Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = IP-broadcasting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 3433 KiB  
Article
A Blockchain Network Communication Architecture Based on Information-Centric Networking
by Yufei Zhou, Rui Han and Yang Li
Appl. Sci. 2025, 15(6), 3340; https://doi.org/10.3390/app15063340 - 19 Mar 2025
Viewed by 654
Abstract
Blockchain technology, as a distributed ledger technology, is becoming increasingly popular in various fields. However, the performance limitations of blockchain networks hinder their further development. Existing research on optimizing blockchain communication mechanisms based on P2P networks is constrained by the end-to-end transmission principles [...] Read more.
Blockchain technology, as a distributed ledger technology, is becoming increasingly popular in various fields. However, the performance limitations of blockchain networks hinder their further development. Existing research on optimizing blockchain communication mechanisms based on P2P networks is constrained by the end-to-end transmission principles of TCP/IP networks, which lead to network congestion and bandwidth wastage during large-scale blockchain content distribution. Meanwhile, studies on ICN-based blockchain systems primarily focus on blockchain communication protocol implementation and compatibility within ICN/NDN networks. However, research on blockchain communication mechanisms in hybrid IP/ICN networking environments remains limited, failing to fully leverage ICN’s advantages to enhance the communication efficiency of existing blockchain P2P networks. To address this issue, this paper proposes BLOCK-ICN, an ICN-based blockchain network communication architecture compatible with IP networks. BLOCK-ICN enables ICN nodes with computing and storage capabilities to deploy blockchain applications, while maintaining compatibility with P2P networks. By leveraging ICN multicast technology, the architecture provides relay acceleration services for blockchain data dissemination. Specifically, in terms of network topology, BLOCK-ICN classifies network domains based on delay information provided by an enhanced resolution system and establishes select domain gateways based on data flow forwarding dependencies, thereby constructing a hierarchical and structured relay network topology. Regarding the broadcast protocol, ICN nodes perform parallel broadcasting via ICN multicast, and upon receiving messages, they further disseminate them to P2P nodes, reducing the overall network broadcast latency and bandwidth consumption. We extended SimBlock to implement and evaluate BLOCK-ICN. Simulation results demonstrated that, in a Bitcoin network with 16,000 nodes and an ICN node ratio of 1%, the broadcast delays for propagating blockchain data to 90% and 50% of the network were reduced by 25% and 33.2%, respectively, compared to Bitcoin. Full article
(This article belongs to the Special Issue Trends and Prospects for Wireless Sensor Networks and IoT)
Show Figures

Figure 1

31 pages, 10253 KiB  
Article
Enhancing Wireless Sensor Network in Structural Health Monitoring through TCP/IP Socket Programming-Based Mimic Broadcasting: Experimental Validation
by Srikulnath Nilnoree, Attaphongse Taparugssanagorn, Kamol Kaemarungsi and Tsukasa Mizutani
Appl. Sci. 2024, 14(8), 3494; https://doi.org/10.3390/app14083494 - 20 Apr 2024
Viewed by 5166
Abstract
This paper presents the implementation of a synchronous Structural Health Monitoring (SHM) framework utilizing wireless, low-cost, and off-the-shelf components. Vibration-based condition monitoring plays a crucial role in assessing the reliability of structural systems by detecting damage through changes in vibration parameters. The adoption [...] Read more.
This paper presents the implementation of a synchronous Structural Health Monitoring (SHM) framework utilizing wireless, low-cost, and off-the-shelf components. Vibration-based condition monitoring plays a crucial role in assessing the reliability of structural systems by detecting damage through changes in vibration parameters. The adoption of low-cost Micro-Electro-Mechanical Systems (MEMS) sensors in Wireless Sensor Networks (WSNs) has gained traction, emphasizing the need for precise time synchronization to schedule wake-up times of multiple sensor nodes for data collection. To address this challenge, our proposed method introduces a TCP/IP socket programming-based mimic broadcasting mechanism and a scalable sensing network controlled by a central gateway, leveraging the Raspberry Pi Python platform. The system operates using Internet of Things (IoT) concepts and adopts a star topology, where a packet is transmitted from the gateway to initiate measurements simultaneously on multiple sensor nodes. The sensor node comprises a MEMS accelerometer, a real time clock DS3231 module and Raspberry Pi Zero 2W (RPi0-2W), while the gateway employs a Raspberry Pi 4 (RPi4). To ensure accurate time synchronization, all Pi0-2W nodes were configured as Network Time Protocol (NTP) clients, synchronizing with an RPi4 server using chrony, the reliable implementation of the NTP. Through experimental evaluations, the system demonstrates its effectiveness and reliability in achieving initial time synchronization. This study addresses the challenge of achieving precise time alignment between sensor nodes through the utilization of the Dynamic Time Wrapping (DTW) method for Frequency Domain Decomposition (FDD) applications. The contribution of this research significantly enhances the field by improving the accuracy and reliability of time-aligned measurements, with a specific focus on utilizing low-cost sensors. By developing a practical and cost-effective SHM framework, this work advances the accessibility and scalability of structural health monitoring solutions, facilitating more widespread adoption and implementation in various engineering applications Full article
Show Figures

Figure 1

24 pages, 1131 KiB  
Article
Provisioning of Fog Computing over Named-Data Networking in Dynamic Wireless Mesh Systems
by Roman Glazkov, Dmitri Moltchanov, Srikathyayani Srikanteswara, Andrey Samuylov, Gabriel Arrobo, Yi Zhang, Hao Feng, Nageen Himayat, Marcin Spoczynski and Yevgeni Koucheryavy
Sensors 2024, 24(4), 1120; https://doi.org/10.3390/s24041120 - 8 Feb 2024
Cited by 2 | Viewed by 1549
Abstract
Fog computing is today considered a promising candidate to improve the user experience in dynamic on-demand computing services. However, its ubiquitous application would require support for this service in wireless multi-hop mesh systems, where the use of conventional IP-based solutions is challenging. As [...] Read more.
Fog computing is today considered a promising candidate to improve the user experience in dynamic on-demand computing services. However, its ubiquitous application would require support for this service in wireless multi-hop mesh systems, where the use of conventional IP-based solutions is challenging. As a complementary solution, in this paper, we consider a Named-Data Networking (NDN) approach to enable fog computing services in autonomous dynamic mesh formations. In particular, we jointly implement two critical mechanisms required to extend the NDN-based fog computing architecture to wireless mesh systems. These are (i) dynamic face management systems and (ii) a learning-based route discovery strategy. The former makes it possible to solve NDN issues related to an inability to operate over a broadcast medium. Also, it improves the data-link layer reliability by enabling unicast communications between mesh nodes. The learning-based forwarding strategy, on the other hand, efficiently reduces the amount of overhead needed to find routes in the dynamically changing mesh networks. Our numerical results show that, for static wireless meshes, our proposal makes it possible to fully benefit from the computing resources sporadically available up to several hops away from the consumer. Additionally, we investigate the impacts of various traffic types and NDN caching capabilities, revealing that the latter result in much better system performance while the popularity of the compute service contributes to additional performance gains. Full article
(This article belongs to the Special Issue Cloud/Edge/Fog Computing for Network and IoT)
Show Figures

Figure 1

18 pages, 477 KiB  
Article
Performance Analysis of Ambient Backscatter NOMA Systems
by Ce Zhang, Xinwei Yue, Yuanyuan Yao and Xuehua Li
Appl. Sci. 2023, 13(10), 6166; https://doi.org/10.3390/app13106166 - 18 May 2023
Cited by 1 | Viewed by 1813
Abstract
This paper analyzed the performance of an ambient-backscatter-(AmBC)-assisted non-orthogonal multiple access (NOMA) system, where a backscatter device (BD) broadcasts its signal to numerous users. More specifically, the realistic assumptions of imperfect successive interference cancellation (ipSIC) and residual hardware impairments (RHIs) for AmBC–NOMA systems [...] Read more.
This paper analyzed the performance of an ambient-backscatter-(AmBC)-assisted non-orthogonal multiple access (NOMA) system, where a backscatter device (BD) broadcasts its signal to numerous users. More specifically, the realistic assumptions of imperfect successive interference cancellation (ipSIC) and residual hardware impairments (RHIs) for AmBC–NOMA systems were taken into consideration. We further derived the closed-form and asymptotic expressions of outage probability for the BD and the d-th user. Based on the asymptotic expressions, the diversity orders of the BD and the d-th user were obtained in the high SNR regime. Furthermore, throughput and energy efficiency are further discussed for AmBC-assisted orthogonal multiple access (OMA) systems in the delay-limited transmission model. The numerical results revealed that: (i) AmBC–NOMA systems have the ability to achieve better outage behavior than AmBC–OMA; (ii) due to the existence of the backscatter link, the error floors of outage probability for the BD and the d-th user appear at a high signal-to-noise ratio; (iii) AmBC–NOMA systems are able to achieve higher energy efficiency and throughput than AmBC–OMA systems. Full article
Show Figures

Figure 1

16 pages, 1783 KiB  
Article
Improving Delivery Probability in Mobile Opportunistic Networks with Social-Based Routing
by Manuel Jesús-Azabal, José García-Alonso, Vasco N. G. J. Soares and Jaime Galán-Jiménez
Electronics 2022, 11(13), 2084; https://doi.org/10.3390/electronics11132084 - 2 Jul 2022
Cited by 12 | Viewed by 2939
Abstract
There are contexts where TCP/IP is not suitable for performing data transmission due to long delays, timeouts, network partitioning, and interruptions. In these scenarios, mobile opportunistic networks (MONs) are a valid option, providing asynchronous transmissions in dynamic topologies. These architectures exploit physical encounters [...] Read more.
There are contexts where TCP/IP is not suitable for performing data transmission due to long delays, timeouts, network partitioning, and interruptions. In these scenarios, mobile opportunistic networks (MONs) are a valid option, providing asynchronous transmissions in dynamic topologies. These architectures exploit physical encounters and persistent storage to communicate nodes that lack a continuous end-to-end path. In recent years, many routing algorithms have been based on social interactions. Smartphones and wearables are in vogue, applying social information to optimize paths between nodes. This work proposes Refine Social Broadcast (RSB), a social routing algorithm. RSB uses social behavior and node interests to refine the message broadcast in the network, improving the delivery probability while reducing redundant data duplication. The proposal combines the identification of the most influential nodes to carry the information toward the destination with interest-based routing. To evaluate the performance, RSB is applied to a simulated case of use based on a realistic loneliness detection methodology in elderly adults. The obtained delivery probability, latency, overhead, and hops are compared with the most popular social-based routers, namely, EpSoc, SimBet, and BubbleRap. RSB manifests a successful delivery probability, exceeding the second-best result (SimBet) by 17% and reducing the highest overhead (EpSoc) by 97%. Full article
(This article belongs to the Special Issue Emerging Trends, Issues and Challenges in Smart Cities)
Show Figures

Figure 1

14 pages, 1832 KiB  
Article
Vulnerability Analysis of LTE-R Train-to-Ground Communication Time Synchronization
by Yong Chen, Zhixian Zhan and Kaiyu Niu
Appl. Sci. 2022, 12(11), 5572; https://doi.org/10.3390/app12115572 - 30 May 2022
Cited by 2 | Viewed by 2591
Abstract
The time synchronization of LTE-R train-to-ground communication systems plays an important role in ensuring the safety of high-speed railways. In the LTE-R time synchronization process, existing problems, such as the time synchronization message broadcast address and LTE-R all-IP architecture, are vulnerable to attack. [...] Read more.
The time synchronization of LTE-R train-to-ground communication systems plays an important role in ensuring the safety of high-speed railways. In the LTE-R time synchronization process, existing problems, such as the time synchronization message broadcast address and LTE-R all-IP architecture, are vulnerable to attack. In order to analyze the impact of these problems, we propose a new vulnerability analysis method of LTE-R time synchronization based on stochastic Petri nets. Firstly, we construct a stochastic Petri net model of an LTE-R time synchronization process under attack. Secondly, steady-state probability expressions are obtained using the model isomorphism Markov chain. Finally, bychanging the firing rate of several key vulnerable nodes, the relationship curve between the firing rate and the steady-state probability of the clock node is obtained. Simulations show that the vulnerability of LTE-R time synchronization is most affected by the attack on eNodeB of the LTE-R base station. The results can provide a certain theoretical basis for the evolution of high-speed railway GSM-R communication systems to LTE-R. Full article
(This article belongs to the Topic IOT, Communication and Engineering)
Show Figures

Figure 1

21 pages, 1844 KiB  
Article
Minimizing the In-Cloud Bandwidth for On-Demand Reactive and Proactive Streaming Applications
by Achraf Gazdar, Lotfi Hidri, Belgacem Ben Youssef and Meriam Kefi
Appl. Sci. 2021, 11(23), 11267; https://doi.org/10.3390/app112311267 - 28 Nov 2021
Cited by 1 | Viewed by 2320
Abstract
Video streaming services are one of the most resource-consuming applications on the Internet. Thus, minimizing the consumed resources at runtime in general and the server/network bandwidth in particular are still challenging for researchers. Currently, most streaming techniques used on the Internet open one [...] Read more.
Video streaming services are one of the most resource-consuming applications on the Internet. Thus, minimizing the consumed resources at runtime in general and the server/network bandwidth in particular are still challenging for researchers. Currently, most streaming techniques used on the Internet open one stream per client request, which makes the consumed bandwidth increases linearly. Hence, many broadcasting/streaming protocols have been proposed in the literature to minimize the streaming bandwidth. These protocols can be divided into two main categories, namely, reactive and proactive broadcasting protocols. While the first category is recommended for streaming unpopular videos, the second category is recommended for streaming popular videos. In this context, in this paper we propose an enhanced version of the reactive protocol Slotted Stream Tapping (SST) called Share All SST (SASST), which we prove to further reduce the streaming bandwidth with regard to SST. We also propose a new proactive protocol named the New Optimal Proactive Protocol (NOPP) based on an optimal scheduling of video segments on streaming-channel. SASST and NOPP are to be used in cloud and CDN (content delivery network) networks where the IP multicast or multicast HTTP on QUIC could be enabled, as their key principle is to allow the sharing of ongoing streams among clients requesting the same video content. Thus, clients and servers are often services running on virtual machines or in containers belonging to the same cloud or CDN infrastructure. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

13 pages, 773 KiB  
Article
Scheduling for Media Function Virtualization
by Gourav Prateek Sharma, Wouter Tavernier, Didier Colle and Mario Pickavet
Future Internet 2021, 13(7), 167; https://doi.org/10.3390/fi13070167 - 28 Jun 2021
Cited by 1 | Viewed by 3135
Abstract
Broadcasters are building studio architectures based on commercial off-the-shelf (COTS) IT hardware because of advantages such as cost reduction, ease of management, and upgradation. Media function virtualization (MFV) leverages IP networking to transport media streams between virtual media functions (VMFs), where they are [...] Read more.
Broadcasters are building studio architectures based on commercial off-the-shelf (COTS) IT hardware because of advantages such as cost reduction, ease of management, and upgradation. Media function virtualization (MFV) leverages IP networking to transport media streams between virtual media functions (VMFs), where they are processed. Media service deployment in an MFV environment entails solving the VMF-FG scheduling problem to ensure that the required broadcast quality guarantees are fulfilled. In this paper, we formulate the VMF-FG scheduling problem and propose a greedy-based algorithm to solve it. The evaluation of the algorithm is carried in terms of the end-to-end delay and VMF queuing delay. Moreover, the importance of VMF-FG decomposition in upgradation to higher-quality formats is also highlighted. Full article
Show Figures

Figure 1

23 pages, 7073 KiB  
Article
OPMSS: Optimal Producer Mobility Support Solution for Named Data Networking
by Muktar Hussaini, Muhammad Ali Naeem and Byung-Seo Kim
Appl. Sci. 2021, 11(9), 4064; https://doi.org/10.3390/app11094064 - 29 Apr 2021
Cited by 21 | Viewed by 2916
Abstract
Named data networking (NDN) is designed as a clean-slate Internet architecture to replace the current IP Internet architecture. The named data networking was proposed to offer vast advantages, especially with the advent of new content distributions in IoT, 5G and vehicular networking. However, [...] Read more.
Named data networking (NDN) is designed as a clean-slate Internet architecture to replace the current IP Internet architecture. The named data networking was proposed to offer vast advantages, especially with the advent of new content distributions in IoT, 5G and vehicular networking. However, the architecture is still facing challenges for managing content producer mobility. Despite the efforts of many researchers that curtailed the high handoff latency and signaling overhead, there are still some prominent challenges, such as non-optimal routing path, long delay for data delivery and unnecessary interest packet losses. This paper proposed a solution to minimize unnecessary interest packet losses, delay and provide data path optimization when the mobile producer relocates by using mobility update, broadcasting and best route strategies. The proposed solution is implemented, evaluated and benchmarked with an existing Kite solution. The performance analysis result revealed that our proposed Optimal Producer Mobility Support Solution (OPMSS) minimizes the number of unnecessary interest packets lost on average by 30%, and an average delay of 25% to 30%, with almost equal and acceptable signaling overhead costs. Furthermore, it provides a better data packet delivery route than the Kite solution. Full article
Show Figures

Figure 1

13 pages, 2520 KiB  
Article
An Accelerating Approach for Blockchain Information Transmission Based on NDN
by Zhi-Peng Yang, Lu Hua, Ning-Jie Gao, Ru Huo, Jiang Liu and Tao Huang
Future Internet 2021, 13(2), 47; https://doi.org/10.3390/fi13020047 - 14 Feb 2021
Cited by 6 | Viewed by 3299
Abstract
Blockchain is becoming more and more popular in various fields. Since the information transmission mode of the blockchain is data broadcasting, the traditional TCP/IP network cannot support the blockchain system well, but the Named-Data Networking (NDN) could be a good choice because of [...] Read more.
Blockchain is becoming more and more popular in various fields. Since the information transmission mode of the blockchain is data broadcasting, the traditional TCP/IP network cannot support the blockchain system well, but the Named-Data Networking (NDN) could be a good choice because of its multi-path forwarding and intra-network caching functions. In this article, we propose a new blockchain information transmission acceleration strategy (AITS) combining with graph theory and probability theory based on the NDN architecture. We select some more important nodes in the network as “secondary nodes”, and give them more bandwidth and cache space to assist the NDN network in data transmission. In order to select the correct node as the secondary node, we present a method to calculate the number of secondary nodes, and give the function to calculate the importance of each node. The simulation results show that in complex networks, the proposed method has superior performance in accelerating information transmission and reducing data overhead. Full article
(This article belongs to the Special Issue The Next Blockchain Wave Current Challenges and Future Prospects)
Show Figures

Figure 1

15 pages, 3384 KiB  
Article
DASH Live Broadcast Traffic Model: A Time-Bound Delay Model for IP-Based Digital Terrestrial Broadcasting Systems
by Hyungyoon Seo and Goo Kim
Appl. Sci. 2021, 11(1), 247; https://doi.org/10.3390/app11010247 - 29 Dec 2020
Viewed by 2212
Abstract
This paper proposes a live broadcast traffic model for an internet protocol (IP)-based terrestrial digital broadcasting system to transmit dynamic adaptive streaming over hypertext transfer protocol (DASH) media. The IP-based terrestrial digital broadcasting systems such as Advanced Television Systems Committee (ATSC) 3.0 transmit [...] Read more.
This paper proposes a live broadcast traffic model for an internet protocol (IP)-based terrestrial digital broadcasting system to transmit dynamic adaptive streaming over hypertext transfer protocol (DASH) media. The IP-based terrestrial digital broadcasting systems such as Advanced Television Systems Committee (ATSC) 3.0 transmit media content (e.g., full high definition and ultra-high definition) in units of DASH segment files. Although the DASH segment file has the same quality and playback time, the size of each DASH segment file can vary according to the media composition. The transmission resource of the terrestrial broadcasting system has increased the transmission capacity of broadcasting with new technologies. However, the transmission capacity is still limited and fixed compared to wired broadcasting networks. Therefore, a problem occurs with the efficiency of broadcasting resources and transmission delay when transmitting a variable segment file to a terrestrial digital broadcasting network. In this paper, the resource efficiency and transmission delay results that occur when transmitting the actual DASH segment file are simulated through the live broadcast traffic model, and the maximum delay time that a viewer accessing the terrestrial broadcast can experience is presented. Full article
Show Figures

Figure 1

32 pages, 993 KiB  
Article
Energy-Efficient UAVs Deployment for QoS-Guaranteed VoWiFi Service
by Vicente Mayor, Rafael Estepa, Antonio Estepa and Germán Madinabeitia
Sensors 2020, 20(16), 4455; https://doi.org/10.3390/s20164455 - 10 Aug 2020
Cited by 16 | Viewed by 4241
Abstract
This paper formulates a new problem for the optimal placement of Unmanned Aerial Vehicles (UAVs) geared towards wireless coverage provision for Voice over WiFi (VoWiFi) service to a set of ground users confined in an open area. Our objective function is constrained by [...] Read more.
This paper formulates a new problem for the optimal placement of Unmanned Aerial Vehicles (UAVs) geared towards wireless coverage provision for Voice over WiFi (VoWiFi) service to a set of ground users confined in an open area. Our objective function is constrained by coverage and by VoIP speech quality and minimizes the ratio between the number of UAVs deployed and energy efficiency in UAVs, hence providing the layout that requires fewer UAVs per hour of service. Solutions provide the number and position of UAVs to be deployed, and are found using well-known heuristic search methods such as genetic algorithms (used for the initial deployment of UAVs), or particle swarm optimization (used for the periodical update of the positions). We examine two communication services: (a) one bidirectional VoWiFi channel per user; (b) single broadcast VoWiFi channel for announcements. For these services, we study the results obtained for an increasing number of users confined in a small area of 100 m2 as well as in a large area of 10,000 m2. Results show that the drone turnover rate is related to both users’ sparsity and the number of users served by each UAV. For the unicast service, the ratio of UAVs per hour of service tends to increase with user sparsity and the power of radio communication represents 14–16% of the total UAV energy consumption depending on ground user density. In large areas, solutions tend to locate UAVs at higher altitudes seeking increased coverage, which increases energy consumption due to hovering. However, in the VoWiFi broadcast communication service, the traffic is scarce, and solutions are mostly constrained only by coverage. This results in fewer UAVs deployed, less total power consumption (between 20% and 75%), and less sensitivity to the number of served users. Full article
(This article belongs to the Special Issue Communication in Networks of Unmanned Aerial Vehicles (UAVs))
Show Figures

Figure 1

18 pages, 682 KiB  
Article
LoRaWAN Gateway Placement Model for Dynamic Internet of Things Scenarios
by Nagib Matni, Jean Moraes, Helder Oliveira, Denis Rosário and Eduardo Cerqueira
Sensors 2020, 20(15), 4336; https://doi.org/10.3390/s20154336 - 4 Aug 2020
Cited by 47 | Viewed by 6747
Abstract
Extended Range Wide Area Network (LoRaWAN) has recently gained a lot of attention from the industrial and research community for dynamic Internet of Things (IoT) applications. IoT devices broadcast messages for neighbor gateways that deliver the message to the application server through an [...] Read more.
Extended Range Wide Area Network (LoRaWAN) has recently gained a lot of attention from the industrial and research community for dynamic Internet of Things (IoT) applications. IoT devices broadcast messages for neighbor gateways that deliver the message to the application server through an IP network. Hence, it is required to deploy LoRaWAN gateways, i.e., network planning, and optimization, in an environment while considering Operational Expenditure (OPEX) and Capital Expenditure (CAPEX) along with Quality of Service (QoS) requirements. In this article, we introduced a LoRaWAN gateway placement model for dynamic IoT applications called DPLACE. It divides the IoT devices into groups with some degree of similarity between them to allow for the placement of LoRaWAN gateways that can serve these devices in the best possible way. Specifically, DPLACE computes the number of LoRaWAN gateways based on the Gap statistics method. Afterward, DPLACE uses K-Means and Fuzzy C-means algorithms to calculate the LoRaWAN gateway placement. The simulations’ results proved the benefits of DPLACE compared to state-of-the-art LoRaWAN gateway placement models in terms of OPEX, CAPEX, and QoS. Full article
(This article belongs to the Special Issue LoRa Sensor Network)
Show Figures

Figure 1

26 pages, 613 KiB  
Article
Combinatorial Subset Difference—IoT-Friendly Subset Representation and Broadcast Encryption
by Jiwon Lee, Seunghwa Lee, Jihye Kim and Hyunok Oh
Sensors 2020, 20(11), 3140; https://doi.org/10.3390/s20113140 - 2 Jun 2020
Cited by 5 | Viewed by 3608
Abstract
In the Internet of Things (IoT) systems, it is often required to deliver a secure message to a group of devices. The public key broadcast encryption is an efficient primitive to handle IoT broadcasts, by allowing a user (or a device) to broadcast [...] Read more.
In the Internet of Things (IoT) systems, it is often required to deliver a secure message to a group of devices. The public key broadcast encryption is an efficient primitive to handle IoT broadcasts, by allowing a user (or a device) to broadcast encrypted messages to a group of legitimate devices. This paper proposes an IoT-friendly subset representation called Combinatorial Subset Difference (CSD), which generalizes the existing subset difference (SD) method by allowing wildcards (*) in any position of the bitstring. Based on the CSD representation, we first propose an algorithm to construct the CSD subset, and a CSD-based public key broadcast encryption scheme. By providing the most general subset representation, the proposed CSD-based construction achieves a minimal header size among the existing broadcast encryption. The experimental result shows that our CSD saves the header size by 17% on average and more than 1000 times when assuming a specific IoT example of IP address with 20 wildcards and 2 20 total users, compared to the SD-based broadcast encryption. We prove the semantic security of CSD-based broadcast encryption under the standard l-BDHE assumption, and extend the construction to a chosen-ciphertext-attack (CCA)-secure version. Full article
(This article belongs to the Special Issue Security and Privacy Techniques in IoT Environment)
Show Figures

Figure 1

18 pages, 1556 KiB  
Article
A Trusted Lightweight Communication Strategy for Flying Named Data Networking
by Ezedin Barka, Chaker Abdelaziz Kerrache, Rasheed Hussain, Nasreddine Lagraa, Abderrahmane Lakas and Safdar Hussain Bouk
Sensors 2018, 18(8), 2683; https://doi.org/10.3390/s18082683 - 15 Aug 2018
Cited by 55 | Viewed by 5245
Abstract
Flying Ad hoc Network (FANET) is a new resource-constrained breed and instantiation of Mobile Ad hoc Network (MANET) employing Unmanned Aerial Vehicles (UAVs) as communicating nodes. These latter follow a predefined path called ’mission’ to provide a wide range of applications/services. Without loss [...] Read more.
Flying Ad hoc Network (FANET) is a new resource-constrained breed and instantiation of Mobile Ad hoc Network (MANET) employing Unmanned Aerial Vehicles (UAVs) as communicating nodes. These latter follow a predefined path called ’mission’ to provide a wide range of applications/services. Without loss of generality, the services and applications offered by the FANET are based on data/content delivery in various forms such as, but not limited to, pictures, video, status, warnings, and so on. Therefore, a content-centric communication mechanism such as Information Centric Networking (ICN) is essential for FANET. ICN addresses the problems of classical TCP/IP-based Internet. To this end, Content-centric networking (CCN), and Named Data Networking (NDN) are two of the most famous and widely-adapted implementations of ICN due to their intrinsic security mechanism and Interest/Data-based communication. To ensure data security, a signature on the contents is appended to each response/data packet in transit. However, trusted communication is of paramount importance and currently lacks in NDN-driven communication. To fill the gaps, in this paper, we propose a novel trust-aware Monitor-based communication architecture for Flying Named Data Networking (FNDN). We first select the monitors based on their trust and stability, which then become responsible for the interest packets dissemination to avoid broadcast storm problem. Once the interest reaches data producer, the data comes back to the requester through the shortest and most trusted path (which is also the same path through which the interest packet arrived at the producer). Simultaneously, the intermediate UAVs choose whether to check the data authenticity or not, following their subjective belief on its producer’s behavior and thus-forth reducing the computation complexity and delay. Simulation results show that our proposal can sustain the vanilla NDN security levels exceeding the 80% dishonesty detection ratio while reducing the generated end-to-end delay to less than 1 s in the worst case and reducing the average consumed energy by more than two times. Full article
(This article belongs to the Special Issue Unmanned Aerial Vehicle Networks, Systems and Applications)
Show Figures

Figure 1

Back to TopTop