Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (278)

Search Parameters:
Keywords = Immunotoxicity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1087 KiB  
Review
Visceral, Neural, and Immunotoxicity of Per- and Polyfluoroalkyl Substances: A Mini Review
by Pietro Martano, Samira Mahdi, Tong Zhou, Yasmin Barazandegan, Rebecca Iha, Hannah Do, Joel Burken, Paul Nam, Qingbo Yang and Ruipu Mu
Toxics 2025, 13(8), 658; https://doi.org/10.3390/toxics13080658 - 31 Jul 2025
Viewed by 236
Abstract
Per- and polyfluoroalkyl substances (PFASs) have gained significant attention due to their widespread distribution in the environment and potential adverse health effects. While ingestion, especially through contaminated drinking water, is considered the primary route of human exposure, recent research suggests that other pathways, [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) have gained significant attention due to their widespread distribution in the environment and potential adverse health effects. While ingestion, especially through contaminated drinking water, is considered the primary route of human exposure, recent research suggests that other pathways, such as inhalation and dermal absorption, also play a significant role. This review provides a concise overview of the toxicological impacts of both legacy and emerging PFASs, such as GenX and perfluorobutane sulfonic acid (PFBS), with a particular focus on their effects on the liver, kidneys, and immune and nervous systems, based on findings from recent in vivo, in vitro, and epidemiological studies. Despite the transition to PFAS alternatives, much of the existing toxicity data focus on a few legacy compounds, such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), which have been linked to adverse immune outcomes, particularly in children. However, evidence for carcinogenic risk remains limited to populations with extremely high exposure levels, and data on neurodevelopmental effects remain underexplored. While epidemiological and experimental animal studies supported these findings, significant knowledge gaps persist, especially regarding emerging PFASs. Therefore, this review examines the visceral, neural, and immunotoxicity data for emerging PFASs and mixtures from recent studies. Given the known risks from well-studied PFASs, a precautionary principle should be adopted to mitigate human health risks posed by this large and diverse group of chemicals. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Graphical abstract

21 pages, 1625 KiB  
Article
Disrupting Defenses: Effects of Bisphenol A and Its Analogs on Human Antibody Production In Vitro
by Francesca Carlotta Passoni, Martina Iulini, Valentina Galbiati, Marina Marinovich and Emanuela Corsini
Life 2025, 15(8), 1203; https://doi.org/10.3390/life15081203 - 28 Jul 2025
Viewed by 238
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical with estrogen-like activity, known to impair immune function. BPA may act as a pro-inflammatory agent, reducing immune response efficacy, increasing bacterial load in E. coli infections, and altering immune responses in parasitic infections (Leishmania major, Nippostrongylus [...] Read more.
Bisphenol A (BPA) is an endocrine-disrupting chemical with estrogen-like activity, known to impair immune function. BPA may act as a pro-inflammatory agent, reducing immune response efficacy, increasing bacterial load in E. coli infections, and altering immune responses in parasitic infections (Leishmania major, Nippostrongylus brasiliensis, Toxocara canis) through cytokine and regulatory T-cell modulation. Following its ban in food contact materials in Europe, several analogs have been introduced. This study assessed the immunotoxicity of BPA and six analogs, namely BPAP, BPE, BPP, BPS-MAE, BPZ, and TCBPA, by evaluating in vitro the antibody production. Peripheral blood mononuclear cells from healthy male and female donors were exposed to increasing concentrations of each compound for 24 h. After stimulation with rhIL-2 and ODN2006, IgM and IgG secretion were measured on day six. All compounds suppressed antibody production in a concentration-dependent manner, with some sex-related differences. IC50 values showed BPP as the most potent suppressor, and BPE as the weakest. Similarly, IC20 values confirmed these differences in potency, except for BPA being the weakest for IgM in males. Overall, te results do not support the idea that BPA analogs are safer than BPA. Full article
(This article belongs to the Section Life Sciences)
Show Figures

Figure 1

20 pages, 7380 KiB  
Article
Copper Pyrithione Induces Hepatopancreatic Apoptosis and Metabolic Disruption in Litopenaeus vannamei: Integrated Transcriptomic, Metabolomic, and Histopathological Analysis
by Jieyu Guo, Yang Yang, Siying Yu, Cairui Jiang, Xianbin Su, Yongfeng Zou and Hui Guo
Animals 2025, 15(14), 2134; https://doi.org/10.3390/ani15142134 - 18 Jul 2025
Viewed by 253
Abstract
Copper pyrithione (CuPT), an emerging biocide used in ship antifouling coatings, may accumulate in marine sediments and pose risks to non-target organisms. However, current research on CuPT toxicity remains limited. Litopenaeus vannamei, one of the world’s most important aquaculture shrimp species, relies [...] Read more.
Copper pyrithione (CuPT), an emerging biocide used in ship antifouling coatings, may accumulate in marine sediments and pose risks to non-target organisms. However, current research on CuPT toxicity remains limited. Litopenaeus vannamei, one of the world’s most important aquaculture shrimp species, relies heavily on its hepatopancreas for energy metabolism, detoxification, and immune responses. Due to their benthic habitat, these shrimps are highly vulnerable to contamination in sediment environments. This study investigated the toxicological response in the hepatopancreas of L. vannamei exposed to CuPT (128 μg/L) for 3 and 48 h. Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) fluorescence staining revealed increased apoptosis, deformation of hepatic tubule lumens, and the loss of stellate structures in the hepatopancreas after CuPT 48 h exposure. A large number of differentially expressed genes (DEGs) were identified by transcriptomics analysis at 3 and 48 h, respectively. Most of these DEGs were related to detoxification, glucose transport, and immunity. Metabolomic analysis identified numerous significantly different metabolites (SDMs) at both 3 and 48 h post-exposure, with most SDMs associated with energy metabolism, fatty acid metabolism, and related pathways. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of metabolomics and transcriptome revealed that both DEGs and SDMs were enriched in arachidonic acid metabolism, fatty acid biosynthesis, and glycolysis/gluconeogenesis pathways at 3 h, while at 48 h they were enriched in the starch and sucrose metabolism, amino sugar and nucleotide sugar metabolism, and galactose metabolism pathways. These results suggested that CuPT disrupts the energy and lipid homeostasis of L. vannamei. This disruption compelled L. vannamei to allocate additional energy toward sustaining basal physiological functions and consequently caused the accumulation of large amounts of reactive oxygen species (ROS) in the body, leading to apoptosis and subsequent tissue damage, and ultimately suppressed the immune system and impaired the health of L. vannamei. Our study elucidates the molecular mechanisms of CuPT-induced metabolic disruption and immunotoxicity in L. vannamei through integrated multi-omics analyses, providing new insights for ecological risk assessment of this emerging antifoulant. Full article
(This article belongs to the Special Issue Ecology of Aquatic Crustaceans: Crabs, Shrimps and Lobsters)
Show Figures

Figure 1

17 pages, 449 KiB  
Article
Immunotoxicity Studies on the Insecticide 2-((1-(4-Phenoxyphenoxy)propan-2-yl)oxy)pyridine (MPEP) in Hsd:Harlan Sprague Dawley SD® Rats
by Victor J. Johnson, Stefanie C. M. Burleson, Michael I. Luster, Gary R. Burleson, Barry McIntyre, Veronica G. Robinson, Reshan A. Fernando, James Blake, Donna Browning, Stephen Cooper, Shawn Harris and Dori R. Germolec
Toxics 2025, 13(7), 600; https://doi.org/10.3390/toxics13070600 - 17 Jul 2025
Viewed by 557
Abstract
The broad-spectrum insect growth regulator (IGR) and insecticide 2-((1-(4-Phenoxyphenoxy)propan-2-yl)oxy)pyridine (MPEP; also known as pyriproxyfen) is increasingly being used to address public health programs for vector control, initiated by the spread of Zika virus in 2015–2016. While considered relatively safe for humans under normal [...] Read more.
The broad-spectrum insect growth regulator (IGR) and insecticide 2-((1-(4-Phenoxyphenoxy)propan-2-yl)oxy)pyridine (MPEP; also known as pyriproxyfen) is increasingly being used to address public health programs for vector control, initiated by the spread of Zika virus in 2015–2016. While considered relatively safe for humans under normal conditions, limited toxicology data are available. Current studies were undertaken to address the data gap regarding potential immunotoxicity of MPEP, with particular emphasis on host resistance to viral infection. Hsd:Harlan Sprague Dawley SD® rats were treated for 28 days by oral gavage with doses of 0, 62.5, 125, 250 or 500 mg/kg/day of MPEP in corn oil. There was a dose-dependent increase in liver weights which is consistent with the liver playing a dominant role in MPEP metabolism. However, no histological correlates were observed. Following treatment, rats were subjected to a battery of immune tests as well as an established rat model of influenza virus infection to provide a comprehensive assessment of immune function and host resistance. While several of the immune tests showed minor exposure-related changes, evidenced by negative dose–response trends, most did not show significant differences in any of the MPEP treatment groups relative to vehicle control. Most notable was a negative trend in pulmonary mononuclear cell phagocytosis with increases in dose of MPEP. There was also a positive trend in early humoral immune response (5 days after immunization) to keyhole limpet hemocyanin (KLH) as evidenced by increased serum anti-KLH IgM antibodies which was followed later (14 days following immunization) by decreasing trends in anti-KLH IgM and IgG antibody levels. However, MPEP treatment had no effect on the ability of rats to clear the influenza virus nor the T-dependent IgM and IgG antibody response to the virus. The lack of effects of MPEP on host resistance to influenza suggests the immune effects were minimal and unlikely to present a hazard with respect to susceptibility to respiratory viral infection. Full article
(This article belongs to the Special Issue Environmental Contaminants and Human Health—2nd Edition)
Show Figures

Figure 1

20 pages, 2293 KiB  
Article
An Evaluation of the Safety, Immunogenicity, and Protective Efficacy of a Combined Diphtheria–Tetanus–Acellular Pertussis, Haemophilus influenzae Type b, and ACYW135 Meningococcal Conjugate Vaccine in Murine and Rat Models
by Xiuwen Sui, Zhujun Shao, Yuanyuan Ji, Hairui Wang, Qingfu Xu, Bochao Wei, Zhuojun Duan, Chang Wang, Ying Yang, Jiayu Zhao and Tao Zhu
Vaccines 2025, 13(7), 724; https://doi.org/10.3390/vaccines13070724 - 3 Jul 2025
Viewed by 546
Abstract
Background: The combined diphtheria–tetanus–acellular pertussis (three-component), Haemophilus influenzae type b (Hib, conjugate), and ACYW135 meningococcal (conjugate) vaccine (DTaP-Hib-MCV4) offers a promising alternative to single-component vaccines, potentially simplifying immunization schedules and improving vaccination coverage. Methods: We evaluated the safety, immunogenicity, and protective [...] Read more.
Background: The combined diphtheria–tetanus–acellular pertussis (three-component), Haemophilus influenzae type b (Hib, conjugate), and ACYW135 meningococcal (conjugate) vaccine (DTaP-Hib-MCV4) offers a promising alternative to single-component vaccines, potentially simplifying immunization schedules and improving vaccination coverage. Methods: We evaluated the safety, immunogenicity, and protective efficacy of DTaP-Hib-MCV4 in animal models. Acute and long-term toxicity studies were conducted in Sprague-Dawley (SD) rats with equal numbers of male and female animals. Immunogenicity was assessed in female NIH mice and SD rats using a three-dose regimen at 14-day intervals. Orbital blood was collected 14 days post-immunization to measure IgG titers against pertussis, diphtheria, tetanus, Hib, and meningococcal antigens. The protective efficacy was determined using potency tests for the pertussis, diphtheria, and tetanus components; passive protection studies for Hib; and serum bactericidal antibody (SBA) titers against A/C/Y/W135 meningococcal serogroups. Results: Acute and repeated-dose toxicity studies in SD rats showed no signs of abnormal toxicity or irritation at either high (three doses/rat) or low (one dose/rat) doses levels. The no-observed-adverse-effect level (NOAEL) for DTaP-Hib-MCV4 was established at three doses/rat after 8 weeks of repeated intramuscular administration and a 4-week recovery period. Specific IgG antibodies against all the vaccine components were detected in animal sera at both one and three doses/rat, with no evidence of immunotoxicity. Following two-dose primary immunization in murine models, the combined vaccine elicited robust antigen-specific antibody responses, with geometric mean titers (GMTs) as follows: 1,280,000 for pertussis toxin (PT); 761,093 for filamentous hemagglutinin (FHA); 1,159,326 for pertactin (PRN); 1,659,955 for diphtheria toxoid (DT); 1,522,185 for tetanus toxoid (TT); 99 for Haemophilus influenzae type b (Hib); and 25,600, 33,199, 8300, and 9051 for serogroups A, C, Y, and W135 of Neisseria meningitidis, respectively. In the rat models, three-dose primary immunization also elicited robust antigen-specific antibody responses. Protection studies demonstrated efficacy against pertussis, tetanus toxin, and diphtheria toxin challenges. In the Hib challenge study, none of the 10 animals given anti-DTaP-Hib-MCV4 antiserum developed bacteremia after the live Hib challenge (vs. 5814/0.1 mL in the negative control, p < 0.001). In addition, the SBA titers against meningococcal serogroups exceeded the protective threshold (≥1:8) in 92.2% of the immunized mice and 100% of the immunized rats. Crucially, the combined vaccine induced potent immune responses and protective efficacy, with antibody levels and protection against each component antigen comparable to or greater than those of the individual components: DTaP, Hib, and MCV4. Conclusions: These findings demonstrate that the DTaP-Hib-MCV4 combined vaccine is both safe and immunogenic, supporting its potential as a viable alternative to individual vaccines. This combined vaccine may streamline immunization programs and enhance vaccination coverage. Full article
Show Figures

Figure 1

26 pages, 3455 KiB  
Review
Exposure to Per- and Polyfluoroalkyl Substances (PFASs) in Healthcare: Environmental and Clinical Insights
by George Briassoulis, Stavroula Ilia and Efrossini Briassouli
Life 2025, 15(7), 1057; https://doi.org/10.3390/life15071057 - 1 Jul 2025
Viewed by 921
Abstract
Per- and polyfluoroalkyl substances (PFASs) are synthetic chemicals extensively used in various industries due to their unique physicochemical properties. Their persistence in the environment and potential for bioaccumulation have raised significant health concerns. This review aims to elucidate the sources, exposure pathways, toxicological [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) are synthetic chemicals extensively used in various industries due to their unique physicochemical properties. Their persistence in the environment and potential for bioaccumulation have raised significant health concerns. This review aims to elucidate the sources, exposure pathways, toxicological effects, and regulatory measures related to PFASs, with a particular focus on pediatric populations and medical applications. A comprehensive narrative review was conducted using PubMed, Scopus, and Web of Science to identify peer-reviewed literature published between 2000 and 2025. The search focused on PFAS use in healthcare, environmental contamination, exposure pathways, health effects, and regulatory actions. Relevant studies, reports, and policy documents were screened and thematically synthesized by the authors to evaluate clinical and environmental risks, particularly in pediatric populations. PFAS exposure is linked to various adverse health effects, including immunotoxicity, endocrine disruption, metabolic disorders, and carcinogenicity. Children are particularly vulnerable due to developmental susceptibilities and exposure through medical devices and environmental sources. Regulatory measures are evolving, but gaps remain, especially concerning medical device applications. There is an urgent need for comprehensive strategies to monitor and mitigate PFAS exposure, particularly in vulnerable populations. Enhanced regulatory frameworks, safer alternatives in medical devices, and public health interventions are essential to address the challenges posed by PFASs. Full article
(This article belongs to the Section Medical Research)
Show Figures

Graphical abstract

46 pages, 3995 KiB  
Review
Addressing Immune Response Dysfunction in an Integrated Approach for Testing and Assessment for Non-Genotoxic Carcinogens in Humans: A Targeted Analysis
by Annamaria Colacci, Emanuela Corsini and Miriam Naomi Jacobs
Int. J. Mol. Sci. 2025, 26(13), 6310; https://doi.org/10.3390/ijms26136310 - 30 Jun 2025
Viewed by 371
Abstract
Most known chemical carcinogens induce the direct activation of DNA damage, either directly or following metabolic activation. However, carcinogens do not always operate directly through genotoxic mechanisms but can do so via non-genotoxic carcinogenic (NGTxC) mechanisms. Immune dysfunction is one of these key [...] Read more.
Most known chemical carcinogens induce the direct activation of DNA damage, either directly or following metabolic activation. However, carcinogens do not always operate directly through genotoxic mechanisms but can do so via non-genotoxic carcinogenic (NGTxC) mechanisms. Immune dysfunction is one of these key events that NGTxCs have been shown to modify. The immune system is a first line of defence against transformed cells, with an innate immune response against cancer cells and mechanisms of immune evasion. Here, we review the key events of immune dysfunction. These include immunotoxicity, immune evasion, immune suppression and inflammatory-mediated immune responses, and the key players in the molecular disruption of immune anti-cancer molecular signalling pathways, particularly those mediated by cytokines and the Aryl hydrocarbon Receptor, in relation to the identification of NGTxC. The plasticity of cytokines towards functional flexibility in response to environmental stressors is also discussed from an evolutionary heritage perspective. This is combined with a critical assessment of the suitability for the regulatory application of currently available test method tools and is corroborated by the key biomarkers of, e.g., MAPK, mTOR, PD-L1, TIL and Tregs, CD8+, FoxP3+, WNT, IL-17, IL-11, IL-10, and TNFα, as identified from robust cancer biopsy studies. Finally, an understanding of how to address these endpoints for chemical hazard regulatory purposes, within an integrated approach to testing and assessment for NGTxC, is proposed. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

16 pages, 755 KiB  
Review
Micro- and Nanoplastics as Disruptors of the Endocrine System—A Review of the Threats and Consequences Associated with Plastic Exposure
by Hanna J. Tyc, Karolina Kłodnicka, Barbara Teresińska, Robert Karpiński, Jolanta Flieger and Jacek Baj
Int. J. Mol. Sci. 2025, 26(13), 6156; https://doi.org/10.3390/ijms26136156 - 26 Jun 2025
Viewed by 965
Abstract
Plastic overconsumption has emerged as a major environmental pollutant, with degraded micro- and nanoplastic (MNP) particles being consumed by a vast variety of species. MNPs, particles < 5 mm, contain endocrine-disrupting chemicals (EDCs), which can bind to hormone receptors and disrupt the proper [...] Read more.
Plastic overconsumption has emerged as a major environmental pollutant, with degraded micro- and nanoplastic (MNP) particles being consumed by a vast variety of species. MNPs, particles < 5 mm, contain endocrine-disrupting chemicals (EDCs), which can bind to hormone receptors and disrupt the proper endocrinological function of a variety of organs. This review explores the toxicological impact of MNPs on the hypothalamus, pituitary gland, thyroid, pineal body, ovaries, and testes, as well as the effects of the endocrinological regulatory axes, including the hypothalamic–pituitary–gonadal (HPG), hypothalamic–pituitary–thyroid (HPT), and hypothalamic–pituitary–adrenal (HPA) axes. The disruption of these hormonal feedback systems leads to reproductive dysfunction, neurotoxicity, cytotoxicity, immunotoxicity, and metabolic disorders. The gonads are particularly susceptible, with studies demonstrating oxidative stress, cellular apoptosis, and infertility due to MNP exposure. Given the widespread presence of MNPs and their impact on human health, further research is critical to understand their long-term effects and develop strategies to reduce exposure. Full article
(This article belongs to the Special Issue Toxicity of Metals, Metal-Based Drugs, and Microplastics)
Show Figures

Figure 1

16 pages, 4589 KiB  
Article
Immunotoxicity of Four Per- and Polyfluoroalkyl Substances Following 28-Day Oral Repeat Dosing in Rats Assessed by the Anti-Sheep Red Blood Cell IgM Response
by Michael F. Hughes, Michael J. DeVito, Grace Patlewicz, Russell S. Thomas, Linda D. Adams, Jeffrey L. Ambroso, Xi Yang, Bindu G. Upadhyay, Stefanie C. M. Burleson and Elaina M. Kenyon
Toxics 2025, 13(6), 490; https://doi.org/10.3390/toxics13060490 - 10 Jun 2025
Viewed by 520
Abstract
Some PFASs are immunotoxic in rodent models and associated with diminished vaccine response in exposed humans. This study assessed the immunotoxicity of four PFASs via the T cell-dependent IgM antibody response (TDAR) to sheep red blood cells (SRBCs) in adult male rats following [...] Read more.
Some PFASs are immunotoxic in rodent models and associated with diminished vaccine response in exposed humans. This study assessed the immunotoxicity of four PFASs via the T cell-dependent IgM antibody response (TDAR) to sheep red blood cells (SRBCs) in adult male rats following 28-day oral repeat dosing. The PFASs included 1H,1H,9H-perfluorononyl acrylate (PFNAC), 1H,1H,2H,2H-perfluorohexyl iodide (PFHI), 2-chlorotetrafluoropropionic acid (CTFPA), and 3,3,4,4,5,5,5-heptafluoropentan-2-one (MHFPK), administered in corn oil. The positive control was cyclophosphamide (CPS). Rats were dosed with vehicle or PFAS from Days 0 to 27. On Day 22, an immunogenic dose of SRBCs was administered intravenously. Positive control animals were administered CPS by intraperitoneal injection from Days 22–27. On Day 28, the animals were euthanized; blood, thymus, and spleen samples were collected and weighed. Serum IgM was quantified by enzyme-linked immunosorbent assay. Body weights were unaffected in PFAS-treated rats, except for 3 and 10 mg/kg/day PFNAC-treated rats on Days 24, 27, and 28. Relative spleen and thymus weights and serum IgM levels were not affected by the PFASs at the doses tested, whereas CPS-treated animals had significant decreases in these parameters. The rat TDAR, as assessed by the anti-SRBC IgM response, was not affected by these four PFAS test agents following a 28-day oral exposure. Full article
(This article belongs to the Special Issue PFAS Toxicology and Metabolism—2nd Edition)
Show Figures

Graphical abstract

19 pages, 2183 KiB  
Article
Perfluorooctanoic Acid and Its Short-Chain Substitutes Induce Cytotoxic and Prooxidative Changes in Human Peripheral Blood Mononuclear Cells: A Comparative Study
by Izabela Kaczmarska, Katarzyna Mokra and Jaromir Michałowicz
Int. J. Mol. Sci. 2025, 26(11), 5408; https://doi.org/10.3390/ijms26115408 - 5 Jun 2025
Viewed by 548
Abstract
Perfluorooctanoic acid (PFOA) and its short-chain substitutes, perfluorohexanoic acid (PFHxA) and perfluorobutanoic acid (PFBA), are persistent environmental pollutants associated with widespread human exposure through occupational and environmental routes. The aim of this was to investigate the effects of PFOA, PFHxA, and PFBA on [...] Read more.
Perfluorooctanoic acid (PFOA) and its short-chain substitutes, perfluorohexanoic acid (PFHxA) and perfluorobutanoic acid (PFBA), are persistent environmental pollutants associated with widespread human exposure through occupational and environmental routes. The aim of this was to investigate the effects of PFOA, PFHxA, and PFBA on the intracellular level of adenosine-5’-triphosphate (ATP) in human peripheral blood mononuclear cells (PBMCs) and their viability, size, and granularity. Moreover, oxidative and nitrosative stress was assessed based on the levels of reactive oxygen species (ROS), reactive nitrogen species (RNS), and highly reactive oxygen species (hROS, mainly hydroxyl radical). Finally, oxidative damage to protein and lipids in PBMCs was measured. The cells were incubated for 1 h and 24 h at concentrations correlated to human occupational and environmental exposure (0.001–200 µg/mL) to the substances. Our findings indicate that PFOA and its short-chain analogs cause different effects in human PBMCs. PFOA induced statistically significant alterations almost in all studied parameters, substantially decreasing cell viability and ATP level and altering the size and granularity of tested cells; in contrast, PFHxA and PFBA induced significant changes only at some studied parameters. PFOA also induced a notable increase in intracellular ROS and RNS levels, which suggest that both oxidative stress and nitrosative stress influence its cytotoxic potential. Interestingly, the shortest-chain compound, PFBA, induced changes that were not observed for PFHxA. This suggests that the length of the chain determines the triggering of certain alterations in PBMCs. Importantly, the changes were noted at concentrations corresponding to those associated with occupational exposure. These findings contribute to our understanding of the immunotoxicity of PFOA and its substitutes, indicating the potential health risks associated with chronic exposure, particularly in populations with occupational exposure or high environmental PFOA burdens. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

20 pages, 4474 KiB  
Article
Immunotoxicity Study of Cucurbit[n]urils (n = 6, 7, 8) and Modeling of Interaction with Some Monocyte Receptors by a Molecular Docking Method
by Saule B. Zhautikova, Nursipat N. Abdykhanova, Dmitry A. Fedorishin, Yelena G. Shapovalova, Andrei I. Khlebnikov, Abdigali A. Bakibaev, Irina A. Kurzina, Saule K. Kabieva, Nazerke Boranbay and Gaziza M. Zhumanazarova
Molecules 2025, 30(10), 2249; https://doi.org/10.3390/molecules30102249 - 21 May 2025
Viewed by 439
Abstract
In this study, cucurbit[n]urils (n = 6, 7, 8) were carefully evaluated for their cytotoxicity and immunotoxicity to human peripheral blood monocytes. The cytotoxicity was studied by evaluating the survival of monocytes, while the immunotoxicity level was assessed by analyzing the inflammatory mediators [...] Read more.
In this study, cucurbit[n]urils (n = 6, 7, 8) were carefully evaluated for their cytotoxicity and immunotoxicity to human peripheral blood monocytes. The cytotoxicity was studied by evaluating the survival of monocytes, while the immunotoxicity level was assessed by analyzing the inflammatory mediators secreted by them using an enzyme-linked immunosorbent assay. It was found that cucurbit[n]urils (n = 6, 7, 8) in the used concentration (10−5 M) do not cause a negative effect on cell viability, which is maintained at a level above 50%. At the same time, cucurbit[n]urils (n = 6, 7, 8) do not cause pro-inflammatory activation of monocytic macrophages. The absence of stimulation of pro-inflammatory cytokine expression demonstrates the promising biocompatibility of the studied compounds, which is crucial for their successful clinical use. The obtained results of molecular modeling show the possibility of formation of CB[6], CB[7], and CB[8] associates with various Toll-like receptors, which also confirms good prospects for the development of new ways of medical application of cucurbit[n]urils. Full article
Show Figures

Figure 1

28 pages, 7014 KiB  
Article
Pharmacophore Modeling of Janus Kinase Inhibitors: Tools for Drug Discovery and Exposition Prediction
by Florian Fischer, Veronika Temml and Daniela Schuster
Molecules 2025, 30(10), 2183; https://doi.org/10.3390/molecules30102183 - 16 May 2025
Viewed by 2518
Abstract
Pesticides are essential in agriculture for protecting crops and boosting productivity, but their widespread use may pose significant health risks. Farmworkers face direct exposure through skin contact and inhalation, which may lead to hormonal imbalances, neurological disorders, and elevated cancer risks. Moreover, pesticide [...] Read more.
Pesticides are essential in agriculture for protecting crops and boosting productivity, but their widespread use may pose significant health risks. Farmworkers face direct exposure through skin contact and inhalation, which may lead to hormonal imbalances, neurological disorders, and elevated cancer risks. Moreover, pesticide residues in food and water may affect surrounding communities. One of the lesser investigated issues is immunotoxicity, mostly because the chronic effects of compound exposure are very complex to study. As a case study, this work utilized pharmacophore modeling and virtual screening to identify pesticides that may inhibit Janus kinases (JAK1, JAK2, JAK3) and tyrosine kinase 2 (TYK2), which are pivotal in immune response regulation, and are associated with cancer development and increased infection susceptibility. We identified 64 potential pesticide candidates, 22 of which have previously been detected in the human body, as confirmed by the Human Metabolome Database. These results underscore the critical need for further research into potential immunotoxic and chronic impacts of the respective pesticides on human health. Full article
Show Figures

Figure 1

23 pages, 7506 KiB  
Article
Biocompatibility Research of Magnetosomes Synthesized by Acidithiobacillus ferrooxidans
by Bai-Qiang Wu, Jun Wang, Yang Liu, Bao-Jun Yang, Hui-Ying Li, Chun-Xiao Zhao and Guan-Zhou Qiu
Int. J. Mol. Sci. 2025, 26(9), 4278; https://doi.org/10.3390/ijms26094278 - 30 Apr 2025
Viewed by 427
Abstract
Magnetosomes are magnetic nanocrystals synthesized by bacteria that have important application value in biomedicine. Therefore, it is very important to evaluate their biocompatibility. It has been reported that the extremophilic acidophilic bacterium Acidithiobacillus ferrooxidans, which is aerobic, can synthesize intracellular Fe3O [...] Read more.
Magnetosomes are magnetic nanocrystals synthesized by bacteria that have important application value in biomedicine. Therefore, it is very important to evaluate their biocompatibility. It has been reported that the extremophilic acidophilic bacterium Acidithiobacillus ferrooxidans, which is aerobic, can synthesize intracellular Fe3O4 magnetosomes. In this paper, we performed a comprehensive and systematic evaluation of the biocompatibility of magnetosomes with an average particle size of 53.66 nm from Acidithiobacillus ferrooxidans, including pharmacokinetics, degradation pathways, acute systemic toxicity, cytotoxicity, genotoxicity, blood index and immunotoxicity. The phase composition of the magnetosomes was identified as Fe3O4 through XRD and HRTEM analyses. Biocompatibility evaluation results showed that magnetosomes metabolized rapidly in rats and degraded thoroughly in major organs, with almost no residue. When the injection concentration was low (40 mg/kg, 60 mg/kg), magnetosomes would not cause pathological changes in the major organs of mice, basically. At the same time, magnetosomes had low cytotoxicity, genotoxicity, immunotoxicity and hemolysis rate, which proved that the magnetosomes synthesized by Acidithiobacillus ferrooxidans are magnetic nanomaterials with good biocompatibility. This research provides an important theoretical basis for the large-scale application of bacterial magnetosomes as functional magnetic nanomaterials. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Graphical abstract

24 pages, 1724 KiB  
Review
Neurotransmitter Systems Affected by PBDE Exposure: Insights from In Vivo and In Vitro Neurotoxicity Studies
by Wendy Argelia García-Suastegui, Cynthia Navarro-Mabarak, Daniela Silva-Adaya, Heidy Galilea Dolores-Raymundo, Mhar Yovavyn Alvarez-Gonzalez, Martha León-Olea and Lucio Antonio Ramos-Chávez
Toxics 2025, 13(4), 316; https://doi.org/10.3390/toxics13040316 - 18 Apr 2025
Cited by 1 | Viewed by 853
Abstract
Polybrominated diphenyl ethers (PBDEs) are synthetic halogen compounds, industrially used as flame retardants in many flammable products. PBDEs are environmentally persistent and bioaccumulative substances that were used from the 1970s and discontinued in the 1990s. PBDEs are present in air, soil, water, and [...] Read more.
Polybrominated diphenyl ethers (PBDEs) are synthetic halogen compounds, industrially used as flame retardants in many flammable products. PBDEs are environmentally persistent and bioaccumulative substances that were used from the 1970s and discontinued in the 1990s. PBDEs are present in air, soil, water, and food, where they remain stable for a long time. Chronic exposure to PBDEs is associated with adverse human health effects, including cancer, immunotoxicity, hepatotoxicity, reproductive and metabolic disorders, motor and hormonal impairments, and neurotoxicity, especially in children. It has been demonstrated that PBDE exposure can cause mitochondrial and DNA damage, apoptosis, oxidative stress, epigenetic modifications, and changes in calcium and neurotransmitter levels. Here, we conduct a comprehensive review of the molecular mechanisms of the neurotoxicity of PBDEs using different approaches. We discuss the main neurotransmitter pathways affected by exposure to PBDEs in vitro and in vivo in different mammalian models. Excitatory and inhibitory signaling pathways are the putative target where PBDEs carry out their neurotoxicity. Based on this evidence, environmental PBDEs are considered a risk to human public health and a hazard to biota, underscoring the need for environmental monitoring to mitigate exposure to PBDEs. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Graphical abstract

14 pages, 3177 KiB  
Article
Flow Cytometry-Based Rapid Assay for Antigen Specific Antibody Relative Affinity in SRBC-Immunized Mouse Models
by Chunli Sun, Yuan Jiang, Shujun Liu, Qilin He, Chengyao Han, Dai Su, Hao Ma, Xingyu Guo, Yan Zhang, Fubin Li and Huihui Zhang
Int. J. Mol. Sci. 2025, 26(8), 3664; https://doi.org/10.3390/ijms26083664 - 12 Apr 2025
Viewed by 812
Abstract
Sheep red blood cells (SRBC) has a long history as a classical T-cell dependent (TD) antigen. Due to its cost-effectiveness, easy accessibility, and ability to elicit a robust antibody immune response, SRBC continues to be widely used in studies related with humoral immunity [...] Read more.
Sheep red blood cells (SRBC) has a long history as a classical T-cell dependent (TD) antigen. Due to its cost-effectiveness, easy accessibility, and ability to elicit a robust antibody immune response, SRBC continues to be widely used in studies related with humoral immunity modulation, vaccine development, and immunoactivity/immunotoxicity testing of bioactive agents. However, detecting the relative affinity levels of SRBC-specific antibodies in SRBC-immunized animal models remains challenging. Using flow cytometry, we established a detection system capable of quickly and accurately assessing the SRBC-specific antibody relative affinity levels in humoral samples (e.g., serum, tissue fluid) of SRBC-immunized mouse models. We further validated this method using affinity maturation-deficient mice, demonstrating that this method can distinguish affinity levels of the antibodies from different samples. This approach is simple and efficient, providing an accurate and effective technological solution for research on mechanisms of humoral immunity, antibody affinity maturation, vaccine response, and immunoactivity/immunotoxicity testing. Full article
Show Figures

Figure 1

Back to TopTop