Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = IR galaxies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
6 pages, 256 KB  
Communication
Insight on AGB Mass-Loss and Dust Production from PNe
by Silvia Tosi
Galaxies 2024, 12(6), 85; https://doi.org/10.3390/galaxies12060085 - 2 Dec 2024
Viewed by 1040
Abstract
The asymptotic giant branch (AGB) phase, experienced by low- and intermediate-mass stars (LIMSs), plays a crucial role in galaxies due to its significant dust production. Planetary nebulae (PNe) offer a novel perspective, providing valuable insights into the dust production mechanisms and the evolutionary [...] Read more.
The asymptotic giant branch (AGB) phase, experienced by low- and intermediate-mass stars (LIMSs), plays a crucial role in galaxies due to its significant dust production. Planetary nebulae (PNe) offer a novel perspective, providing valuable insights into the dust production mechanisms and the evolutionary history of LIMSs. We selected a sample of nine PNe from the Large Magellanic Cloud (LMC), likely originating from single stars. By modeling their spectral energy distributions (SEDs) with photoionization techniques, we successfully reproduced the observed photometric data, spectra, and chemical abundances. This approach enabled us to constrain key characteristics of the central stars (CSs), dust, and gaseous nebulae, which were then compared with predictions from stellar evolution models. By integrating observational data across ultraviolet (UV) to infrared (IR) wavelengths, we achieved a comprehensive understanding of the structure of the PNe in our sample. The results of the SED analysis are consistent with evolutionary models and previous studies that focus on individual components of the PN, such as dust or the gaseous nebula. Our analysis enabled us to determine the metallicity, the progenitor mass of the CSs, and the amount of dust and gas surrounding the CSs, linking these properties to the previous AGB phase. The PN phase provides critical insights into the physical processes active during earlier evolutionary stages. Additionally, we found that higher progenitor masses are associated with greater amounts of dust in the surrounding nebulae but lower amounts of gaseous material compared to sources with lower progenitor masses. Full article
Show Figures

Figure 1

18 pages, 661 KB  
Article
Steps toward Unraveling the Structure and Formation of Five Polar Ring Galaxies
by Kyle E. Lackey, Varsha P. Kulkarni and Monique C. Aller
Galaxies 2024, 12(4), 42; https://doi.org/10.3390/galaxies12040042 - 31 Jul 2024
Cited by 1 | Viewed by 1620
Abstract
Polar ring galaxies (PRGs) are unusual relative to common galaxies in that they consist of a central host galaxy—usually a gas-poor, early-type S0 or elliptical galaxy—surrounded by a ring of gas, dust and stars that orbit perpendicular to the major axis of the [...] Read more.
Polar ring galaxies (PRGs) are unusual relative to common galaxies in that they consist of a central host galaxy—usually a gas-poor, early-type S0 or elliptical galaxy—surrounded by a ring of gas, dust and stars that orbit perpendicular to the major axis of the host. Despite the general quiescence of early-type galaxies (ETGs) and the rings’ lack of spiral density waves, PRGs are the sites of significant star formation relative to typical ETGs. To study these structures and improve PRG statistics, we obtained and analyzed infrared (IR) images from the Infrared Array Camera (IRAC) aboard the Spitzer Space Telescope, and combined these IR data with archival optical data from both the Sloan Digital Sky Survey and the Hubble Space Telescope, and with optical imaging data we obtained with the Gemini South Observatory. We performed structural decomposition and photometry for five PRGs, and fit the spectral energy distributions (SEDs) of each PRG component to estimate the stellar masses, ages, and other physical properties of the PRG components. We show that PRC B-12 and PRC B-22, both lacking previous analysis, obey trends commonly observed among PRGs. We find that the stellar masses of polar rings can be a significant fraction of the host galaxy’s stellar masses (∼10–30%). We note, however, that our estimates of stellar mass and other physical properties are the results of SED fitting and not direct measurements. Our findings corroborate both previous theoretical expectations and measurements of existing samples of PRGs and indicate the utility of SED fitting in the context of these unusual galaxies, which historically have lacked multi-wavelength photometry of their stellar components. Finally, we outline future improvements needed for more definitive studies of PRGs and their formation scenarios. Full article
Show Figures

Figure 1

9 pages, 1343 KB  
Article
Correlations between IR Luminosity, Star Formation Rate, and CO Luminosity in the Local Universe
by Matteo Bonato, Ivano Baronchelli, Viviana Casasola, Gianfranco De Zotti, Leonardo Trobbiani, Erlis Ruli, Vidhi Tailor and Simone Bianchi
Galaxies 2024, 12(4), 37; https://doi.org/10.3390/galaxies12040037 - 8 Jul 2024
Cited by 2 | Viewed by 1543
Abstract
We exploit the DustPedia sample of galaxies within approximately 40 Mpc, selecting 388 sources, to investigate the correlations between IR luminosity (LIR), the star formation rate (SFR), and the CO(1-0) luminosity (LCO) down to much lower luminosities than reached [...] Read more.
We exploit the DustPedia sample of galaxies within approximately 40 Mpc, selecting 388 sources, to investigate the correlations between IR luminosity (LIR), the star formation rate (SFR), and the CO(1-0) luminosity (LCO) down to much lower luminosities than reached by previous analyses. We find a sub-linear dependence of the SFR on LIR. Below log(LIR/L)10 or SFR1Myr1, the SFR/LIR ratio substantially exceeds the standard ratio for dust-enshrouded star formation, and the difference increases with decreasing LIR values. This implies that the effect of unobscured star formation overcomes that of dust heating by old stars, at variance with results based on the Planck ERCSC galaxy sample. We also find that the relations between the LCO and LIR or the SFR are consistent with those obtained at much higher luminosities. Full article
Show Figures

Figure 1

29 pages, 1159 KB  
Article
A Walk through AGN Country—For the Somewhat Initiated!
by Robert R. J. Antonucci
Galaxies 2023, 11(5), 102; https://doi.org/10.3390/galaxies11050102 - 30 Sep 2023
Cited by 13 | Viewed by 2713
Abstract
Key issues in AGN and galaxy formation are discussed. Very successful Unified Models explain much of the variety of AGN with orientation effects; the ingredients are shadowing by a dusty “torus” and relativistic beaming. A spinoff result is described which is important for [...] Read more.
Key issues in AGN and galaxy formation are discussed. Very successful Unified Models explain much of the variety of AGN with orientation effects; the ingredients are shadowing by a dusty “torus” and relativistic beaming. A spinoff result is described which is important for the formation of massive elliptical galaxies, the most spectacular and unequivocal AGN feedback phenomenon known. This is the so-called “alignment effect” in powerful radio galaxies at z>1. One of them is a BAL radio galaxy! Next, I explain a very robust derivation of the reddening law for nuclear dust, which reveals a dearth of small grains on parsec scales. Then, the quasistatic thin accretion disk model, thought by many to explain the energetically dominant optical/UV continuum, is thoroughly debunked. Much of this was known when the model was proposed 35 years ago. A new argument is provided that trivially falsifies a huge superset of such models. I then show that it is possible to see the central engine spectrum with the atomic and dust emission surgically removed! Few have noticed this breakthrough work. Finally, the far IR dust emission in Cygnus A is 10% polarized; to date, high nuclear dust polarization has been seen in all radio loud objects and no radio quiet ones. Full article
(This article belongs to the Special Issue The Symbiosis between Radio Source and Galaxy Evolution)
Show Figures

Figure 1

21 pages, 1509 KB  
Article
Discovering New B[e] Supergiants and Candidate Luminous Blue Variables in Nearby Galaxies
by Grigoris Maravelias, Stephan de Wit, Alceste Z. Bonanos, Frank Tramper, Gonzalo Munoz-Sanchez and Evangelia Christodoulou
Galaxies 2023, 11(3), 79; https://doi.org/10.3390/galaxies11030079 - 19 Jun 2023
Cited by 7 | Viewed by 2162
Abstract
Mass loss is one of the key parameters that determine stellar evolution. Despite the progress we have achieved over the last decades we still cannot match the observational derived values with theoretical predictions. Even worse, there are certain phases, such as the B[e] [...] Read more.
Mass loss is one of the key parameters that determine stellar evolution. Despite the progress we have achieved over the last decades we still cannot match the observational derived values with theoretical predictions. Even worse, there are certain phases, such as the B[e] supergiants (B[e]SGs) and the Luminous Blue Variables (LBVs), where significant mass is lost through episodic or outburst activity. This leads to various structures forming around them that permit dust formation, making these objects bright IR sources. The ASSESS project aims to determine the role of episodic mass in the evolution of massive stars, by examining large numbers of cool and hot objects (such as B[e]SGs/LBVs). For this purpose, we initiated a large observation campaign to obtain spectroscopic data for ∼1000 IR-selected sources in 27 nearby galaxies. Within this project we successfully identified seven B[e] supergiants (one candidate) and four Luminous Blue Variables of which six and two, respectively, are new discoveries. We used spectroscopic, photometric, and light curve information to better constrain the nature of the reported objects. We particularly noted the presence of B[e]SGs at metallicity environments as low as 0.14 Z. Full article
(This article belongs to the Special Issue Theory and Observation of Active B-type Stars)
Show Figures

Figure 1

37 pages, 14119 KB  
Review
The Past and Future of Mid-Infrared Studies of AGN
by Anna Sajina, Mark Lacy and Alexandra Pope
Universe 2022, 8(7), 356; https://doi.org/10.3390/universe8070356 - 27 Jun 2022
Cited by 23 | Viewed by 4186
Abstract
Observational studies of AGN in the mid-infrared regime are crucial to our understanding of AGN and their role in the evolution of galaxies. Mid-IR-based selection of AGN is complementary to more traditional techniques allowing for a more complete census of AGN activity across [...] Read more.
Observational studies of AGN in the mid-infrared regime are crucial to our understanding of AGN and their role in the evolution of galaxies. Mid-IR-based selection of AGN is complementary to more traditional techniques allowing for a more complete census of AGN activity across cosmic time. Mid-IR observations including time variability and spatially resolved imaging have given us unique insights into the nature of the obscuring structures around AGN. The wealth of fine structure, molecular, and dust features in the mid-IR allow us to simultaneously probe multiple components of the ISM allowing us to explore in detail the impact on the host galaxy by the presence of an AGN—a crucial step toward understanding galaxy-SMBH co-evolution. This review gives a broad overview of this wide range of studies. It also aims to show the evolution of this field starting with its nascency in the 1960s, through major advances thanks to several generations of space-based and ground-based facilities, as well as the promise of upcoming facilities such as the James Webb Space Telescope (JWST). Full article
(This article belongs to the Special Issue Recent Advances in Infrared Galaxies and AGN)
Show Figures

Figure 1

29 pages, 3133 KB  
Article
ALPINE: A Large Survey to Understand Teenage Galaxies
by Andreas L. Faisst, Lin Yan, Matthieu Béthermin, Paolo Cassata, Miroslava Dessauges-Zavadsky, Yoshinobu Fudamoto, Michele Ginolfi, Carlotta Gruppioni, Gareth Jones, Yana Khusanova, Olivier LeFèvre, Francesca Pozzi, Michael Romano, John Silverman and Brittany Vanderhoof
Universe 2022, 8(6), 314; https://doi.org/10.3390/universe8060314 - 1 Jun 2022
Cited by 6 | Viewed by 3475
Abstract
A multiwavelength study of galaxies is important to understand their formation and evolution. Only in the recent past, thanks to the Atacama Large (Sub) Millimeter Array (ALMA), were we able to study the far-infrared (IR) properties of galaxies at high redshifts. In this [...] Read more.
A multiwavelength study of galaxies is important to understand their formation and evolution. Only in the recent past, thanks to the Atacama Large (Sub) Millimeter Array (ALMA), were we able to study the far-infrared (IR) properties of galaxies at high redshifts. In this article, we summarize recent research highlights and their significance to our understanding of early galaxy evolution from the ALPINE survey, a large program with ALMA to observe the dust continuum and 158μm C+ emission of normal star-forming galaxies at z= 4–6. Combined with ancillary data at UV through near-IR wavelengths, ALPINE provides the currently largest multiwavelength sample of post-reionization galaxies and has advanced our understanding of (i) the demographics of C+ emission; (ii) the relation of star formation and C+ emission; (iii) the gas content; (iv) outflows and enrichment of the intergalactic medium; and (v) the kinematics, emergence of disks, and merger rates in galaxies at z>4. ALPINE builds the basis for more detailed measurements with the next generation of telescopes, and places itself as an important post-reionization baseline sample to allow a continuous study of galaxies over 13 billion years of cosmic time. Full article
(This article belongs to the Special Issue Recent Advances in Infrared Galaxies and AGN)
Show Figures

Figure 1

50 pages, 9644 KB  
Review
Infrared Spectral Energy Distribution and Variability of Active Galactic Nuclei: Clues to the Structure of Circumnuclear Material
by Jianwei Lyu and George Rieke
Universe 2022, 8(6), 304; https://doi.org/10.3390/universe8060304 - 27 May 2022
Cited by 35 | Viewed by 5534
Abstract
The active galactic nucleus (AGN) phenomenon results from a supermassive black hole accreting its surrounding gaseous and dusty material. The infrared (IR) regime provides most of the information to characterize the dusty structures that bridge from the galaxy to the black hole, providing [...] Read more.
The active galactic nucleus (AGN) phenomenon results from a supermassive black hole accreting its surrounding gaseous and dusty material. The infrared (IR) regime provides most of the information to characterize the dusty structures that bridge from the galaxy to the black hole, providing clues to the black hole growth and host galaxy evolution. Over the past several decades, with the commissioning of various ground, airborne and space IR observing facilities, our interpretations of the AGN circumnuclear structures have advanced significantly through an improved understanding of how their dust emission changes as a function of wavelength and how the heating of the dusty structures responds to variations in the energy released from the central engine. In this review, we summarize the current observational knowledge of the AGN IR broad-band spectral energy distributions (SEDs) and the IR time variability behavior covering large ranges of AGN luminosity and redshift, and discuss some first-order insights into the obscuring structures and host galaxy IR properties that can be obtained by integrating the relevant observations into a coherent picture. Full article
(This article belongs to the Special Issue Recent Advances in Infrared Galaxies and AGN)
Show Figures

Figure 1

41 pages, 2827 KB  
Article
A Neutron Star Is Born
by Débora Peres Menezes
Universe 2021, 7(8), 267; https://doi.org/10.3390/universe7080267 - 26 Jul 2021
Cited by 33 | Viewed by 6766
Abstract
A neutron star was first detected as a pulsar in 1967. It is one of the most mysterious compact objects in the universe, with a radius of the order of 10 km and masses that can reach two solar masses. In fact, neutron [...] Read more.
A neutron star was first detected as a pulsar in 1967. It is one of the most mysterious compact objects in the universe, with a radius of the order of 10 km and masses that can reach two solar masses. In fact, neutron stars are star remnants, a kind of stellar zombie (they die, but do not disappear). In the last decades, astronomical observations yielded various contraints for neutron star masses, and finally, in 2017, a gravitational wave was detected (GW170817). Its source was identified as the merger of two neutron stars coming from NGC 4993, a galaxy 140 million light years away from us. The very same event was detected in γ-ray, X-ray, UV, IR, radio frequency and even in the optical region of the electromagnetic spectrum, starting the new era of multi-messenger astronomy. To understand and describe neutron stars, an appropriate equation of state that satisfies bulk nuclear matter properties is necessary. GW170817 detection contributed with extra constraints to determine it. On the other hand, magnetars are the same sort of compact object, but bearing much stronger magnetic fields that can reach up to 1015 G on the surface as compared with the usual 1012 G present in ordinary pulsars. While the description of ordinary pulsars is not completely established, describing magnetars poses extra challenges. In this paper, I give an overview on the history of neutron stars and on the development of nuclear models and show how the description of the tiny world of the nuclear physics can help the understanding of the cosmos, especially of the neutron stars. Full article
(This article belongs to the Special Issue Properties and Dynamics of Neutron Stars and Proto-Neutron Stars)
Show Figures

Figure 1

15 pages, 709 KB  
Article
Constraining the Swiss-Cheese IR-Fixed Point Cosmology with Cosmic Expansion
by Ayan Mitra, Vasilios Zarikas, Alfio Bonanno, Michael Good and Ertan Güdekli
Universe 2021, 7(8), 263; https://doi.org/10.3390/universe7080263 - 25 Jul 2021
Cited by 3 | Viewed by 2455
Abstract
A recent work proposed that the recent cosmic passage to a cosmic acceleration era is the result of the existence of small anti-gravity sources in each galaxy and clusters of galaxies. In particular, a Swiss-cheese cosmology model, which relativistically integrates the contribution of [...] Read more.
A recent work proposed that the recent cosmic passage to a cosmic acceleration era is the result of the existence of small anti-gravity sources in each galaxy and clusters of galaxies. In particular, a Swiss-cheese cosmology model, which relativistically integrates the contribution of all these anti-gravity sources on a galactic scale has been constructed assuming the presence of an infrared fixed point for a scale dependent cosmological constant. The derived cosmological expansion provides an explanation for both the fine tuning and the coincidence problem. The present work relaxes the previous assumption on the running of the cosmological constant and allows for a generic scaling around the infrared fixed point. Our analysis reveals that, in order to produce a cosmic evolution consistent with the best ΛCDM model, the IR-running of the cosmological constant is consistent with the presence of an IR-fixed point. Full article
Show Figures

Figure 1

17 pages, 734 KB  
Article
Dust Production around Carbon-Rich Stars: The Role of Metallicity
by Ambra Nanni, Sergio Cristallo, Jacco Th. van Loon and Martin A. T. Groenewegen
Universe 2021, 7(7), 233; https://doi.org/10.3390/universe7070233 - 7 Jul 2021
Cited by 7 | Viewed by 2399
Abstract
Background: Most of the stars in the Universe will end their evolution by losing their envelope during the thermally pulsing asymptotic giant branch (TP-AGB) phase, enriching the interstellar medium of galaxies with heavy elements, partially condensed into dust grains formed in their extended [...] Read more.
Background: Most of the stars in the Universe will end their evolution by losing their envelope during the thermally pulsing asymptotic giant branch (TP-AGB) phase, enriching the interstellar medium of galaxies with heavy elements, partially condensed into dust grains formed in their extended circumstellar envelopes. Among these stars, carbon-rich TP-AGB stars (C-stars) are particularly relevant for the chemical enrichment of galaxies. We here investigated the role of the metallicity in the dust formation process from a theoretical viewpoint. Methods: We coupled an up-to-date description of dust growth and dust-driven wind, which included the time-averaged effect of shocks, with FRUITY stellar evolutionary tracks. We compared our predictions with observations of C-stars in our Galaxy, in the Magellanic Clouds (LMC and SMC) and in the Galactic Halo, characterised by metallicity between solar and 1/10 of solar. Results: Our models explained the variation of the gas and dust content around C-stars derived from the IRS Spitzer spectra. The wind speed of the C-stars at varying metallicity was well reproduced by our description. We predicted the wind speed at metallicity down to 1/10 of solar in a wide range of mass-loss rates. Full article
(This article belongs to the Special Issue AGB Stars: Element Forges of the Universe)
Show Figures

Figure 1

14 pages, 2969 KB  
Article
Smartphone-Based pH Sensor for Home Monitoring of Pulmonary Exacerbations in Cystic Fibrosis
by Alexander Sun, Tom Phelps, Chengyang Yao, A. G. Venkatesh, Douglas Conrad and Drew A. Hall
Sensors 2017, 17(6), 1245; https://doi.org/10.3390/s17061245 - 30 May 2017
Cited by 16 | Viewed by 9160
Abstract
Currently, Cystic Fibrosis (CF) patients lack the ability to track their lung health at home, relying instead on doctor checkups leading to delayed treatment and lung damage. By leveraging the ubiquity of the smartphone to lower costs and increase portability, a smartphone-based peripheral [...] Read more.
Currently, Cystic Fibrosis (CF) patients lack the ability to track their lung health at home, relying instead on doctor checkups leading to delayed treatment and lung damage. By leveraging the ubiquity of the smartphone to lower costs and increase portability, a smartphone-based peripheral pH measurement device was designed to attach directly to the headphone port to harvest power and communicate with a smartphone application. This platform was tested using prepared pH buffers and sputum samples from CF patients. The system matches within ~0.03 pH of a benchtop pH meter while fully powering itself and communicating with a Samsung Galaxy S3 smartphone paired with either a glass or Iridium Oxide (IrOx) electrode. The IrOx electrodes were found to have 25% higher sensitivity than the glass probes at the expense of larger drift and matrix sensitivity that can be addressed with proper calibration. The smartphone-based platform has been demonstrated as a portable replacement for laboratory pH meters, and supports both highly robust glass probes and the sensitive and miniature IrOx electrodes with calibration. This tool can enable more frequent pH sputum tracking for CF patients to help detect the onset of pulmonary exacerbation to provide timely and appropriate treatment before serious damage occurs. Full article
(This article belongs to the Special Issue Biomedical Sensors and Systems 2017)
Show Figures

Figure 1

7 pages, 437 KB  
Article
Interactions, Starbursts, and Star Formation
by Johan H. Knapen and Miguel Querejeta
Galaxies 2015, 3(4), 220-226; https://doi.org/10.3390/galaxies3040220 - 18 Dec 2015
Cited by 2 | Viewed by 4189
Abstract
We study how interactions between galaxies affect star formation within them by considering a sample of almost 1500 of the nearest galaxies, all within a distance of ∼45 Mpc. We use the far-IR emission to define the massive star formation rate (SFR), and [...] Read more.
We study how interactions between galaxies affect star formation within them by considering a sample of almost 1500 of the nearest galaxies, all within a distance of ∼45 Mpc. We use the far-IR emission to define the massive star formation rate (SFR), and then normalise the SFR by the stellar mass of the galaxy to obtain the specific star formation rate (SSFR). We explore the distribution of (S)SFR with morphological type and with stellar mass. We calculate the relative enhancement of SFR and SSFR for each galaxy by normalising them by the median SFR and SSFR values of individual control samples of similar non-interacting galaxies. We find that both the median SFR and SSFR are enhanced in interacting galaxies, and more so as the degree of interaction is higher. The increase is moderate, reaching a maximum of a factor of 1.9 for the highest degree of interaction (mergers). While the SFR and SSFR are enhanced statistically by interactions, in many individual interacting galaxies they are not enhanced at all. Our study is based on a representative sample of nearby galaxies and should be used to place constraints on studies based on samples of galaxies at larger distances. Full article
Show Figures

Figure 1

Back to TopTop