as a promising biorational and may deserve further testing in field-scale studies. Full article
Show Figures

Graphical abstract

16 pages, 8486 KiB  
Article
Piperine-Loaded In Situ Gel: Formulation, In Vitro Characterization, and Clinical Evaluation against Periodontitis
by Poornima K. Gopalakrishna, Rajamma Abburu Jayaramu, Sateesha Shivally Boregowda, Shruthi Eshwar, Nikhil V. Suresh, Amr Selim Abu Lila, Afrasim Moin, Hadil Faris Alotaibi, Ahmad J. Obaidullah and El-Sayed Khafagy
Gels 2023, 9(7), 577; https://doi.org/10.3390/gels9070577 - 14 Jul 2023
Cited by 12 | Viewed by 3493
Abstract
Periodontitis is an inflammatory disorder associated with dysbiosis and characterized by microbiologically related, host-mediated inflammation that leads to the damage of periodontal tissues including gingiva, connective tissues, and alveolar bone. The aim of this study was to develop an in situ gel consisting [...] Read more.
Periodontitis is an inflammatory disorder associated with dysbiosis and characterized by microbiologically related, host-mediated inflammation that leads to the damage of periodontal tissues including gingiva, connective tissues, and alveolar bone. The aim of this study was to develop an in situ gel consisting of piperine. Eight in situ gel formulations were designed by varying the concentration of deacylated gellan gum cross-linked with sodium tripolyphosphate, and poloxamer-407. The prepared gels were evaluated for gelation temperature, gelation time, viscosity, piperine-loading efficiency, and piperine release. Finally, the optimized formula was evaluated for anti-inflammatory effectiveness among human patients during a 14-day follow-up. The optimized in situ gel formulation exhibited a gelation temperature of 35 ± 1 °C, gelling of 36 ± 1 s, excellent syringeability, and piperine loading of 95.3 ± 2.3%. This formulation efficiently sustained in vitro drug release for up to 72 h. In vivo studies revealed an efficient sol-to-gel transformation of optimized in situ gel formulation at physiological conditions, permitting an efficient residence time of the formulation within a periodontitis pocket. Most importantly, a clinical study revealed that treatment with the optimized formulation elicited a significant reduction in the mean plaque score (p = 0.001), gingival index (p = 0.003), and pocket depth (p = 0.002), and exerted a potent anti-inflammatory potential, compared to the control group. Collectively, piperine-loaded in situ gel might represent a viable therapeutic approach for the management of gingival and periodontal diseases. Full article
(This article belongs to the Special Issue Design and Optimization of Pharmaceutical Gels)
Show Figures

Graphical abstract

Back to TopTop