Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (170)

Search Parameters:
Keywords = ISIC2018

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5527 KiB  
Article
SGNet: A Structure-Guided Network with Dual-Domain Boundary Enhancement and Semantic Fusion for Skin Lesion Segmentation
by Haijiao Yun, Qingyu Du, Ziqing Han, Mingjing Li, Le Yang, Xinyang Liu, Chao Wang and Weitian Ma
Sensors 2025, 25(15), 4652; https://doi.org/10.3390/s25154652 - 27 Jul 2025
Viewed by 278
Abstract
Segmentation of skin lesions in dermoscopic images is critical for the accurate diagnosis of skin cancers, particularly malignant melanoma, yet it is hindered by irregular lesion shapes, blurred boundaries, low contrast, and artifacts, such as hair interference. Conventional deep learning methods, typically based [...] Read more.
Segmentation of skin lesions in dermoscopic images is critical for the accurate diagnosis of skin cancers, particularly malignant melanoma, yet it is hindered by irregular lesion shapes, blurred boundaries, low contrast, and artifacts, such as hair interference. Conventional deep learning methods, typically based on UNet or Transformer architectures, often face limitations in regard to fully exploiting lesion features and incur high computational costs, compromising precise lesion delineation. To overcome these challenges, we propose SGNet, a structure-guided network, integrating a hybrid CNN–Mamba framework for robust skin lesion segmentation. The SGNet employs the Visual Mamba (VMamba) encoder to efficiently extract multi-scale features, followed by the Dual-Domain Boundary Enhancer (DDBE), which refines boundary representations and suppresses noise through spatial and frequency-domain processing. The Semantic-Texture Fusion Unit (STFU) adaptively integrates low-level texture with high-level semantic features, while the Structure-Aware Guidance Module (SAGM) generates coarse segmentation maps to provide global structural guidance. The Guided Multi-Scale Refiner (GMSR) further optimizes boundary details through a multi-scale semantic attention mechanism. Comprehensive experiments based on the ISIC2017, ISIC2018, and PH2 datasets demonstrate SGNet’s superior performance, with average improvements of 3.30% in terms of the mean Intersection over Union (mIoU) value and 1.77% in regard to the Dice Similarity Coefficient (DSC) compared to state-of-the-art methods. Ablation studies confirm the effectiveness of each component, highlighting SGNet’s exceptional accuracy and robust generalization for computer-aided dermatological diagnosis. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

17 pages, 6870 KiB  
Article
Edge- and Color–Texture-Aware Bag-of-Local-Features Model for Accurate and Interpretable Skin Lesion Diagnosis
by Dichao Liu and Kenji Suzuki
Diagnostics 2025, 15(15), 1883; https://doi.org/10.3390/diagnostics15151883 - 27 Jul 2025
Viewed by 345
Abstract
Background/Objectives: Deep models have achieved remarkable progress in the diagnosis of skin lesions but face two significant drawbacks. First, they cannot effectively explain the basis of their predictions. Although attention visualization tools like Grad-CAM can create heatmaps using deep features, these features [...] Read more.
Background/Objectives: Deep models have achieved remarkable progress in the diagnosis of skin lesions but face two significant drawbacks. First, they cannot effectively explain the basis of their predictions. Although attention visualization tools like Grad-CAM can create heatmaps using deep features, these features often have large receptive fields, resulting in poor spatial alignment with the input image. Second, the design of most deep models neglects interpretable traditional visual features inspired by clinical experience, such as color–texture and edge features. This study aims to propose a novel approach integrating deep learning with traditional visual features to handle these limitations. Methods: We introduce the edge- and color–texture-aware bag-of-local-features model (ECT-BoFM), which limits the receptive field of deep features to a small size and incorporates edge and color–texture information from traditional features. A non-rigid reconstruction strategy ensures that traditional features enhance rather than constrain the model’s performance. Results: Experiments on the ISIC 2018 and 2019 datasets demonstrated that ECT-BoFM yields precise heatmaps and achieves high diagnostic performance, outperforming state-of-the-art methods. Furthermore, training models using only a small number of the most predictive patches identified by ECT-BoFM achieved diagnostic performance comparable to that obtained using full images, demonstrating its efficiency in exploring key clues. Conclusions: ECT-BoFM successfully combines deep learning and traditional visual features, addressing the interpretability and diagnostic accuracy challenges of existing methods. ECT-BoFM provides an interpretable and accurate framework for skin lesion diagnosis, advancing the integration of AI in dermatological research and clinical applications. Full article
Show Figures

Figure 1

10 pages, 2331 KiB  
Article
Early-Stage Melanoma Benchmark Dataset
by Aleksandra Dzieniszewska, Piotr Garbat, Paweł Pietkiewicz and Ryszard Piramidowicz
Cancers 2025, 17(15), 2476; https://doi.org/10.3390/cancers17152476 - 26 Jul 2025
Viewed by 247
Abstract
Background: The early detection of melanoma is crucial for improving patient outcomes, as survival rates decline dramatically with disease progression. Despite significant achievements in deep learning methods for skin lesion analysis, several challenges limit their effectiveness in clinical practice. One of the key [...] Read more.
Background: The early detection of melanoma is crucial for improving patient outcomes, as survival rates decline dramatically with disease progression. Despite significant achievements in deep learning methods for skin lesion analysis, several challenges limit their effectiveness in clinical practice. One of the key issues is the lack of knowledge about the melanoma stage distribution in the training data, raising concerns about the ability of these models to detect early-stage melanoma accurately. Additionally, publicly available datasets that include detailed information on melanoma stage and tumor thickness remain scarce, restricting researchers from developing and benchmarking methods specifically tailored for early diagnosis. Another major limitation is the lack of cross-dataset evaluations. Most deep learning models are tested on the same dataset they were trained on, so they fail to assess their generalization ability when applied to unseen data. This reduces their reliability in real-world clinical settings. Methods: We introduce an early-stage melanoma benchmark dataset to address these issues, featuring images labeled according to T-category based on Breslow thickness. Results: We evaluated several state-of-the-art deep learning models on this dataset and observed a significant drop in performance compared to their results on the ISIC Challenge datasets. Conclusions: This finding highlights the models’ limited capability in detecting early-stage melanoma. This work seeks to advance the development and clinical applicability of automated melanoma diagnostic systems by providing a resource for T-category-specific analysis and supporting cross-dataset evaluation. Full article
(This article belongs to the Special Issue Image Analysis and Machine Learning in Cancers: 2nd Edition)
Show Figures

Figure 1

33 pages, 15612 KiB  
Article
A Personalized Multimodal Federated Learning Framework for Skin Cancer Diagnosis
by Shuhuan Fan, Awais Ahmed, Xiaoyang Zeng, Rui Xi and Mengshu Hou
Electronics 2025, 14(14), 2880; https://doi.org/10.3390/electronics14142880 - 18 Jul 2025
Viewed by 310
Abstract
Skin cancer is one of the most prevalent forms of cancer worldwide, and early and accurate diagnosis critically impacts patient outcomes. Given the sensitive nature of medical data and its fragmented distribution across institutions (data silos), privacy-preserving collaborative learning is essential to enable [...] Read more.
Skin cancer is one of the most prevalent forms of cancer worldwide, and early and accurate diagnosis critically impacts patient outcomes. Given the sensitive nature of medical data and its fragmented distribution across institutions (data silos), privacy-preserving collaborative learning is essential to enable knowledge-sharing without compromising patient confidentiality. While federated learning (FL) offers a promising solution, existing methods struggle with heterogeneous and missing modalities across institutions, which reduce the diagnostic accuracy. To address these challenges, we propose an effective and flexible Personalized Multimodal Federated Learning framework (PMM-FL), which enables efficient cross-client knowledge transfer while maintaining personalized performance under heterogeneous and incomplete modality conditions. Our study contains three key contributions: (1) A hierarchical aggregation strategy that decouples multi-module aggregation from local deployment via global modular-separated aggregation and local client fine-tuning. Unlike conventional FL (which synchronizes all parameters in each round), our method adopts a frequency-adaptive synchronization mechanism, updating parameters based on their stability and functional roles. (2) A multimodal fusion approach based on multitask learning, integrating learnable modality imputation and attention-based feature fusion to handle missing modalities. (3) A custom dataset combining multi-year International Skin Imaging Collaboration(ISIC) challenge data (2018–2024) to ensure comprehensive coverage of diverse skin cancer types. We evaluate PMM-FL through diverse experiment settings, demonstrating its effectiveness in heterogeneous and incomplete modality federated learning settings, achieving 92.32% diagnostic accuracy with only a 2% drop in accuracy under 30% modality missingness, with a 32.9% communication overhead decline compared with baseline FL methods. Full article
(This article belongs to the Special Issue Multimodal Learning and Transfer Learning)
Show Figures

Figure 1

21 pages, 5917 KiB  
Article
VML-UNet: Fusing Vision Mamba and Lightweight Attention Mechanism for Skin Lesion Segmentation
by Tang Tang, Haihui Wang, Qiang Rao, Ke Zuo and Wen Gan
Electronics 2025, 14(14), 2866; https://doi.org/10.3390/electronics14142866 - 17 Jul 2025
Viewed by 474
Abstract
Deep learning has advanced medical image segmentation, yet existing methods struggle with complex anatomical structures. Mainstream models, such as CNN, Transformer, and hybrid architectures, face challenges including insufficient information representation and redundant complexity, which limit their clinical deployment. Developing efficient and lightweight networks [...] Read more.
Deep learning has advanced medical image segmentation, yet existing methods struggle with complex anatomical structures. Mainstream models, such as CNN, Transformer, and hybrid architectures, face challenges including insufficient information representation and redundant complexity, which limit their clinical deployment. Developing efficient and lightweight networks is crucial for accurate lesion localization and optimized clinical workflows. We propose the VML-UNet, a lightweight segmentation network with core innovations including the CPMamba module and the multi-scale local supervision module (MLSM). The CPMamba module integrates the visual state space (VSS) block and a channel prior attention mechanism to enable efficient modeling of spatial relationships with linear computational complexity through dynamic channel-space weight allocation, while preserving channel feature integrity. The MLSM enhances local feature perception and reduces the inference burden. Comparative experiments were conducted on three public datasets, including ISIC2017, ISIC2018, and PH2, with ablation experiments performed on ISIC2017. VML-UNet achieves 0.53 M parameters, 2.18 MB memory usage, and 1.24 GFLOPs time complexity, with its performance on the datasets outperforming comparative networks, validating its effectiveness. This study provides valuable references for developing lightweight, high-performance skin lesion segmentation networks, advancing the field of skin lesion segmentation. Full article
(This article belongs to the Section Bioelectronics)
Show Figures

Figure 1

23 pages, 3404 KiB  
Article
MST-AI: Skin Color Estimation in Skin Cancer Datasets
by Vahid Khalkhali, Hayan Lee, Joseph Nguyen, Sergio Zamora-Erazo, Camille Ragin, Abhishek Aphale, Alfonso Bellacosa, Ellis P. Monk and Saroj K. Biswas
J. Imaging 2025, 11(7), 235; https://doi.org/10.3390/jimaging11070235 - 13 Jul 2025
Viewed by 321
Abstract
The absence of skin color information in skin cancer datasets poses a significant challenge for accurate diagnosis using artificial intelligence models, particularly for non-white populations. In this paper, based on the Monk Skin Tone (MST) scale, which is less biased than the Fitzpatrick [...] Read more.
The absence of skin color information in skin cancer datasets poses a significant challenge for accurate diagnosis using artificial intelligence models, particularly for non-white populations. In this paper, based on the Monk Skin Tone (MST) scale, which is less biased than the Fitzpatrick scale, we propose MST-AI, a novel method for detecting skin color in images of large datasets, such as the International Skin Imaging Collaboration (ISIC) archive. The approach includes automatic frame, lesion removal, and lesion segmentation using convolutional neural networks, and modeling normal skin tones with a Variational Bayesian Gaussian Mixture Model (VB-GMM). The distribution of skin color predictions was compared with MST scale probability distribution functions (PDFs) using the Kullback-Leibler Divergence (KLD) metric. Validation against manual annotations and comparison with K-means clustering of image and skin mean RGBs demonstrated the superior performance of the MST-AI, with Kendall’s Tau, Spearman’s Rho, and Normalized Discounted Cumulative Gain (NDGC) of 0.68, 0.69, and 1.00, respectively. This research lays the groundwork for developing unbiased AI models for early skin cancer diagnosis by addressing skin color imbalances in large datasets. Full article
(This article belongs to the Section AI in Imaging)
Show Figures

Figure 1

18 pages, 1995 KiB  
Article
A U-Shaped Architecture Based on Hybrid CNN and Mamba for Medical Image Segmentation
by Xiaoxuan Ma, Yingao Du and Dong Sui
Appl. Sci. 2025, 15(14), 7821; https://doi.org/10.3390/app15147821 - 11 Jul 2025
Viewed by 435
Abstract
Accurate medical image segmentation plays a critical role in clinical diagnosis, treatment planning, and a wide range of healthcare applications. Although U-shaped CNNs and Transformer-based architectures have shown promise, CNNs struggle to capture long-range dependencies, whereas Transformers suffer from quadratic growth in computational [...] Read more.
Accurate medical image segmentation plays a critical role in clinical diagnosis, treatment planning, and a wide range of healthcare applications. Although U-shaped CNNs and Transformer-based architectures have shown promise, CNNs struggle to capture long-range dependencies, whereas Transformers suffer from quadratic growth in computational cost as image resolution increases. To address these issues, we propose HCMUNet, a novel medical image segmentation model that innovatively combines the local feature extraction capabilities of CNNs with the efficient long-range dependency modeling of Mamba, enhancing feature representation while reducing computational cost. In addition, HCMUNet features a redesigned skip connection and a novel attention module that integrates multi-scale features to recover spatial details lost during down-sampling and to promote richer cross-dimensional interactions. HCMUNet achieves Dice Similarity Coefficients (DSC) of 90.32%, 81.52%, and 92.11% on the ISIC 2018, Synapse multi-organ, and ACDC datasets, respectively, outperforming baseline methods by 0.65%, 1.05%, and 1.39%. Furthermore, HCMUNet consistently outperforms U-Net and Swin-UNet, achieving average Dice score improvements of approximately 5% and 2% across the evaluated datasets. These results collectively affirm the effectiveness and reliability of the proposed model across different segmentation tasks. Full article
Show Figures

Figure 1

24 pages, 9593 KiB  
Article
Deep Learning Approaches for Skin Lesion Detection
by Jonathan Vieira, Fábio Mendonça and Fernando Morgado-Dias
Electronics 2025, 14(14), 2785; https://doi.org/10.3390/electronics14142785 - 10 Jul 2025
Viewed by 320
Abstract
Recently, there has been a rise in skin cancer cases, for which early detection is highly relevant, as it increases the likelihood of a cure. In this context, this work presents a benchmarking study of standard Convolutional Neural Network (CNN) architectures for automated [...] Read more.
Recently, there has been a rise in skin cancer cases, for which early detection is highly relevant, as it increases the likelihood of a cure. In this context, this work presents a benchmarking study of standard Convolutional Neural Network (CNN) architectures for automated skin lesion classification. A total of 38 CNN architectures from ten families (ConvNeXt, DenseNet, EfficientNet, Inception, InceptionResNet, MobileNet, NASNet, ResNet, VGG, and Xception) were evaluated using transfer learning on the HAM10000 dataset for seven-class skin lesion classification, namely, actinic keratoses, basal cell carcinoma, benign keratosis-like lesions, dermatofibroma, melanoma, melanocytic nevi, and vascular lesions. The comparative analysis used standardized training conditions, with all models utilizing frozen pre-trained weights. Cross-database validation was then conducted using the ISIC 2019 dataset to assess generalizability across different data distributions. The ConvNeXtXLarge architecture achieved the best performance, despite having one of the lowest performance-to-number-of-parameters ratios, with 87.62% overall accuracy and 76.15% F1 score on the test set, demonstrating competitive results within the established performance range of existing HAM10000-based studies. A proof-of-concept multiplatform mobile application was also implemented using a client–server architecture with encrypted image transmission, demonstrating the viability of integrating high-performing models into healthcare screening tools. Full article
Show Figures

Figure 1

26 pages, 10302 KiB  
Article
MA-DenseUNet: A Skin Lesion Segmentation Method Based on Multi-Scale Attention and Bidirectional LSTM
by Wenbo Huang, Xudong Cai, Yang Yan and Yufeng Kang
Appl. Sci. 2025, 15(12), 6538; https://doi.org/10.3390/app15126538 - 10 Jun 2025
Viewed by 422
Abstract
Skin diseases are common medical conditions, and early detection significantly contributes to improved cure rates. To address the challenges posed by complex lesion morphology, indistinct boundaries, and image artifacts, this paper proposes a skin lesion segmentation method based on multi-scale attention and bidirectional [...] Read more.
Skin diseases are common medical conditions, and early detection significantly contributes to improved cure rates. To address the challenges posed by complex lesion morphology, indistinct boundaries, and image artifacts, this paper proposes a skin lesion segmentation method based on multi-scale attention and bidirectional long short-term memory (Bi-LSTM). Built upon the U-Net architecture, the proposed model enhances the encoder with dense convolutions and an adaptive feature fusion module to strengthen feature extraction and multi-scale information integration. Furthermore, it incorporates both channel and spatial attention mechanisms along with temporal modeling to improve boundary delineation and segmentation accuracy. A generative adversarial network (GAN) is also introduced to refine the segmentation output and boost generalization performance. Experimental results on the ISIC2017 dataset demonstrate that the method achieves an accuracy of 0.950, a Dice coefficient of 0.902, and a mean Intersection over Union (mIoU) of 0.865. These results indicate that the proposed approach effectively improves lesion segmentation performance and offers valuable support for computer-aided diagnosis of skin diseases. Full article
Show Figures

Figure 1

24 pages, 985 KiB  
Article
Attention-Based Deep Feature Aggregation Network for Skin Lesion Classification
by Siddiqui Muhammad Yasir and Hyun Kim
Electronics 2025, 14(12), 2364; https://doi.org/10.3390/electronics14122364 - 9 Jun 2025
Viewed by 644
Abstract
Early and accurate detection of dermatological conditions, particularly melanoma, is critical for effective treatment and improved patient outcomes. Misclassifications may lead to delayed diagnosis, disease progression, and severe complications in medical image processing. Hence, robust and reliable classification techniques are essential to enhance [...] Read more.
Early and accurate detection of dermatological conditions, particularly melanoma, is critical for effective treatment and improved patient outcomes. Misclassifications may lead to delayed diagnosis, disease progression, and severe complications in medical image processing. Hence, robust and reliable classification techniques are essential to enhance diagnostic precision in clinical practice. This study presents a deep learning-based framework designed to improve feature representation while maintaining computational efficiency. The proposed architecture integrates multi-level feature aggregation with a squeeze-and-excitation attention mechanism to effectively extract salient patterns from dermoscopic medical images. The model is rigorously evaluated on five publicly available benchmark datasets—ISIC-2019, ISIC-2020, SKINL2, MED-NODE, and HAM10000—covering a diverse spectrum of dermatological medical disorders. Experimental results demonstrate that the proposed method consistently outperforms existing approaches in classification performance, achieving accuracy rates of 94.41% and 97.45% on the MED-NODE and HAM10000 datasets, respectively. These results underscore the method’s potential for real-world deployment in automated skin lesion analysis and clinical decision support. Full article
(This article belongs to the Special Issue Convolutional Neural Networks and Vision Applications, 4th Edition)
Show Figures

Figure 1

17 pages, 9400 KiB  
Article
MRCA-UNet: A Multiscale Recombined Channel Attention U-Net Model for Medical Image Segmentation
by Lei Liu, Xiang Li, Shuai Wang, Jun Wang and Silas N. Melo
Symmetry 2025, 17(6), 892; https://doi.org/10.3390/sym17060892 - 6 Jun 2025
Viewed by 542
Abstract
Deep learning techniques play a crucial role in medical image segmentation for diagnostic purposes, with traditional convolutional neural networks (CNNs) and emerging transformers having achieved satisfactory results. CNN-based methods focus on extracting the local features of an image, which are beneficial for handling [...] Read more.
Deep learning techniques play a crucial role in medical image segmentation for diagnostic purposes, with traditional convolutional neural networks (CNNs) and emerging transformers having achieved satisfactory results. CNN-based methods focus on extracting the local features of an image, which are beneficial for handling image details and textural features. However, the receptive fields of CNNs are relatively small, resulting in poor performance when processing images with long-range dependencies. Conversely, transformer-based methods are effective in handling global information; however, they suffer from significant computational complexity arising from the building of long-range dependencies. Additionally, they lack the ability to perceive image details and adopt channel features. These problems can result in unclear image segmentation and blurred boundaries. Accordingly, in this study, a multiscale recombined channel attention (MRCA) module is proposed, which can simultaneously extract both global and local features and has the capability of exploring channel features during feature fusion. Specifically, the proposed MRCA first employs multibranch extraction of image features and performs operations such as blocking, shifting, and aggregating the image at different scales. This step enables the model to recognize multiscale information locally and globally. Feature selection is then performed to enhance the predictive capability of the model. Finally, features from different branches are connected and recombined across channels to complete the feature fusion. Benefiting from fully exploring the channel features, an MRCA-based U-Net (MRCA-UNet) framework is proposed for medical image segmentation. Experiments conducted on the Synapse multi-organ segmentation (Synapse) dataset and the International Skin Imaging Collaboration (ISIC-2018) dataset demonstrate the competitive segmentation performance of the proposed MRCA-UNet, achieving an average Dice Similarity Coefficient (DSC) of 81.61% and a Hausdorff Distance (HD) of 23.36 on Synapse and an Accuracy of 95.94% on ISIC-2018. Full article
Show Figures

Figure 1

15 pages, 2194 KiB  
Article
Hybrid Transform-Based Feature Extraction for Skin Lesion Classification Using RGB and Grayscale Analysis
by Luis Felipe López-Ávila and Josué Álvarez-Borrego
Appl. Sci. 2025, 15(11), 5860; https://doi.org/10.3390/app15115860 - 23 May 2025
Viewed by 687
Abstract
Automated skin lesion classification using machine learning techniques is crucial for early and accurate skin cancer detection. This study proposes a hybrid method combining the Hermite, Radial Fourier–Mellin, and Hilbert transform to extract comprehensive features from skin lesion images. By separating the images [...] Read more.
Automated skin lesion classification using machine learning techniques is crucial for early and accurate skin cancer detection. This study proposes a hybrid method combining the Hermite, Radial Fourier–Mellin, and Hilbert transform to extract comprehensive features from skin lesion images. By separating the images into red, green, and blue (RGB) channels and grayscale, unique textural and structural information specific to each channel is analyzed. The Hermite transform captures localized spatial features, while the Radial Fourier–Mellin and Hilbert transforms ensure global invariance to scale, translation, and rotation. Texture information for each channel is also obtained based on the Local Binary Pattern (LBP) technique. The proposed hybrid transform-based feature extraction was applied to multiple lesion classes using the International Skin Imaging Collaboration (ISIC) 2019 dataset, preprocessed with data augmentation. Experimental results demonstrate that the proposed method improves classification accuracy and robustness, highlighting its potential as a non-invasive AI-based tool for dermatological diagnosis. Full article
(This article belongs to the Special Issue Recent Advances in Biomedical Data Analysis)
Show Figures

Figure 1

17 pages, 41392 KiB  
Article
DermViT: Diagnosis-Guided Vision Transformer for Robust and Efficient Skin Lesion Classification
by Xuejun Zhang, Yehui Liu, Ganxin Ouyang, Wenkang Chen, Aobo Xu, Takeshi Hara, Xiangrong Zhou and Dongbo Wu
Bioengineering 2025, 12(4), 421; https://doi.org/10.3390/bioengineering12040421 - 16 Apr 2025
Viewed by 1119
Abstract
Early diagnosis of skin cancer can significantly improve patient survival. Currently, skin lesion classification faces challenges such as lesion–background semantic entanglement, high intra-class variability, artifactual interference, and more, while existing classification models lack modeling of physicians’ diagnostic paradigms. To this end, we propose [...] Read more.
Early diagnosis of skin cancer can significantly improve patient survival. Currently, skin lesion classification faces challenges such as lesion–background semantic entanglement, high intra-class variability, artifactual interference, and more, while existing classification models lack modeling of physicians’ diagnostic paradigms. To this end, we propose DermViT, a medically driven deep learning architecture that addresses the above issues through a medically-inspired modular design. DermViT consists of three main modules: (1) Dermoscopic Context Pyramid (DCP), which mimics the multi-scale observation process of pathological diagnosis to adapt to the high intraclass variability of lesions such as melanoma, then extract stable and consistent data at different scales; (2) Dermoscopic Hierarchical Attention (DHA), which can reduce computational complexity while realizing intelligent focusing on lesion areas through a coarse screening–fine inspection mechanism; (3). Dermoscopic Feature Gate (DFG), which simulates the observation–verification operation of doctors through a convolutional gating mechanism and effectively suppresses semantic leakage of artifact regions. Our experimental results show that DermViT significantly outperforms existing methods in terms of classification accuracy (86.12%, a 7.8% improvement over ViT-Base) and number of parameters (40% less than ViT-Base) on the ISIC2018 and ISIC2019 datasets. Our visualization results further validate DermViT’s ability to locate lesions under interference conditions. By introducing a modular design that mimics a physician’s observation mode, DermViT achieves more logical feature extraction and decision-making processes for medical diagnosis, providing an efficient and reliable solution for dermoscopic image analysis. Full article
Show Figures

Graphical abstract

18 pages, 3263 KiB  
Article
Boosting Skin Cancer Classification: A Multi-Scale Attention and Ensemble Approach with Vision Transformers
by Guang Yang, Suhuai Luo and Peter Greer
Sensors 2025, 25(8), 2479; https://doi.org/10.3390/s25082479 - 15 Apr 2025
Viewed by 1141
Abstract
Skin cancer is a significant global health concern, with melanoma being the most dangerous form, responsible for the majority of skin cancer-related deaths. Early detection of skin cancer is critical, as it can drastically improve survival rates. While deep learning models have achieved [...] Read more.
Skin cancer is a significant global health concern, with melanoma being the most dangerous form, responsible for the majority of skin cancer-related deaths. Early detection of skin cancer is critical, as it can drastically improve survival rates. While deep learning models have achieved impressive results in skin cancer classification, there remain challenges in accurately distinguishing between benign and malignant lesions. In this study, we introduce a novel multi-scale attention-based performance booster inspired by the Vision Transformer (ViT) architecture, which enhances the accuracy of both ViT and convolutional neural network (CNN) models. By leveraging attention maps to identify discriminative regions within skin lesion images, our method improves the models’ focus on diagnostically relevant areas. Additionally, we employ ensemble learning techniques to combine the outputs of several deep learning models using majority voting. Our skin cancer classifier, consisting of ViT and EfficientNet models, achieved a classification accuracy of 95.05% on the ISIC2018 dataset, outperforming individual models. The results demonstrate the effectiveness of integrating attention-based multi-scale learning and ensemble methods in skin cancer classification. Full article
Show Figures

Figure 1

15 pages, 3257 KiB  
Article
Deep Learning for Early Skin Cancer Detection: Combining Segmentation, Augmentation, and Transfer Learning
by Ravi Karki, Shishant G C, Javad Rezazadeh and Ammara Khan
Big Data Cogn. Comput. 2025, 9(4), 97; https://doi.org/10.3390/bdcc9040097 - 11 Apr 2025
Viewed by 776
Abstract
Skin cancer, particularly melanoma, is one of the leading causes of cancer-related deaths. It is essential to detect and start the treatment in the early stages for it to be effective and to improve survival rates. This study developed and evaluated a deep [...] Read more.
Skin cancer, particularly melanoma, is one of the leading causes of cancer-related deaths. It is essential to detect and start the treatment in the early stages for it to be effective and to improve survival rates. This study developed and evaluated a deep learning-based classification model to classify the skin lesion images as benign (non-cancerous) and malignant (cancerous). In this study, we used the ISIC 2016 dataset to train the segmentation model and the Kaggle dataset of 10,000 images to train the classification model. We applied different data pre-processing techniques to enhance the robustness of our model. We used the segmentation model to generate a binary segmentation mask and used it with the corresponding pre-processed image by overlaying its edges to highlight the lesion region, before feeding it to the classification model. We used transfer learning, using ResNet-50 as a backbone model for a feedforward network. We achieved an accuracy of 92.80%, a precision of 98.64%, and a recall of 86.80%. From our study, we have found that integrating deep learning techniques with proper data pre-processing improves the model’s performance. Future work will focus on expanding the datasets and testing more architectures to improve the performance metrics of the model. Full article
Show Figures

Figure 1

Back to TopTop