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Abstract: A recent work proposed that the recent cosmic passage to a cosmic acceleration era is
the result of the existence of small anti-gravity sources in each galaxy and clusters of galaxies.
In particular, a Swiss-cheese cosmology model, which relativistically integrates the contribution
of all these anti-gravity sources on a galactic scale has been constructed assuming the presence
of an infrared fixed point for a scale dependent cosmological constant. The derived cosmological
expansion provides an explanation for both the fine tuning and the coincidence problem. The present
work relaxes the previous assumption on the running of the cosmological constant and allows for
a generic scaling around the infrared fixed point. Our analysis reveals that, in order to produce a
cosmic evolution consistent with the best ΛCDM model, the IR-running of the cosmological constant
is consistent with the presence of an IR-fixed point.

Keywords: asymptotic safety; IR quantum gravity; varying cosmological constant; cosmic acceleration

1. Introduction

The cosmological constant problem of quantum field theory, first emphasized by
Zeldovich, is one of the greatest problems of modern theoretical physics. Even if one would
expect quantum gravity to offer an explanation as to why the vacuum does not gravitate
(due to non perturbative effects), the natural thing is to have, for the present cosmic time, a
zero (negligible) cosmological constant; otherwise, a fine tuning problem emerges as in the
ΛCDM phenomenological model.

However, the recent cosmic acceleration [1–4] adds more mystery to the problem.
This missing amount of dark energy (DE) [5], is possibly the result of a time varying
cosmological constant Λ(z). There are many papers that have attempted to explain this
recent low redshift cosmic acceleration. Among them, there are two proposed solutions
without the fine tuning problem, [6,7]. They remove the coincidence and fine tuning
problem connecting the recent large scale structure and its characteristics with the recent
cosmic acceleration.

The present study concerns a further elaboration of the second work [7], connecting it and
testing it with the cosmological observational data. There are also some other works [8–13] that
attempted to resolve (partially or fully) the recent cosmic acceleration and coincidence problem
using the recent large scale structure formation; however, these works associate inhomogeneities
with the change of the expansion rate. In [7], local antigravity sources are the reason for the
solution, and no inhomogeneities play any role. We expect that the inclusion of inhomogeneities
will further help with generation of the cosmic acceleration.

In [7], the proposed solution was based on the infrared quantum gravity modifications
at the astrophysical scales. These corrections result in a non-zero positive cosmological
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constant that is related to astrophysical configurations of matter and energy, such as
galaxies or clusters of galaxies. Thus, antigravity sources are effectively generated. Such
quantum gravity corrections are, perhaps, possible in the framework of the Asymptotic
Safety (AS) program for quantum gravity [14–16].

Summing, relativistically, all homogeneously distributed anti-gravity sources from every
galaxy or cluster of galaxies, we obtain a net effect on the cosmic expansion. This “sum” can be
performed adapting a Swiss-cheese model in which matching between the local and the cosmic
patches generates the observed recent passage from deceleration to acceleration.

In the last ten years, many cosmological models have been developed to explain DE.
Some of them are of a more geometric origin using geometric modifications of general
relativity, while some of them consider quantum effects and/or particle physics phenomena
and exotic fields. Several are mainly phenomenological solutions, while others are more
close to theoretical concrete models. Therefore, it is vital to evaluate all of them using
observational data [17,18].

The relevant criteria are how well they agree with the characteristics of the late expan-
sion of the universe. The features of the cosmic history can be revealed using supernovae,
SNIa [19], Gamma Ray Bursts (GRB) [20–23], or HII galaxies [24,25], as luminosity distance
estimators. An alternative method of testing is in using the angular diameter distance com-
ing from clusters or CMB sound horizon via Baryon Acoustic Oscillations (BAO) [26,27], or
in utilizing the CMB angular power spectrum [28]. Other probes of the characteristics of
the cosmic expansion are measures of the growth rate of matter perturbations. Galaxies are
also very good cosmic chronometers [17], and the observations of their growth rates [29]
provide knowledge that is independent of the implied cosmological model for the the
integral of the Hubble parameter H(z).

In [30,31], the cosmological model proposed in [7] was tested against observational
data sets: (1) measurements of the Hubble rate H(z), (2) Supernovae Ia (Pantheon data
set, (3) Quasi-Stellar-Objects (QSO), (4) Baryonic Acoustic Oscillations, and (5) direct
measurements of the CMB shift parameters. The result was that the model was in very
good agreement with the observations.

In the present work, we instead test the possibility of a more general scaling law for
the cosmological constant consistent with the presence of a deviation from the canonical
scaling, which we parametrize by means of an anomalous dimension η. In particular, we
tested the consistency of our model against the backdrop of LCDM cosmology with fiducial
values taken from the current observational best fits solutions.

There are two novelties in the present work. In [7], the authors used a phenomenological
term for Λ, while, here, we point out for the first time that this term can be interpreted as
an anomalous dimension due to quantum non-perturbative corrections. Furthermore, in the
present work, we analyze how sensitive the correct phenomenology of the late cosmology
is to the value of b. In [7], the authors claimed that there is no fine tuning in dimensionless
parameters. This, indeed, is true. The present paper proves thoroughly that we do not have
such fine tuning. We do not need a very precise value of b to obtain correct behavior.

The structure of the article is as follows: in Section 2, we present the theoretical aspects
of the Asymptotically Safe Swiss-cheese gravity. In Section 3, we discuss the observational
data sets that we employ along with our method and the corresponding results. Finally,
we summarize our conclusions in Section 4.

2. Swiss-Cheese Model and IR-Fixed Point Cosmology
2.1. Asymptotic Safety in UV and IR

In the Asymptotic Safety scenario, the UV behavior of gravity is ruled by a non-
perturbative fixed point of the renormalization group for quantum gravity [32,33].
The essential ingredient of this approach is the Effective Average Action, a Wilsonian
coarse-grained free energy dependent on an infrared momentum scale k, which defines an
effective field theory appropriate for the scale k. By construction, when evaluated at the
tree level, the Effective Average Action correctly describes all gravitational phenomena,
including all loop effects, if the typical momentum involved are of the order of k. When
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applied to the Einstein–Hilbert action, the ERG yields renormalization group flow equa-
tions, which have made possible detailed investigations of the scaling behavior of Newtons
constant at high energies.

The scenario emerging from these studies (see [34] for a recent discussion on the
AS scenario and its potential application) suggests that the theory could be consistently
defined in d = 4 at a nontrivial UV fixed point where the dimensionless Newton constant,
g(k) = G(k) k2 does not vanish in the k → ∞ limit. As a consequence, the dimensionful
Newton constant G(k) is antiscreened at high energies, as one would expect based on
the intuitive picture that the larger is the cloud of virtual particles, and the greater is the
effective mass seen by a distant observer [35].

Albeit, in the original formulation of the AS approach, the UV non-Gaussian fixed
point emerging in the UV at transplanckian energies to recover the continuum limit, it has
been realized that a non-perturbative IR fixed point at small k could solve the singular
behavior of the β-functions assuming that a sort of tree level renormalization could take
place at large distances, so that

G(k) = g∗/k2 Λ(k) = λ∗k2 (1)

for k → 0. Clearly, k should be considered not as a momentum flowing into a loop, but
as an inverse of a typical distance over which the averaging of the field variables is per-
formed. From this point of view, several works have discussed the possibility of interpreting
astrophysical data as an infrared effect of quantum gravity, relating k to a cosmic time [36],
or cosmic distance. In particular, in [7], the running scale k is connected with the typical
size of a galaxy or of a cluster of galaxies embedded in a Swiss-cheese cosmological model.
For this reason, this approach is closer in spirit to the scale identification proposed in [37–39].

In this work, we assume that there is no significant running of G at cosmological
scale [40]; however, we allow for the possibility of deviation from the canonical scaling in
the running of Λ. In particular, we set g∗/k2 ∼ constant and Λ(k) = λ∗k2−η where η is the
anomalous dimension [41]. As explained in [41], the varying behavior of the cosmological
constant is based on the instability induced renormalization triggered by the low energy
quantum fluctuations in a Universe with a positive cosmological constant. For η = 0, the
canonical (mean-field) scaling is recovered.

In the following, we write b ≡ 2− η, and b has to be determined by assuming an
underling best-fit ΛCDM cosmology.

2.2. AS Swiss-Cheese

This section provides a summary of the mathematical description of the AS inspired
Swiss-cheese cosmological model presented in [7]. The Swiss-cheese model or otherwise
called Einstein–Strauss model [42] describes a global homogeneous and isotropic metric, the
Universe, with many local Schwarzschild black hole metrics homogeneously distributed.
The geometrical covariant matching of the global metric as the exterior solution with a
local interior spherical solution happens across a spherical boundary that is proven to be at
a constant coordinate radius of the cosmological metric but at a spherical solution’s radius
evolving in time.

In more detail, we geometrically match the exterior background spacetime described
by a Friedmann-Lemaître-Robertson-Walker (FLRW) metric to an interior local black hole
metric. This happens on a spherical 3-surface, Σ, of constant coordinate radius in the FLRW
frame but time evolving in the Schwarzschild frame. The matching of the two solutions
makes use of the first fundamental form (intrinsic metric) and the second fundamental
form (extrinsic curvature), calculated in terms of the coordinates on Σ, on both sides [43].

In our case, we use, as a local solution, the AS-inspired corrected Schwarzschild–de
Sitter metric. This quantum improved Schwarzschild-de Sitter metric contains energy
dependent cosmological and Newton constants with the hope to describe fairly astrophysi-
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cal objects, such as clusters of galaxies. Thus, in the metric, there are energy dependent
Gk = G(k) ∼ GN , Λk = Λ(k) = λIR

∗ kb. So

ds2 = −
(

1− 2Gk M
R
− 1

3
ΛkR2

)
dT2 +

dR2

1− 2Gk M
R − 1

3 ΛkR2
+ R2 dΩ2 , (2)

where, now, both Newton’s constant Gk and the cosmological constant Λk are functions of
a characteristic scale k of the system determined by the quantum gravity theory in use.

The previous metric should be matched with a homogeneous and isotropic metric.
The cosmological metric is of the form

ds2 = −dt2 + a2(t)
[

dr2

1− κr2 + r2dΩ2
]

, (3)

where a(t) is the scale factor and κ = 0,±1 characterizes the spatial curvature and
dΩ2 =

(
dθ2 + sin2θ dϕ2) characterizes the metric of the two spheres.

We work on a 4-dimensional spacetime M and with a metric gµν. There is a time-like
hypersurface Σ that divides M into two regions. The hypersurface Σ has induced metric
hµν = gµν − nµnν, with nµ the unit normal vector to Σ pointing inwards. The extrinsic
curvature is given by Kµν = hκ

µhλ
ν nκ;λ. Covariant differentiation with respect to gµν is

denoted by the semicolon “;”. The formalism permits the use of different coordinate
systems on both sides of the hypersurface in Darmois–Israel junction conditions [44,45] .

Darmois–Israel junction conditions are the two conditions for smooth matching.
The matching conditions require the continuity of spacetime across Σ. The latter means a
continuity of the induced metric hij on Σ. The Darmois–Israel matching conditions also
demand the sum of the two extrinsic curvatures computed on the two sides of Σ to be zero.

The first fundamental form is the induced metric on Σ and is equal to

γαβ = gij
∂xi

∂uα

∂xj

∂uβ
, (4)

with uα = (u1 ≡ u, u2 ≡ v, u3 ≡ w) as the coordinate system on Σ while α, β take integer
values 1, . . . , 3, and english indices i , j run over 1, . . . , 4.
The second fundamental form is given by

Kαβ = ni;j
γαβ

gij
= (Γp

ijnp − ni,j)
∂xi

∂uα

∂xj

∂uβ
, (5)

where Γp
ij are the Christoffel symbols.

Note that the cosmic evolution through the Swiss-cheese is determined by the cosmic
evolution of the matching surface that is happening at the sphericial radius, in the black hole
frame, RS (and constant rΣ for the FLRW frame). This quantity enters the differential equations.
The subscript S is after Schucking, and the radius is called the Schucking RS radius.

The matching requirements provide the following equations for RS,

RS = arΣ (6)(dRS
dt

)2
= 1−κr2

Σ −
(

1− 2Gk M
RS

− 1
3

ΛkR2
S

)
(7)

2
d2RS
dt2 = −

d
(

1− 2Gk M
R − 1

3 ΛkR2
)

dR
|RS (8)

The matching radius rΣ can be understood as the boundary of the volume of the interior
solid with energy density equal to the cosmic matter density ρ. Thus, the interior energy
content should equal the mass M of the astrophysical object, i.e.,

rΣ =
1
a0

( 2GN M
Ωm0H2

0

)1
3

, (9)
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where the density parameter is Ωm = 8πGN ρ

3H2 = 2GN M
r3

Σa3 H2 and a0, in the following of the study,

is set to 1.
Equations (6)–(8) for constant Gk and Λk reduce to the conventional FLRW expan-

sion equations. However, although these equations generate the standard cosmological
equations of the ΛCDM model, even in this case the interpretation is different since the
Λ term appearing in the black hole metric (2) is like an average of all anti-gravity sources
inside the Schucking radius of a galaxy or cluster of galaxies. These antigravity sources
may arise inside astrophysical black holes in the centers of which the presence of a quan-
tum repulsive pressure could balance the attraction of gravity to avoid the not desired
singularity, or it may arise due to IR quantum corrections of a concrete quantum gravity
theory. Furthermore, for constant Gk and Λk, the coincidence problem is removed since the
large scale structure appeared recently.

2.3. Cosmic Acceleration and Coincidence Problem

The meaning of the quantity k is understood in a statistical-mechanical sense.
The role of the cutoff k is associated with the block-spin transformation, or Kadanoff
blocking, a technique used in lattice field theory and condensed matter [46]. The quan-
tity k is not related to a momentum exchanged in a scattering process of the RG scale
often used in dimensional regularization in effective field theory [47]. Assuming Fourier
transformability of the block-spin transformation, k is of the order of the inverse of the
lattice size. Several scaling behaviors for k have been proposed in astrophysical [48,49] and
cosmological contexts [50–53].

We use the approach in [7] where k has to be associated with a characteristic astro-
physical length scale L. Thus, k = ξ/L, with ξ is a dimensionless order-one number.
A first choice could be L to be the radial distance R from the center. However, this choice
proved to be not successful. In [7], we demonstrated that, for k = ξ/R, the behavior of the
coefficient of equation of dark energy state wDE is wrong.

There is, perhaps, a chance to obtain an acceptable behavior if one includes the
redshift dependence of the cluster mass; however, this remains to be shown. Another more
physically natural option and, at the same time, generating the correct phenomenology, is
to set, as L, the proper distance D > 0. With this choice, studies also showed a singularity
avoidance/smoothing [54–56].

The proper distance of a radial curve with dT = dθ = dϕ = 0 from R0 until R is
estimated by the formula

D(R) =
∫ R

R0

dR√
1− 2Gk M

R − 1
3 Λk(R)2

. (10)

As we already mentioned, the matching happens at the Schucking radius. This means
that the relevant value of k is kS = ξ/DS, where DS(RS) is the proper distance of the
Schucking radius.

Using Equations (6)–(8), it was shown that [7] the Hubble evolution is given by
the system

H2 = − κ

a2 +
2GN M
r3

Σa3
+

γξb

3Db
S

(11)

ḊS = rΣ a H

(
1− 2GN M

rΣa
−

γξbr2
Σa2

3Db
S

)−1/2

(12)

where γ = λIR
∗ and the variable DS is of geometrical nature with its own equation of

“motion” (time evolution).
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One can further prove that the expansion rate of the scale factor is given by

H2(z)
H2

0
= Ωm0(1+z)3 +

[
Ω
− 1

b
DE,0 −

3
1
b

ξγ̃
1
b
(GN H2

0)
1
b

rΣa0√
GN

z
1+z

]−b
+ Ωκ0(1+z)2 , (13)

where we have reparameterized γ to the dimensionless γ̃ = γ G1−b/2
N . The acceleration is

very well approximated, as before, as a function of z by the expression

ä
H2

0 a
= −1

2
Ωm0(1+z)3 +

[
Ω
− 1

b
DE,0 −

3
1
b

2ξγ̃
1
b
(GN H2

0)
1
b

rΣa0√
GN

b+2z
1+z

][
Ω
− 1

b
DE,0 −

3
1
b

ξγ̃
1
b
(GN H2

0)
1
b

rΣa0√
GN

z
1+z

]−1−b
. (14)

and the equation of the state parameter is

wDE =
[3

1
b−1

ξγ̃
1
b
(GN H2

0)
1
b

rΣa0√
GN

b+3z
1+z

−Ω
− 1

b
DE,0

][
Ω
− 1

b
DE,0 −

3
1
b

ξγ̃
1
b
(GN H2

0)
1
b

rΣa0√
GN

z
1+z

]−1
(15)

In the present study, we test Equations (13) and (15) against observations. The free
parameters are b, ξ, and γ̃. The values of ξ, and γ̃ are not known but are expected to be of
order O(1). The crucial one is b since it is related to the anomalous dimension that arises due to
non-perturbative quantum corrections, and thus the analysis will focus on this. The model does
not have many free parameters, and it is remarkable that it provides the correct phenomenology.

We chose the values of the free parameters as follows: One can choose any value of
order one for ξ and γ̃, and then b must have a value that ensures that the second term
and the third term of Equation (11) are almost equal. There must be a balance between
attraction and repulsion for low redshifts. Selecting other values for ξ and γ̃ changes
slightly the value of b for the correct phenomenology. Not only the proper distance today
DS,0 but also the whole function DS(z) remains for all observational tests for the range of
redshift z of the order of rΣ.

3. Methodology and Numerical Results

For the comparison of our model with ΛCDM cosmology, we consider a flat universe,
i.e., Ωk = 0. Therefore, the Hubble parameter in Equation (13) can be rewritten as,

H2(z) = H2
0

[
Ωm0(1+z)3 +

[
Ω
− 1

b
DE,0 −

3
1
b

ξγ̃
1
b
(GN H2

0)
1
b

rΣa0√
GN

z
1+z

]−b
]

(16)

In our analysis for comparing and estimating the optimal range for the free parameter of
our model, we assumed the best fit values of the involved parameters as fiducial values, this
includes Θ = {Ω0

m, H0, wDE} computed at their fiducial values Θfid = {0.315, 67.4, −1}.
The current observational best fit value of H0 is 67.4 Km s−1Mpc−1 adapted from the latest
CMB inferred constraints from the Planck collaboration [57] while dark energy equation of
state parameters are motivated from the baseline fiducial values of SNe Ia observations.

We chose Planck collaboration data, because it has been one of the most popular
cosmological probes, providing us the tightest constraints. However, there are also other
data coming from local observations that suggest somewhat different values [58].

Our expression of the Hubble parameter is a function of the b parameter apart from
the redshift (z). We analyzed our model to evaluate the allowed range of b to match the
observational results. While using Equation (16), we first designed our Swiss-cheese model
to model a typical cluster of galaxies with a Schwarzschild–de Sitter black hole. After, we
also comment about the matching at the galaxy scale.

Based on this assumptions, we chose the values of {γ̃, ξ} = [5.0, 9.0]. Further,
the matching radius (rΣ) was chosen to be 18 Mpc for the current epoch where a0 = 1.
For this, we considered a redshift range of z = [0–1.2] and computed the Hubble parameter
(H(z, b)) for a range of b for the entire redshift range. We chose the range of b = [0, 3.0].
We, then, computed the mean error for each b with the ΛCDM Hubble parameter. Based
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on the mean error values of b, we set two different cut off levels, [1%, 5%] to estimate the
range of b values that we would rate as permissible for application.

Additionally, we performed a parameter fitting analysis, to estimate the best fit b value
for the Hubble parameter. The best fit value obtained was b = 1.505∼1.5. We found that,
for keeping the overall residual deviation error between the two Hubble parameter values
to under the 1% level, the maximum permissible range of b was 2.08; whereas, if the error
level considered was up to a 5% margin, then the maximum b = 2.11. This is illustrated in
the two graphs that appear in Figure 1.

Figure 1. (Up): Comparison of H(z) between ΛCDM values and our model’s values with best fit
value of b = 1.505 and for b = 2.08, which corresponds to the maximum value of b for the residual
error as ≤ 1%. The error bars in the residue plot panel (and the grey highlighted zone), correspond
to the standard deviation in the respective redshift bin, computed from all the b values mentioned in
the main text. (Down): The same comparison, but for b = 2.11, which corresponds to the error limit
of ≤5%. The bottom panel in both the plots shows the corresponding residual plot.

Figure 2 shows the allowed b range within the specified error levels of 1% and 5%.
The margin of b obtained from these results are summarized in the Table 1 below.

Table 1. The upper limit of b for the corresponding permissible error margin computed from the
Hubble parameter estimates and Hubble constant and wDE,0 combined constraint.

Error % b (from H(z)) b (from H0 + wDE,0)

1 2.08 2.07
5 2.11 2.08
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Figure 2. (Up): 1% error. (Down): 5% error limit. The red line shows the error percentage against
the b value. The blue dashed horizontal line marks the two corresponding levels of error margin.
The grey shaded region marks the allowed range of b values for which the error level will be either
≤1% or ≤5%. The horizontal black dashed line marks the maximum limit of the b value. The thick
black horizontal line shows the best fit b value.

It is interesting to note that Equation (16) (i.e., for a flat universe), can be related to
Equation (15), and the combined expression is as follows,

H2(z) = H2
0

Ωm(1 + z)3 +

 wDE[
3(

1
b−1)

ξγ̃
1
b

(
GN H2

0
) 1

b rΣa0√
GN

b+3z
1+z −Ω

− 1
b

DE,0

]


b
 (17)

As a result, this allowed us to further check the consistency of the Hubble parameter
values as a function of b with the current value of the equation of the state parameter
wDE,0 = −0.95 obtained from our model, as mentioned before.

Based on the value of H(z), we made a best fit analysis with the H(z) from ΛCDM
expression, and obtained the b best fit. It is seen that, from comparing with the Hubble
parameter solely, the best fit obtained was b = 1.54. An intuitive check was performed
by comparing the H0 values with the wDE,0 values for a family of b values shown in
Figure 2. For b > 2.065 the observed value of H0 was closest to the current observed data
of H0 = 67.5 km s−1 Mpc−1. A detailed plot of the H0 permissible range as a function of
the b values is shown in Figure 3.
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1.100 1.075 1.050 1.025 1.000 0.975 0.950 0.925 0.900
wDE, 0

64

65

66

67

68

69

70

H
0

b = [0.01 2.08]Best Fit, H0(b = 1.54)
H0 = 67.5 km/s/Mpc
wDE, 0 = 0.95

1.00 0.98 0.96 0.94 0.92 0.90
wDE, 0

64.0

64.5

65.0

65.5

66.0

66.5

67.0

67.5

H
0

b < 1.54

b > 1.54
b = [0.01 2.08]

Best Fit, H0(b = 1.54)
H0 = 67.5 km/s/Mpc
wDE, 0 = 0.95

Figure 3. (Up): Value of H0 plotted against the current day wDE values for a family of b values.
The lines are demarcated into two broad groups, one b < 1.54 (coloured lines) the other b > 1.54 (grey
tone lines), separated by the b = 1.54 line, shown in broad black dashed line, which corresponds
to the best fit b value. (Down): A zoomed in plot of the left figure. The corresponding grey toned
lines (for b > 1.54 case) are shown in green tone lines here. We observed that, for low b values, the
evolution of the Hubble constant value at the present time had a minimum correlation to the current
dark energy parameter constraint. As b is increased, the tilt in the H0 − wDE,0 relation increases
toward a more positive correlation. The blue vertical dashed line marks the wDE,0 value from our
model. For very low values of b or for b > 2.065, the H0 values come closest to the current observed
H0 = 67.5 km/s/Mpc value.

3.1. b Constraint from wDE,0 and H0 Combination

Additionally, we checked the residual error on H0 with current observational value
while asserting the current dark energy equation of state wDE,0 value from our model,
i.e., wDE,0 = −0.95 in Equation (17). From this analysis, the minimum residual error
obtained corresponds to b = 2.065, and this is illustrated in the Figure 4.
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Figure 4. Residual plot of ∆H0 computed from the difference of 67.5 km/s/Mpc and H0 computed at
z = 0, wDE,0 = −0.95 from Equation (17) for a family of ‘b’ values. As seen, the red dot corresponding
to b ' 2.07 marks the point of the lowest residual. The blue and the red dashed horizontal lines mark
the 1% and 5% error levels and their corresponding b values.

Thus, we found that, in applying the joint constraints of dark energy wDE and the
Hubble constant H(z), we can arrive at a tighter requirement for the acceptable range of
values for b. Additionally, in Figure 5, we see that the best fit Swiss-cheese model H(z) is
in excellent agreement with the ΛCDM model.
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Figure 5. Plot showing the ratio between the Hubble parameter (H(z)) from our Swiss-cheese model
computed at the best fit value of b = 2.065 and the Hubble parameter corresponding to the LCDM
model for the redshift ranges of z = [0–2.4].

3.2. Observational Hubble Data

Finally, we match our theory with observational Hubble data (OHD) obtained from
two additional cosmic probe methods, the baryon acoustic oscillation (BAO) and the
cosmic chronometer, coupled across the redshift range of z = [0–2.4] in 40 redshift bins.
We derived the OHD data from [59], who constructed it from various BAO and cosmic
chronometer observational data mentioned therein [58,60–71]. Our model, at its best fit
‘b’ value, provides agreement to the observational data collected from the BAO and the
cosmic chronometers together as shown in Figure 6 across almost the entire redshift range.
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Figure 6. Plot of the best fit Hubble parameter value of our Swiss-cheese model, H(z, b = 2.065)
(green dashed) against the redshift binned OHD with their corresponding error bars (red) for z = [0–2.4].
The yellow margin represents the extent of the H(z, b) values of our model when b is varied between
0.01–3.0 across the full redshift range. The bottom plot shows the ratio of the error between the OHD
data (red in top panel) and the best fit Swiss-cheese data (green in top panel), i.e., δ(H) and the Hubble
parameter (green dots). The gray-shaded margin corresponds to the mean error level (∼0.07).

3.3. Matching at the Galaxy 0 Scale

Following the same method, we also studied the Swiss-cheese model with matching
at the galaxy scale. We found that the constraints were more relaxed at the galaxy level.
We used the corresponding parameter values {γ̃, ξ} = [5.0, 9.0], which are same as the cluster
Swiss-cheese model configuration but with a different matching radius, rΣ = 0.83 Mpc.

Carrying out a similar analysis (as shown in Figure 3) showed that the permissible
range for b was (0.01–2.13) for deviations with observational constraints at the <1% level,
while, for the 5% level, the upper limit of the constraint went up to 2.16 when considering
only Hubble constant constraints. When combined with the dark energy (wDE) constraint,
the corresponding margins for b were tightened slightly, as listed in Table 2.

Table 2. The same as in Table 1 but with the galaxy-based Swiss-cheese model.

Error % b (from H(z)) b (from H0 + wDE,0)

1 2.13 2.11
5 2.16 2.13

However, this second case of matching at the galactic scale is not a favorable one.
The reason is that Swiss-cheese modeling at the galaxy scale is a less-realistic description
since the astrophysical typical galactic length is not so close to the matching Shucking
radius as in the clusters of galaxies case.
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4. Conclusions

In this work, we studied the phenomenology of a recently proposed AS-inspired,
IR-fixed-point Swiss-cheese model [7]. In this model, a spatially homogeneous isotropic
universe is filled with a large number of quantum improved Schwarzschild–de-Sitter
black holes that are uniformly distributed throughout the space. Each such sphere can be
physically realized by an astrophysical object, such as a galaxy or a cluster of galaxies (with
its extended spherical halo).

The tests with observations consolidated the belief that the model is extremely well
behaved in terms of current observational fits when the free parameter b was set within
the proper range. We showed, using results from a combination of different cosmic probe
data, that, with the best fit b value, we could fit the observational data (in particular, the
Hubble parameter) to a very good agreement—one that can mimic the LCDM behavior to
the accuracy shown in the comparison plot in Figure 5. Fine tuning was not required.

In the future, it will be interesting to apply further constraints from upcoming future
survey data [72,73] and other probes, such as clustering, FRB [74], and gravitational
waves [75] and to examine the allowed range for the anomalous dimension η, which is
related to the free parameter b = 2− η in the model [7].

We successfully presented a strong case for an alternate model to the traditional
ΛCDM cosmology, which is consistent with our current observations and is well suited
to explain the recent cosmic acceleration and its coincidence problem in a minimal way
without an exotic field and without fine tuning or extra scales. The simplicity of this model
and its feasibility makes it a strong candidate for upcoming future surveys to further follow
up on this framework.

As a future work, it would be interesting to explore the phenomenological properties
of the AS-inspired Swiss-cheese IR-point cosmological model along the lines of [76–79] .
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