Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = III-IV semi-conductors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6533 KiB  
Article
An Improved Cascaded Boost Converter with an Ultra-High Voltage Gain Suitable for Dielectric Quality Tests
by Hossein Gholizadeh, Reza Sharifi Shahrivar, Saeed Amini and Tohid Rahimi
Energies 2024, 17(15), 3861; https://doi.org/10.3390/en17153861 - 5 Aug 2024
Cited by 4 | Viewed by 1579
Abstract
Dielectric quality tests require a high AC voltage with a frequency range of 0.0001 Hz to 1000 Hz. However, providing a high AC voltage with such a frequency variety is challenging. Providing a high DC voltage and then applying such a voltage to [...] Read more.
Dielectric quality tests require a high AC voltage with a frequency range of 0.0001 Hz to 1000 Hz. However, providing a high AC voltage with such a frequency variety is challenging. Providing a high DC voltage and then applying such a voltage to an inverter to adjust the frequency can be an acceptable solution for such a challenge. Notably, a high DC voltage is required for DC tests. This study proposes an improved form of the cascaded boost converter, whose merits are as follows: (i) the high voltage gain providing low duty cycles is possible; (ii) the input current is continuous, which decreases the current ripple of the input filter capacitor; (iii) the current stress of the semiconductors is less than the input current, and most of them have a large difference with it; (iv) the voltage stress of the semiconductors is less than the output voltage with a large difference; (v) only one switch with a simple drive circuit is used; (vi) the common ground of the load and input source decreases the EMI noise; (vii) besides the high voltage gain, the voltage density of the converter based on the number of inductors, capacitors, switches, diodes, and whole components is greater than that of the recently proposed converters; (viii) only two stacked connections of the proposed topology can provide a 2.6 kV voltage for a higher DC voltage test of dielectrics. The functional details of the converter are extracted in ideal and continuous conduction (CCM) modes. Moreover, the converter’s voltage gain and density are compared with the recently proposed converters to show the superiority of the proposed converter. Finally, the experimental results are presented to validate the theoretical relations in a 140 W output power. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

15 pages, 2205 KiB  
Article
Entropy Weighted TOPSIS Based Cluster Head Selection in Wireless Sensor Networks under Uncertainty
by Supriyan Sen, Laxminarayan Sahoo, Kalishankar Tiwary and Tapan Senapati
Telecom 2023, 4(4), 678-692; https://doi.org/10.3390/telecom4040030 - 3 Oct 2023
Cited by 3 | Viewed by 2580
Abstract
In recent decades, wireless sensor networks (WSNs) have become a popular ambient sensing and model-based solution for various applications. WSNs are now achievable due to the developments of micro electro mechanical and semiconductors logic circuits with rising computational power and wireless communication technology. [...] Read more.
In recent decades, wireless sensor networks (WSNs) have become a popular ambient sensing and model-based solution for various applications. WSNs are now achievable due to the developments of micro electro mechanical and semiconductors logic circuits with rising computational power and wireless communication technology. The most difficult issues concerning WSNs are related to their energy consumption. Since communication typically requires a significant amount of energy, there are some techniques/ways to reduce energy consumption during the operation of the sensor’s communication systems. The topology control technique is one such effective method for reducing WSNs’ energy usage. A cluster head (CH) is usually selected using a topology control technique known as clustering to control the entire network. A single factor is inadequate for CH selection. Additionally, with the traditional clustering method, each round exhibits a new batch of head nodes. As a result, when using conventional techniques, nodes decay faster and require more energy. Furthermore, the inceptive energy of nodes, the range between sensor nodes and base stations, the size of data packets, voltage and transmission energy measurements, and other factors linked to sensor nodes are also completely unexpected due to irregular or hazardous natural circumstances. Here, unpredictability represented by Triangular Fuzzy Numbers (TFNs). The associated parameters of nodes were converted into crisp ones via the defuzzification of fuzzy numbers. The fuzzy number has been defuzzified using the well-known signed distance approach. Here, we have employed a multi-criteria decision-making (MCDM) approach to choosing the CHs depending on a bunch of characteristics of each node (i) residual energy, (ii) the number of neighbors, (iii) distance from the sink, (iv) average distance of cluster node, (v) distance ratio, and (vi) reliability. This study used the entropy-weighted Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) approach to select the CH in WSNs. For experiments, we have used the NSG2.1 simulator, and based on six characteristics comprising residual energy, number of neighbor nodes, distance from the sink or base station (BS), average distance of cluster nodes, distance ratio, and reliability, optimal CHs have been selected. Finally, experimental results have been presented and compared graphically with the existing literature. A statistical hypothesis test has also been conducted to verify the results that have been provided. Full article
Show Figures

Figure 1

17 pages, 7526 KiB  
Article
Long-Term Oxidation Susceptibility in Ambient Air of the Semiconductor Kesterite Cu2ZnSnS4 Nanopowders Made by Mechanochemical Synthesis Method
by Katarzyna Lejda, Magdalena Ziąbka, Zbigniew Olejniczak and Jerzy Franciszek Janik
Materials 2023, 16(18), 6160; https://doi.org/10.3390/ma16186160 - 11 Sep 2023
Cited by 2 | Viewed by 1590
Abstract
The often overlooked and annoying aspects of the propensity of no-oxygen semiconductor kesterite, Cu2ZnSnS4, to oxidation during manipulation and storage in ambient air prompted the study on the prolonged exposure of kesterite nanopowders to air. Three precursor systems were [...] Read more.
The often overlooked and annoying aspects of the propensity of no-oxygen semiconductor kesterite, Cu2ZnSnS4, to oxidation during manipulation and storage in ambient air prompted the study on the prolonged exposure of kesterite nanopowders to air. Three precursor systems were used to make a large pool of the cubic and tetragonal polytypes of kesterite via a convenient mechanochemical synthesis route. The systems included the starting mixtures of (i) constituent elements (2Cu + Zn + Sn + 4S), (ii) selected metal sulfides and sulfur (Cu2S + ZnS + SnS + S), and (iii) in situ made copper alloys (from the high-energy ball milling of the metals 2Cu + Zn + Sn) and sulfur. All raw products were shown to be cubic kesterite nanopowders with defunct semiconductor properties. These nanopowders were converted to the tetragonal kesterite semiconductor by annealing at 500 °C under argon. All materials were exposed to the ambient air for 1, 3, and 6 months and were suitably analyzed after each of the stages. The characterization methods included powder XRD, FT-IR/UV-Vis/Raman/NMR spectroscopies, SEM, the determination of BET/BJH specific surface area and helium density (dHe), and direct oxygen and hydrogen-content analyses. The results confirmed the progressive, relatively fast, and pronounced oxidation of all kesterite nanopowders towards, mainly, hydrated copper(II) and zinc(II) sulfates, and tin(IV) oxide. The time-related oxidation changes were reflected in the lowering of the energy band gap Eg of the remaining tetragonal kesterite component. Full article
(This article belongs to the Special Issue Advanced Nanostructured Materials for Solar Energy Conversion)
Show Figures

Figure 1

17 pages, 2014 KiB  
Article
Heat Capacity and Thermodynamic Functions of Titanium-Manganites of Lanthanum, Lithium and Sodium of LaLi2TiMnO6 and LaNa2TiMnO6
by Bulat Kunurovich Kasenov, Shuga Bulatovna Kasenova, Zhenisgul Imangalievna Sagintaeva, Sailaubai Baisanov, Natalya Yulievna Lu, Altynbek Nukhuly and Erbolat Ermekovich Kuanyshbekov
Molecules 2023, 28(13), 5194; https://doi.org/10.3390/molecules28135194 - 4 Jul 2023
Cited by 4 | Viewed by 1356
Abstract
Titanium-manganites of LaLi2TiMnO6 and LaNa2TiMnO6 were synthesized by the methods of ceramic technology from the oxides of lanthanum, titanium (IV), manganese (III), and the carbonates of lithium and sodium. The types of their syngony and the parameters [...] Read more.
Titanium-manganites of LaLi2TiMnO6 and LaNa2TiMnO6 were synthesized by the methods of ceramic technology from the oxides of lanthanum, titanium (IV), manganese (III), and the carbonates of lithium and sodium. The types of their syngony and the parameters of their gratings were determined radiographically. The isobaric heat capacities of titanium-manganites were measured with experimental calorimetry in the range of 298.15–673 K. It was found that on the dependence curve of heat capacity versus temperature of C°p~f(T), for LaLi2TiMnO6 at 348 K and 598 K, and LaNa2TiMnO6 at 348 K, there are abnormal jumps in heat capacity, probably related to phase transitions of the second kind. Taking into account the temperatures of the phase transitions, the equations of the temperature dependence of the heat capacity of titanium-manganites were derived. Their standard entropies were calculated by the ion increments method. Temperature dependences of the thermodynamic functions of S°(T), H°(T)-H°(298.15), and Φxx(T) were calculated using the experimental data on heat capacities and the calculated values of the standard entropies. The standard heat capacities of the studied compounds were calculated by the independent methods of ion increments and Debye, the values of which were in satisfactory agreement with the experimental data. The standard enthalpy of the formation of LaLi2TiMnO6 and LaNa2TiMnO6 was calculated according to the methodology developed by the authors. The conducted electrophysical studies determined the nature of the second-order phase transition and the semiconductor features of their conductivity. Thus, all the above-mentioned data on the experimental and calculated studies of the temperature dependence of heat capacity, the thermodynamic functions to determine a standard enthalpy of formation of LaLi2TiMnO6 and LaNa2TiMnO6, and the investigation of their electrical properties are absolutely new, and they have no analogues. Full article
Show Figures

Figure 1

25 pages, 12066 KiB  
Review
A Review of Power Electronic Devices for Heavy Goods Vehicles Electrification: Performance and Reliability
by Olayiwola Alatise, Arkadeep Deb, Erfan Bashar, Jose Ortiz Gonzalez, Saeed Jahdi and Walid Issa
Energies 2023, 16(11), 4380; https://doi.org/10.3390/en16114380 - 28 May 2023
Cited by 12 | Viewed by 4218
Abstract
This review explores the performance and reliability of power semiconductor devices required to enable the electrification of heavy goods vehicles (HGVs). HGV electrification can be implemented using (i) batteries charged with ultra-rapid DC charging (350 kW and above); (ii) road electrification with overhead [...] Read more.
This review explores the performance and reliability of power semiconductor devices required to enable the electrification of heavy goods vehicles (HGVs). HGV electrification can be implemented using (i) batteries charged with ultra-rapid DC charging (350 kW and above); (ii) road electrification with overhead catenaries supplying power through a pantograph to the HGV powertrain; (iii) hydrogen supplying power to the powertrain through a fuel cell; (iv) any combination of the first three technologies. At the heart of the HGV powertrain is the power converter implemented through power semiconductor devices. Given that the HGV powertrain is rated typically between 500 kW and 1 MW, power devices with voltage ratings between 650 V and 1200 V are required for the off-board/on-board charger’s rectifier and DC-DC converter as well as the powertrain DC-AC traction inverter. The power devices available for HGV electrification at 650 V and 1.2 kV levels are SiC planar MOSFETs, SiC Trench MOSFETs, silicon super-junction MOSFETs, SiC Cascode JFETs, GaN HEMTs, GaN Cascode HEMTs and silicon IGBTs. The MOSFETs can be implemented with anti-parallel SiC Schottky diodes or can rely on their body diodes for third quadrant operation. This review examines the various power semiconductor technologies in terms of losses, electrothermal ruggedness under short circuits, avalanche ruggedness, body diode and conduction performance. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

85 pages, 23535 KiB  
Review
Application of Titanium Carbide MXenes in Chemiresistive Gas Sensors
by Elizaveta P. Simonenko, Nikolay P. Simonenko, Artem S. Mokrushin, Tatiana L. Simonenko, Philipp Yu. Gorobtsov, Ilya A. Nagornov, Ghenadii Korotcenkov, Victor V. Sysoev and Nikolay T. Kuznetsov
Nanomaterials 2023, 13(5), 850; https://doi.org/10.3390/nano13050850 - 24 Feb 2023
Cited by 40 | Viewed by 4264
Abstract
The titanium carbide MXenes currently attract an extreme amount of interest from the material science community due to their promising functional properties arising from the two-dimensionality of these layered structures. In particular, the interaction between MXene and gaseous molecules, even at the physisorption [...] Read more.
The titanium carbide MXenes currently attract an extreme amount of interest from the material science community due to their promising functional properties arising from the two-dimensionality of these layered structures. In particular, the interaction between MXene and gaseous molecules, even at the physisorption level, yields a substantial shift in electrical parameters, which makes it possible to design gas sensors working at RT as a prerequisite to low-powered detection units. Herein, we consider to review such sensors, primarily based on Ti3C2Tx and Ti2CTx crystals as the most studied ones to date, delivering a chemiresistive type of signal. We analyze the ways reported in the literature to modify these 2D nanomaterials for (i) detecting various analyte gases, (ii) improving stability and sensitivity, (iii) reducing response/recovery times, and (iv) advancing a sensitivity to atmospheric humidity. The most powerful approach based on designing hetero-layers of MXenes with other crystals is discussed with regard to employing semiconductor metal oxides and chalcogenides, noble metal nanoparticles, carbon materials (graphene and nanotubes), and polymeric components. The current concepts on the detection mechanisms of MXenes and their hetero-composites are considered, and the background reasons for improving gas-sensing functionality in the hetero-composite when compared with pristine MXenes are classified. We formulate state-of-the-art advances and challenges in the field while proposing some possible solutions, in particular via employing a multisensor array paradigm. Full article
(This article belongs to the Special Issue Two-Dimensional MXenes: Preparation, Properties and Applications)
Show Figures

Figure 1

17 pages, 3174 KiB  
Article
Bond-Orbital-Resolved Piezoelectricity in Sp2-Hybridized Monolayer Semiconductors
by Zongtan Wang, Yulan Liu and Biao Wang
Materials 2022, 15(21), 7788; https://doi.org/10.3390/ma15217788 - 4 Nov 2022
Viewed by 1944
Abstract
Sp2-hybridized monolayer semiconductors (e.g., planar group III-V and IV-IV binary compounds) with inversion symmetry breaking (ISB) display piezoelectricity governed by their σ- and π-bond electrons. Here, we studied their bond-orbital-resolved electronic piezoelectricity (i.e., the σ- and π-piezoelectricity). We formulated a tight-binding [...] Read more.
Sp2-hybridized monolayer semiconductors (e.g., planar group III-V and IV-IV binary compounds) with inversion symmetry breaking (ISB) display piezoelectricity governed by their σ- and π-bond electrons. Here, we studied their bond-orbital-resolved electronic piezoelectricity (i.e., the σ- and π-piezoelectricity). We formulated a tight-binding piezoelectric model to reveal the different variations of σ- and π-piezoelectricity with the ISB strength (Δ). As Δ varied from positive to negative, the former decreased continuously, but the latter increased piecewise and jumped at Δ=0 due to the criticality of the π-electrons’ ground-state geometry near this quantum phase-transition point. This led to a piezoelectricity predominated by the π-electrons for a small |Δ|. By constructing an analytical model, we clarified the microscopic mechanisms underlying the anomalous π-piezoelectricity and its subtle relations with the valley Hall effect. The validation of our models was justified by applying them to the typical sp2 monolayers including hexagonal silicon carbide, Boron-X (X = N, P, As, Ab), and a BN-doped graphene superlattice. Full article
(This article belongs to the Special Issue Metasurfaces Meet Two-Dimensional Materials)
Show Figures

Figure 1

14 pages, 6139 KiB  
Article
Multimode Design and Piezoelectric Substrate Anisotropy Use to Improve Performance of Acoustic Liquid Sensors
by Andrey Smirnov, Vladimir Anisimkin, Natalia Voronova, Elizaveta Shamsutdinova, Peng Li, Hamdi Ezzin, Zhenghua Qian, Tingfeng Ma and Iren Kuznetsova
Sensors 2022, 22(19), 7231; https://doi.org/10.3390/s22197231 - 23 Sep 2022
Cited by 9 | Viewed by 2669
Abstract
Using acoustic wave modes propagation in piezoelectric plates loaded with conductive liquids, peculiarities of the mode-liquid acoustoelectric interaction are studied. It is found that (i) in contrast to bulk and surface acoustic waves propagating in piezoelectric semiconductors, the acoustoelectric attenuation of the modes [...] Read more.
Using acoustic wave modes propagation in piezoelectric plates loaded with conductive liquids, peculiarities of the mode-liquid acoustoelectric interaction are studied. It is found that (i) in contrast to bulk and surface acoustic waves propagating in piezoelectric semiconductors, the acoustoelectric attenuation of the modes is not symmetric in respect to its maximum, (ii) a large increase in attenuation may be accompanied by a small decrease in phase velocity and vice versa, (iii) the peculiarities are valid for “pure” (without beam steering) and “not pure” (with beam steering) modes, as well as for modes of different orders and polarizations, and (iv) conductivity of test liquid increases electromagnetic leakage between input and output transducers, affecting results of the measurements. To decrease the leakage, the liquid should be localized between transducers, outside the zone over them. If so, the mode sensitivity may be as large as 8.6 dB/(S/m) for amplitude and 107°/(S/m) for phase. However, because of comparable cross-sensitivity towards viscosity and dielectric permittivity, modes with selective detection of liquid conductivity are not found. Full article
(This article belongs to the Special Issue Piezoelectric Resonator-Based Sensors)
Show Figures

Figure 1

47 pages, 3932 KiB  
Review
Recent Progress in Fabrication and Application of BN Nanostructures and BN-Based Nanohybrids
by Dmitry V. Shtansky, Andrei T. Matveev, Elizaveta S. Permyakova, Denis V. Leybo, Anton S. Konopatsky and Pavel B. Sorokin
Nanomaterials 2022, 12(16), 2810; https://doi.org/10.3390/nano12162810 - 16 Aug 2022
Cited by 65 | Viewed by 7024
Abstract
Due to its unique physical, chemical, and mechanical properties, such as a low specific density, large specific surface area, excellent thermal stability, oxidation resistance, low friction, good dispersion stability, enhanced adsorbing capacity, large interlayer shear force, and wide bandgap, hexagonal boron nitride ( [...] Read more.
Due to its unique physical, chemical, and mechanical properties, such as a low specific density, large specific surface area, excellent thermal stability, oxidation resistance, low friction, good dispersion stability, enhanced adsorbing capacity, large interlayer shear force, and wide bandgap, hexagonal boron nitride (h-BN) nanostructures are of great interest in many fields. These include, but are not limited to, (i) heterogeneous catalysts, (ii) promising nanocarriers for targeted drug delivery to tumor cells and nanoparticles containing therapeutic agents to fight bacterial and fungal infections, (iii) reinforcing phases in metal, ceramics, and polymer matrix composites, (iv) additives to liquid lubricants, (v) substrates for surface enhanced Raman spectroscopy, (vi) agents for boron neutron capture therapy, (vii) water purifiers, (viii) gas and biological sensors, and (ix) quantum dots, single photon emitters, and heterostructures for electronic, plasmonic, optical, optoelectronic, semiconductor, and magnetic devices. All of these areas are developing rapidly. Thus, the goal of this review is to analyze the critical mass of knowledge and the current state-of-the-art in the field of BN-based nanomaterial fabrication and application based on their amazing properties. Full article
(This article belongs to the Special Issue Boron Nitride-Based Nanomaterials)
Show Figures

Figure 1

11 pages, 4317 KiB  
Article
Thickness Effect on the Solid-State Reaction of a Ni/GaAs System
by Selma Rabhi, Nouredine Oueldna, Carine Perrin-Pellegrino, Alain Portavoce, Karol Kalna, Mohamed Cherif Benoudia and Khalid Hoummada
Nanomaterials 2022, 12(15), 2633; https://doi.org/10.3390/nano12152633 - 30 Jul 2022
Cited by 6 | Viewed by 2372
Abstract
Ni thin films with different thicknesses were grown on a GaAs substrate using the magnetron sputtering technique followed by in situ X-ray diffraction (XRD) annealing in order to study the solid-state reaction between Ni and GaAs substrate. The thickness dependence on the formation [...] Read more.
Ni thin films with different thicknesses were grown on a GaAs substrate using the magnetron sputtering technique followed by in situ X-ray diffraction (XRD) annealing in order to study the solid-state reaction between Ni and GaAs substrate. The thickness dependence on the formation of the intermetallic phases was investigated using in situ and ex situ XRD, pole figures, and atom probe tomography (APT). The results indicate that the 20 nm-thick Ni film exhibits an epitaxial relation with the GaAs substrate, which is (001) Ni//(001) GaAs and [111] Ni//[110] GaAs after deposition. Increasing the film’s thickness results in a change of the Ni film’s texture. This difference has an impact on the formation temperature of Ni3GaAs. This temperature decreases simultaneously with the thickness increase. This is due to the coherent/incoherent nature of the initial Ni/GaAs interface. The Ni3GaAs phase decomposes into the binary and ternary compounds xNiAs and Ni3−xGaAs1−x at about 400 °C. Similarly to Ni3GaAs, the decomposition temperature of the second phase also depends on the initial thickness of the Ni layer. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

12 pages, 2627 KiB  
Article
A Laser-Induced Photoelectrochemical Sensor for Natural Sweat Cu2+ Detection
by Shubo Zhang, Yanwen Liu, Juan Wang and Zhihong Liu
Chemosensors 2022, 10(5), 169; https://doi.org/10.3390/chemosensors10050169 - 2 May 2022
Cited by 9 | Viewed by 4223
Abstract
Tracking fluctuations in the Cu2+ level in sweat is meaningful for non-invasive and real-time assessment of Cu2+-abnormality-related diseases and provides important diagnostic information. However, the user-unfriendly ways to obtain sweat and sweat biofouling have limited the development of this field. [...] Read more.
Tracking fluctuations in the Cu2+ level in sweat is meaningful for non-invasive and real-time assessment of Cu2+-abnormality-related diseases and provides important diagnostic information. However, the user-unfriendly ways to obtain sweat and sweat biofouling have limited the development of this field. Herein, we exploit a highly sensitive photoelectrochemical (PEC) sensor as a detection method, a powerful laser engraving technique for the large-scale fabrication of laser-induced graphene and In-doped CdS (LIG-In-CdS) photoelectrodes, and a hydrophilic porous polyvinyl alcohol (PVA) hydrogel for natural sweat collection for fingertip touch sweat Cu2+ monitoring. The proposed sensor has several very attractive features: (i) the LIG-In-CdS photoelectrode with high photoelectric conversion efficiency can be produced by a cheap 450 nm semiconductor laser system; (ii) the sensor performs Cu2+ detection with a wide linear range of 1.28 ng/mL~5.12 μg/mL and good selectivity; (iii) the PVA hydrogel possesses an excellent antifouling effect ability and a rapid natural sweat collection ability; and (iv) the sensor exhibits feasibility and good reliability for PEC sensing of sweat Cu2+. Thus, these advantages endow the proposed method with a great deal of potential for smart monitoring of heavy metals in sweat in the future. Full article
Show Figures

Figure 1

37 pages, 23480 KiB  
Review
Engineering 2D Materials for Photocatalytic Water-Splitting from a Theoretical Perspective
by Mukesh Jakhar, Ashok Kumar, Pradeep K. Ahluwalia, Kumar Tankeshwar and Ravindra Pandey
Materials 2022, 15(6), 2221; https://doi.org/10.3390/ma15062221 - 17 Mar 2022
Cited by 68 | Viewed by 6854
Abstract
Splitting of water with the help of photocatalysts has gained a strong interest in the scientific community for producing clean energy, thus requiring novel semiconductor materials to achieve high-yield hydrogen production. The emergence of 2D nanoscale materials with remarkable electronic and optical properties [...] Read more.
Splitting of water with the help of photocatalysts has gained a strong interest in the scientific community for producing clean energy, thus requiring novel semiconductor materials to achieve high-yield hydrogen production. The emergence of 2D nanoscale materials with remarkable electronic and optical properties has received much attention in this field. Owing to the recent developments in high-end computation and advanced electronic structure theories, first principles studies offer powerful tools to screen photocatalytic systems reliably and efficiently. This review is organized to highlight the essential properties of 2D photocatalysts and the recent advances in the theoretical engineering of 2D materials for the improvement in photocatalytic overall water-splitting. The advancement in the strategies including (i) single-atom catalysts, (ii) defect engineering, (iii) strain engineering, (iv) Janus structures, (v) type-II heterostructures (vi) Z-scheme heterostructures (vii) multilayer configurations (viii) edge-modification in nanoribbons and (ix) the effect of pH in overall water-splitting are summarized to improve the existing problems for a photocatalytic catalytic reaction such as overcoming large overpotential to trigger the water-splitting reactions without using cocatalysts. This review could serve as a bridge between theoretical and experimental research on next-generation 2D photocatalysts. Full article
(This article belongs to the Special Issue Electronic Structure Theory of Low Dimensional Materials)
Show Figures

Figure 1

23 pages, 6397 KiB  
Article
Design and Implementation of a High Step-Up DC-DC Converter Based on the Conventional Boost and Buck-Boost Converters with High Value of the Efficiency Suitable for Renewable Application
by Tohid Rahimi, Md Rabiul Islam, Hossein Gholizadeh, Saeed Mahdizadeh and Ebrahim Afjei
Sustainability 2021, 13(19), 10699; https://doi.org/10.3390/su131910699 - 26 Sep 2021
Cited by 28 | Viewed by 4803
Abstract
This paper introduces a novel topology of the proposed converter that has these merits: (i) the topology of the converter is based on conventional boost and buck-boost converters, which has caused its simplicity; (ii) the voltage gain of the converter has provided higher [...] Read more.
This paper introduces a novel topology of the proposed converter that has these merits: (i) the topology of the converter is based on conventional boost and buck-boost converters, which has caused its simplicity; (ii) the voltage gain of the converter has provided higher values by the lower value of the duty cycle; (iii) due to the use of high-efficiency conventional topologies in its structure, the efficiency of the converter keeps its high value for a great interval of duty cycle; (iv) besides the increase of the voltage gain, the current/voltage stresses of the semiconductors have been kept low; (v) the continuous input current of this converter reduces the current stress of the capacitor in the input filter. It is worth noting that the proposed converter has been discussed in both ideal and non-ideal modes. Moreover, the operation of the converter has been discussed in both continuous/discontinuous current modes. The advantages of the converter have been compared with recently suggested converters. In addition, the different features of the converter have been discussed for different conditions. In the small-signal analysis, the appropriate compensator has been designed. Finally, the simulation and experimental results have been reported for 90 W output power, 90 V output voltage, 3-times voltage gain, and 100 kHz switching frequency. Full article
Show Figures

Figure 1

18 pages, 4729 KiB  
Article
Metal-Free g-C3N4/Nanodiamond Heterostructures for Enhanced Photocatalytic Pollutant Removal and Bacteria Photoinactivation
by Natalya Kublik, Luiz E. Gomes, Luiz F. Plaça, Thalita H. N. Lima, Thais F. Abelha, Julio A. P. Ferencz, Anderson R. L. Caires and Heberton Wender
Photochem 2021, 1(2), 302-318; https://doi.org/10.3390/photochem1020019 - 14 Sep 2021
Cited by 9 | Viewed by 4177
Abstract
Heterogeneous photocatalysis has emerged as a promising alternative for both micropollutant removal and bacterial inactivation under solar irradiation. Among a variety of photocatalysts explored in the literature, graphite carbon nitride (g-C3N4) is a metal-free semiconductor with acceptable chemical stability, [...] Read more.
Heterogeneous photocatalysis has emerged as a promising alternative for both micropollutant removal and bacterial inactivation under solar irradiation. Among a variety of photocatalysts explored in the literature, graphite carbon nitride (g-C3N4) is a metal-free semiconductor with acceptable chemical stability, low toxicity, and excellent cost-effectiveness. To minimize its high charge recombination rate and increase the photocatalyst adsorption capacity whilst keeping the metal-free photocatalyst system idea, we proposed the heterojunction formation of g-C3N4 with diamond nanocrystals (DNCs), also known as nanodiamonds. Samples containing different amounts of DNCs were assessed as photocatalysts for pollutant removal from water and as light-activated antibacterial agents against Staphylococcus sureus. The sample containing 28.3 wt.% of DNCs presented the best photocatalytic efficiency against methylene blue, removing 71% of the initial dye concentration after 120 min, with a pseudo-first-order kinetic and a constant rate of 0.0104 min−1, which is nearly twice the value of pure g-C3N4 (0.0059 min−1). The best metal-free photocatalyst was able to promote an enhanced reduction in bacterial growth under illumination, demonstrating its capability of photocatalytic inactivation of Staphylococcus aureus. The enhanced photocatalytic activity was discussed and attributed to (i) the increased adsorption capacity promoted by the presence of DNCs; (ii) the reduced charge recombination rate due to a type-II heterojunction formation; (iii) the enhanced light absorption effectiveness; and (iv) the better charge transfer resistance. These results show that g-C3N4/DNC are low-cost and metal-free photoactive catalysts for wastewater treatment and inactivation of bacteria. Full article
Show Figures

Graphical abstract

19 pages, 2774 KiB  
Review
A Review on Metastable Silicon Allotropes
by Linlin Fan, Deren Yang and Dongsheng Li
Materials 2021, 14(14), 3964; https://doi.org/10.3390/ma14143964 - 15 Jul 2021
Cited by 23 | Viewed by 4727
Abstract
Diamond cubic silicon is widely used for electronic applications, integrated circuits, and photovoltaics, due to its high abundance, nontoxicity, and outstanding physicochemical properties. However, it is a semiconductor with an indirect band gap, depriving its further development. Fortunately, other polymorphs of silicon have [...] Read more.
Diamond cubic silicon is widely used for electronic applications, integrated circuits, and photovoltaics, due to its high abundance, nontoxicity, and outstanding physicochemical properties. However, it is a semiconductor with an indirect band gap, depriving its further development. Fortunately, other polymorphs of silicon have been discovered successfully, and new functional allotropes are continuing to emerge, some of which are even stable in ambient conditions and could form the basis for the next revolution in electronics, stored energy, and optoelectronics. Such structures can lead to some excellent features, including a wide range of direct or quasi-direct band gaps allowed efficient for photoelectric conversion (examples include Si-III and Si-IV), as well as a smaller volume expansion as lithium-battery anode material (such as Si24, Si46, and Si136). This review aims to give a detailed overview of these exciting new properties and routes for the synthesis of novel Si allotropes. Lastly, the key problems and the developmental trends are put forward at the end of this article. Full article
Show Figures

Figure 1

Back to TopTop