Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = IEEE 802.11ax

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2906 KB  
Review
Human-Centered AI to Accelerate the SDGs: Evidence Map (2020–2024)
by Denise Helena Lombardo Ferreira, Bruno de Aguiar Normanha, Cibele Roberta Sugahara, Diego de Melo Conti, Cândido Ferreira da Silva Filho and Ernesto D. R. Santibanez-Gonzalez
Sustainability 2026, 18(1), 149; https://doi.org/10.3390/su18010149 - 23 Dec 2025
Viewed by 432
Abstract
Artificial Intelligence (AI) has gained prominence on sustainability agendas while raising ethical, social, and environmental challenges. This study synthesizes evidence and maps the scientific production on Human-Centered AI (HCAI) at the interface with the Sustainable Development Goals (SDGs) for 2020–2024. Searches in Scopus [...] Read more.
Artificial Intelligence (AI) has gained prominence on sustainability agendas while raising ethical, social, and environmental challenges. This study synthesizes evidence and maps the scientific production on Human-Centered AI (HCAI) at the interface with the Sustainable Development Goals (SDGs) for 2020–2024. Searches in Scopus and Web of Science (Boolean operators; thematic and temporal filters), followed by deduplication, yielded 265 articles, which were analyzed with Bibliometrix/Biblioshiny version 5.1.1 and VOSviewer version 1.6.20 (0) to generate term co-occurrence maps, collaboration networks, and bibliographic coupling. The results indicate accelerated growth and diffusion of the topic, with journals such as Sustainability, IEEE Access, and Applied Sciences standing out. Three interdependent axes were identified: (i) technical performance, with emphasis on machine learning and deep learning; (ii) explainability and human-centeredness (XAI, ethics, and algorithmic governance); and (iii) socio-environmental applications oriented toward the SDGs. Underrepresentation of the Global South, particularly Brazil, was observed. It is concluded that HCAI is being consolidated as an emerging interdisciplinary field with potential to accelerate the SDGs, although there remains a need to integrate ethical, regional, and impact-assessment dimensions more systematically to achieve global targets effectively. Full article
(This article belongs to the Section Development Goals towards Sustainability)
Show Figures

Figure 1

18 pages, 2031 KB  
Article
The Impact of Security Protocols on TCP/UDP Throughput in IEEE 802.11ax Client–Server Network: An Empirical Study
by Nurul I. Sarkar, Nasir Faiz and Md Jahan Ali
Electronics 2025, 14(19), 3890; https://doi.org/10.3390/electronics14193890 - 30 Sep 2025
Viewed by 1828
Abstract
IEEE 802.11ax (Wi-Fi 6) technologies provide high capacity, low latency, and increased security. While many network researchers have examined Wi-Fi security issues, the security implications of 802.11ax have not been fully explored yet. Therefore, in this paper, we investigate how security protocols (WPA2, [...] Read more.
IEEE 802.11ax (Wi-Fi 6) technologies provide high capacity, low latency, and increased security. While many network researchers have examined Wi-Fi security issues, the security implications of 802.11ax have not been fully explored yet. Therefore, in this paper, we investigate how security protocols (WPA2, WPA3) affect TCP/UDP throughput in IEEE 802.11ax client–server networks using a testbed approach. Through an extensive performance study, we analyze the effect of security on transport layer protocol (TCP/UDP), internet protocol layer (IPV4/IPV6), and operating systems (MS Windows and Linux) on system performance. The impact of packet length on system performance is also investigated. The obtained results show that WPA3 offers greater security, and its impact on TCP/UDP throughput is insignificant, highlighting the robustness of WPA3 encryption in maintaining throughput even in secure environments. With WPA3, UDP offers higher throughput than TCP and IPv6 consistently outperforms IPv4 in terms of both TCP and UDP throughput. Linux outperforms Windows in all scenarios, especially with larger packet sizes and IPv6 traffic. These results suggest that WPA3 provides optimized throughput performance in both Linux and MS Windows in 802.11ax client–server environments. Our research provides some insights into the security issues in Gigabit Wi-Fi that can help network researchers and engineers to contribute further towards developing greater security for next-generation wireless networks. Full article
Show Figures

Figure 1

24 pages, 5199 KB  
Article
Analysis and Proposal of Strategies for the Management of Drone Swarms Through Wi-Fi Technologies
by Guido Betcher-Sbrolla, Elena Lopez-Aguilera and Eduard Garcia-Villegas
Drones 2025, 9(8), 584; https://doi.org/10.3390/drones9080584 - 18 Aug 2025
Cited by 1 | Viewed by 2194
Abstract
The main purpose of this paper is to explore the benefits of combining two radio interfaces onboard an unmanned aerial vehicle (UAV) to communicate with a ground control station (GCS) and other UAVs inside a swarm. The goals are to use the IEEE [...] Read more.
The main purpose of this paper is to explore the benefits of combining two radio interfaces onboard an unmanned aerial vehicle (UAV) to communicate with a ground control station (GCS) and other UAVs inside a swarm. The goals are to use the IEEE 802.11ah standard (Wi-Fi HaLow) combined with the IEEE 802.11ax specification (Wi-Fi 6/6E) to enable real-time video transmission from UAVs to the GCS. While airport runway inspection serves as the proof-of-concept use case, the proposed multi-hop architectures apply to other medium-range UAV operations (i.e., a few kilometers) requiring real-time video transmission, such as natural disaster relief and agricultural monitoring. Several scenarios in which a UAV swarm performs infrastructure inspection are emulated. During the missions, UAVs have to send real-time video to the GCS through a multi-hop network when some damage in the infrastructure is found. The different scenarios are studied by means of emulation. Emulated scenarios are defined using different network architectures and radio technologies. Once the emulations finish, different performance metrics related to time, energy and the multi-hop video transmission network are analyzed. The capacity of a multi-hop network is a limiting factor for the transmission of high-quality video. As a first contribution, an expression to find this capacity from distances between UAVs in the emulated scenario is found using the NS-3 simulator. Then, this expression is applied in the algorithms in charge of composing the multi-hop network to offer on-demand quality video. However, the main contribution of this work lies in the development of efficient mechanisms for exchanging control information between UAVs and the GCS, and for forming a multi-hop network to transmit video. Full article
Show Figures

Figure 1

8 pages, 2885 KB  
Proceeding Paper
Resilient Time Dissemination Fusion Framework for UAVs for Smart Cities
by Sorin Andrei Negru, Triyan Pal Arora, Ivan Petrunin, Weisi Guo, Antonios Tsourdos, David Sweet and George Dunlop
Eng. Proc. 2025, 88(1), 5; https://doi.org/10.3390/engproc2025088005 - 17 Mar 2025
Viewed by 932
Abstract
Future smart cities will consist of a heterogeneous environment, including UGVs (Unmanned Ground Vehicles) and UAVs (Unmanned Aerial Vehicles), used for different applications such as last mile delivery. Considering the vulnerabilities of GNSS (Global Navigation System Satellite) in urban environments, a resilient PNT [...] Read more.
Future smart cities will consist of a heterogeneous environment, including UGVs (Unmanned Ground Vehicles) and UAVs (Unmanned Aerial Vehicles), used for different applications such as last mile delivery. Considering the vulnerabilities of GNSS (Global Navigation System Satellite) in urban environments, a resilient PNT (Position, Navigation, Timing) solution is needed. A key research question within the PNT community is the capability to deliver a robust and resilient time solution to multiple devices simultaneously. The paper is proposing an innovative time dissemination framework, based on IQuila’s SDN (Software Defined Network) and quantum random key encryption from Quantum Dice to multiple users. The time signal is disseminated using a wireless IEEE 802.11ax, through a wireless AP (Access point) which is received by each user, where a KF (Kalman Filter) is used to enhance the timing resilience of each client into the framework. Each user is equipped with a Jetson Nano board as CC (Companion Computer), a GNSS receiver, an IEEE 802.11ax wireless card, an embedded RTC (Real Time clock) system, and a Pixhawk 2.1 as FCU (Flight Control Unit). The paper is presenting the performance of the fusion framework using the MUEAVI (Multi-user Environment for Autonomous Vehicle Innovation) Cranfield’s University facility. Results showed that an alternative timing source can securely be delivered fulfilling last mile delivery requirements for aerial platforms achieving sub millisecond offset. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

20 pages, 8921 KB  
Article
A Survey of IEEE 802.11ax WLAN Temporal Duty Cycle for the Assessment of RF Electromagnetic Exposure
by Yizhen Yang, Günter Vermeeren, Leen Verloock, Mònica Guxens and Wout Joseph
Appl. Sci. 2025, 15(5), 2858; https://doi.org/10.3390/app15052858 - 6 Mar 2025
Viewed by 3722
Abstract
The increasing deployment of IEEE 802.11ax (Wi-Fi 6) networks necessitates an accurate assessment of radiofrequency electromagnetic field (RF-EMF) exposure under realistic usage scenarios. This study investigates the duty cycle (DC) and corresponding exposure levels of Wi-Fi 6 in controlled laboratory conditions, focusing on [...] Read more.
The increasing deployment of IEEE 802.11ax (Wi-Fi 6) networks necessitates an accurate assessment of radiofrequency electromagnetic field (RF-EMF) exposure under realistic usage scenarios. This study investigates the duty cycle (DC) and corresponding exposure levels of Wi-Fi 6 in controlled laboratory conditions, focusing on bandwidth variations, multi-user scenarios, and application types. DC measurements reveal significant variability across internet services, with FTP upload exhibiting the highest mean DC (94.3%) under 20 MHz bandwidth, while YouTube 4K video streaming showed bursts with a maximum DC of 89.2%. Under poor radio conditions, DC increased by up to 5× for certain applications, emphasizing the influence of degraded signal-to-noise ratio (SNR) on retransmissions and modulation. Weighted exposure results indicate a reduction in average electric-field strength by up to 10× when incorporating DC, with maximum weighted exposure at 4.2 V/m (6.9% of ICNIRP limits) during multi-user scenarios. These findings highlight the critical role of realistic DC assessments in refining exposure evaluations, ensuring regulatory compliance, and advancing the understanding of Wi-Fi 6’s EMF exposure implications. Full article
(This article belongs to the Special Issue Electromagnetic Radiation and Human Environment)
Show Figures

Figure 1

23 pages, 1378 KB  
Article
Design and Implementation of an Indoor Localization System Based on RSSI in IEEE 802.11ax
by Roberto Gaona Juárez, Abel García-Barrientos, Jesus Acosta-Elias, Enrique Stevens-Navarro, César G. Galván, Alessio Palavicini and Ernesto Monroy Cruz
Appl. Sci. 2025, 15(5), 2620; https://doi.org/10.3390/app15052620 - 28 Feb 2025
Cited by 7 | Viewed by 3602
Abstract
This article describes the design, implementation, and evaluation of an indoor localization system based on Received Signal Strength Indicator (RSSI) measurements in wireless sensor networks. While the majority of the literature uses the IEEE 802.15 standard for this type of system, all of [...] Read more.
This article describes the design, implementation, and evaluation of an indoor localization system based on Received Signal Strength Indicator (RSSI) measurements in wireless sensor networks. While the majority of the literature uses the IEEE 802.15 standard for this type of system, all of the measurements in this study were performed using a test bench operating under the IEEE 802.11ax standard in the 2.4 GHz band. RSSI is widely used due to its simplicity and availability; however, its accuracy is limited by signal attenuation, electromagnetic interference, and environmental variability. To mitigate these limitations, the present work proposes the implementation of advanced techniques, including weighted averages and positioning algorithms such as Min–Max, Maximum Likelihood, and trilateration, aiming to achieve an accuracy of 2 m in controlled conditions. The design also included a specialized test bench to calculate the coordinates and estimate the location of unknown nodes using anchor node positioning. This approach combines the simplicity of RSSI with optimized algorithms, providing a robust and practical solution for indoor localization. The results validate the system’s effectiveness and highlight its potential for future applications in real-world environments, opening new possibilities for optimizing wireless sensor networks and addressing the current challenges in localization systems. Full article
(This article belongs to the Special Issue Advances in Wireless Sensor Networks and Communication Technology)
Show Figures

Figure 1

33 pages, 629 KB  
Article
Enhancing Smart City Connectivity: A Multi-Metric CNN-LSTM Beamforming Based Approach to Optimize Dynamic Source Routing in 6G Networks for MANETs and VANETs
by Vincenzo Inzillo, David Garompolo and Carlo Giglio
Smart Cities 2024, 7(5), 3022-3054; https://doi.org/10.3390/smartcities7050118 - 17 Oct 2024
Cited by 13 | Viewed by 3127
Abstract
The advent of Sixth Generation (6G) wireless technologies introduces challenges and opportunities for Mobile Ad Hoc Networks (MANETs) and Vehicular Ad Hoc Networks (VANETs), necessitating a reevaluation of traditional routing protocols. This paper introduces the Multi-Metric Scoring Dynamic Source Routing (MMS-DSR), a novel [...] Read more.
The advent of Sixth Generation (6G) wireless technologies introduces challenges and opportunities for Mobile Ad Hoc Networks (MANETs) and Vehicular Ad Hoc Networks (VANETs), necessitating a reevaluation of traditional routing protocols. This paper introduces the Multi-Metric Scoring Dynamic Source Routing (MMS-DSR), a novel enhancement of the Dynamic Source Routing (DSR) protocol, designed to meet the demands of 6G-enabled MANETs and the dynamic environments of VANETs. MMS-DSR integrates advanced technologies and methodologies to enhance routing performance in dynamic scenarios. Key among these is the use of a CNN-LSTM-based beamforming algorithm, which optimizes beamforming vectors dynamically, exploiting spatial-temporal variations characteristic of 6G channels. This enables MMS-DSR to adapt beam directions in real time based on evolving network conditions, improving link reliability and throughput. Furthermore, MMS-DSR incorporates a multi-metric scoring mechanism that evaluates routes based on multiple QoS parameters, including latency, bandwidth, and reliability, enhanced by the capabilities of Massive MIMO and the IEEE 802.11ax standard. This ensures route selection is context-aware and adaptive to changing dynamics, making it effective in urban settings where vehicular and mobile nodes coexist. Additionally, the protocol uses machine learning techniques to predict future route performance, enabling proactive adjustments in routing decisions. The integration of dynamic beamforming and machine learning allows MMS-DSR to effectively handle the high mobility and variability of 6G networks, offering a robust solution for future wireless communications, particularly in smart cities. Full article
Show Figures

Figure 1

21 pages, 6032 KB  
Article
Experimental Investigation into Deploying a Wi-Fi6 Mesh System for Underground Gold and Platinum Mine Stopes
by Brenton Lloyd Chetty, Tom Mmbasu Walingo, Carel Phillip Kruger and Sherrin John Isaac
Mining 2024, 4(3), 567-587; https://doi.org/10.3390/mining4030032 - 17 Aug 2024
Cited by 1 | Viewed by 2827
Abstract
Stopes suffer from unreliable wireless communication due to their harsh environment. There is a lack of confidence within industry regarding the effectiveness of existing solutions in providing reliable high-bandwidth performance in hard rock stopes. This work proposes that Wi-Fi6 is a good candidate [...] Read more.
Stopes suffer from unreliable wireless communication due to their harsh environment. There is a lack of confidence within industry regarding the effectiveness of existing solutions in providing reliable high-bandwidth performance in hard rock stopes. This work proposes that Wi-Fi6 is a good candidate for reliable high-bandwidth communications in underground hard rock stopes. Experiments in a tunnel and mine stope were conducted to evaluate the performance of Wi-Fi6 in terms of latency, jitter, and throughput. Different criteria, such as multi-hop systems, varying multipath, mesh routing protocols, and frequencies at different bandwidths, were used to evaluate performance. The results show that Wi-Fi6 performance is greater in stopes compared to tunnels. Signal quality evaluations were conducted using the Asus RT-AX53U running OpenWrt, and an additional experiment was conducted on the nrf7002dk running Zephyr OS to evaluate the power consumption of Wi-Fi6 against the industry standard for low-powered wireless communications, IEEE 802.15.4. Wi-Fi6 was found to be more power-efficient than IEEE 802.15.4 for Mbps communications. These experiments highlight the signal robustness of Wi-Fi6 in stope environments and also highlights its low-powered nature. This work also highlights the performance of the two most widely used open-source mesh routing protocols for Wi-Fi. Full article
(This article belongs to the Topic Mining Innovation)
Show Figures

Figure 1

18 pages, 1729 KB  
Article
Novel Modification of Integrated Optimization Method for Sensor’s Communication in Wi-Fi Public Networks
by Sergey Kozlov and Elena Spirina
Sensors 2024, 24(5), 1395; https://doi.org/10.3390/s24051395 - 21 Feb 2024
Viewed by 1573
Abstract
A novel modification of IP networks integrated optimization method for heterogeneous networks, for example, the seamless Wi-Fi network serving simultaneously mobile users and wireless sensors, has been developed in this article. The mutual influence of signal reception, frequency-territorial planning, and routing procedures in [...] Read more.
A novel modification of IP networks integrated optimization method for heterogeneous networks, for example, the seamless Wi-Fi network serving simultaneously mobile users and wireless sensors, has been developed in this article. The mutual influence of signal reception, frequency-territorial planning, and routing procedures in heterogeneous networks have been analyzed in the case of simultaneous data transmission by both mobile users and wireless sensors. New principles for the listed procedures interaction and the basic functions for their describing are formulated. A novel modification of the integrated optimization method and its algorithm have been developed. The developed method's effectiveness has been analyzed for the IEEE 802.11ax network segment. Its result showed that the network load was decreased by an average of 20%, the data rate over the network as a whole increased for users and sensors by an average of 25% and 40%, respectively, and the sensors’ lifetime increased by an average of 20% compared to the novel modification of the Collective Dynamic Routing method. Full article
Show Figures

Figure 1

21 pages, 4523 KB  
Article
Spiral-Resonator-Based Frequency Reconfigurable Antenna Design for Sub-6 GHz Applications
by Duygu Nazan Gençoğlan, Şule Çolak and Merih Palandöken
Appl. Sci. 2023, 13(15), 8719; https://doi.org/10.3390/app13158719 - 28 Jul 2023
Cited by 22 | Viewed by 4146
Abstract
This paper presents a novel frequency reconfigurable antenna design for sub-6 GHz applications, featuring a unique combination of antenna elements and control mechanisms. The antenna is composed of an outer split-ring resonator loaded with an inner spiral resonator, which can be adjusted through [...] Read more.
This paper presents a novel frequency reconfigurable antenna design for sub-6 GHz applications, featuring a unique combination of antenna elements and control mechanisms. The antenna is composed of an outer split-ring resonator loaded with an inner spiral resonator, which can be adjusted through the remote control of PIN diode or Single Pole Double Throw (SPDT) switches. The compact antenna, measuring 22 × 16 × 1.6 mm3, operates in broadband, or tri-band mode depending on the ON/OFF states of switches. The frequency reconfigurability is achieved using two BAR64−02V PIN diodes or two CG2415M6 SPDT switches acting as RF switches. SPDT switches are controlled remotely via Arduino unit. Additionally, the antenna demonstrates an omni-directional radiation pattern, making it suitable for wireless communication systems. Experimental results on an FR-4 substrate validate the numerical calculations, confirming the antenna’s performance and superiority over existing alternatives in terms of compactness, wide operating frequency range, and cost-effectiveness. The proposed design holds significant potential for applications in Wi-Fi (IEEE 802.11 a/n/ac), Bluetooth (5 GHz), ISM (5 GHz), 3G (UMTS), 4G (LTE), wireless backhaul (4G and 5G networks), WLAN (IEEE 802.11 a/n/ac/ax), 5G NR n1 band, and Wi-Fi access points due to its small size and easy control mechanism. The antenna can be integrated into various devices, including access points, gateways, smartphones, and IoT kits. This novel frequency reconfigurable antenna design presents a valuable contribution to the field, paving the way for further advancements in wireless communication systems. Full article
(This article belongs to the Special Issue Antenna: Design Methodology, Optimization, and Technologies)
Show Figures

Figure 1

24 pages, 7210 KB  
Article
Real-Time Statistical Measurement of Wideband Signals Based on Software Defined Radio Technology
by Mirela Șorecău, Emil Șorecău, Annamaria Sârbu and Paul Bechet
Electronics 2023, 12(13), 2920; https://doi.org/10.3390/electronics12132920 - 3 Jul 2023
Cited by 12 | Viewed by 4375
Abstract
The increase in channel bandwidth and peak-to-average power ratio (PAPR) of modern communication standards poses a serious challenge to performing channel power (CP) and complementary cumulative distribution function (CCDF) measurements in real-time using standard measurement solutions based on spectrum analyzers (SA). Recently, Software [...] Read more.
The increase in channel bandwidth and peak-to-average power ratio (PAPR) of modern communication standards poses a serious challenge to performing channel power (CP) and complementary cumulative distribution function (CCDF) measurements in real-time using standard measurement solutions based on spectrum analyzers (SA). Recently, Software Defined Radio (SDR) technology has become a viable alternative to the conventional real-time spectrum monitoring approach based on SA due to its reduced cost. Therefore, in this paper, we propose a novel, innovative, agile and cost-effective solution to enable both CP and CCDF measurements on a state-of-the-art SDR platform. The proposed solution exploits the ability of the SDR equipment to access signal samples in the time domain and defines both CP and CCDF-type measurements. The two measurement functions are software implemented in GNU Radio by designing customized blocks and integrated into a graphical user interface. The proposed system was first tested and parameterized in a controlled environment using emitted signals specific to the IEEE 802.11ax family of wireless local area networks. After parameterization, the SDR-based system was used for over-the-air measurements of signals emitted in the 4G+, 5G and 802.11ax communication standards. By performing the measurement campaign, we have demonstrated the capabilities of the measurement system in performing real-time measurements on broadband channels (up to 160 MHz for IEEE 802.11ax). Altogether, we have proved the usability of CP and CCDF measurement functions in providing valuable insights into the power distribution characteristics of signals emitted by the latest communication standards. By exploiting the versatility of SDR technology, we have enabled a cost-effective solution for advanced real-time statistical measurements of modern broadband signals. Full article
(This article belongs to the Special Issue New Trends and Methods in Communication Systems)
Show Figures

Figure 1

18 pages, 2522 KB  
Article
Performance Analysis of QoS-Oriented OFDMA Protocol Based on IEEE 802.11ax for Cognitive Radio Network
by Suoping Li, Hailing Yang, Ruiman Gao, Tongtong Jia and Hongli Li
Appl. Sci. 2023, 13(12), 7163; https://doi.org/10.3390/app13127163 - 15 Jun 2023
Cited by 1 | Viewed by 1963
Abstract
To improve the quality of service (QoS) on the internet of medical things, a cognitive radio (CR) protocol based on orthogonal frequency division multiple access (OFDMA) is proposed, named CR-OFDMA. In this protocol, we divide a complete channel into multiple orthogonal subchannels and [...] Read more.
To improve the quality of service (QoS) on the internet of medical things, a cognitive radio (CR) protocol based on orthogonal frequency division multiple access (OFDMA) is proposed, named CR-OFDMA. In this protocol, we divide a complete channel into multiple orthogonal subchannels and enhance the subchannel assignment scheme, which achieves QoS improvement under consideration of priority and fairness. Furthermore, we improve spectrum resource utilization by fully utilizing the remaining subchannels, feedback slots, and backoff slots. Then, a two-dimensional Markov model is established to describe the dynamic characteristics of the protocol operation, where the backoff stage and the backoff counter value constitute the system state. By establishing the traffic conservation equations for the system operation, the transmission probability and collision probability are calculated, and expressions of system throughput, channel utilization, and fairness index are derived. Finally, numerical results validate the advantages of CR-OFDMA. Full article
(This article belongs to the Special Issue 5G/6G Mechanisms, Services, and Applications)
Show Figures

Figure 1

34 pages, 1711 KB  
Article
An Analysis of the Mixed IEEE 802.11ax Wireless Networks in the 5 GHz Band
by Marek Natkaniec and Natalia Bieryt
Sensors 2023, 23(10), 4964; https://doi.org/10.3390/s23104964 - 22 May 2023
Cited by 8 | Viewed by 9016
Abstract
This paper presents an analysis of the IEEE 802.11ax networks’ coexistence with legacy stations, namely IEEE 802.11ac, IEEE 802.11n, and IEEE 802.11a. The IEEE 802.11ax standard introduces several new features that can enhance network performance and capacity. The legacy devices that do not [...] Read more.
This paper presents an analysis of the IEEE 802.11ax networks’ coexistence with legacy stations, namely IEEE 802.11ac, IEEE 802.11n, and IEEE 802.11a. The IEEE 802.11ax standard introduces several new features that can enhance network performance and capacity. The legacy devices that do not support these features will continue to coexist with newer devices, creating a mixed network environment. This usually leads to a deterioration in the overall performance of such networks; therefore, in the paper, we want to show how we can reduce the negative impact of legacy devices. In this study, we investigate the performance of mixed networks by applying various parameters to both the MAC and PHY layers. We focus on evaluating the impact of the BSS coloring mechanism introduced to the IEEE 802.11ax standard on network performance. We also examine the impact of A-MPDU and A-MSDU aggregations on network efficiency. Through simulations, we analyze the typical performance metrics such as throughput, mean packet delay, and packet loss of mixed networks with different topologies and configurations. Our findings indicate that implementing the BSS coloring mechanism in dense networks can increase throughput by up to 43%. We also show that the presence of legacy devices in the network disrupts the functioning of this mechanism. To address this, we recommend using an aggregation technique, which can improve throughput by up to 79%. The presented research revealed that it is possible to optimize the performance of mixed IEEE 802.11ax networks. Full article
(This article belongs to the Special Issue Recent Advances in Mobile and Wireless Communication Networks)
Show Figures

Figure 1

18 pages, 6459 KB  
Article
Minkowski–Sierpinski Fractal Structure-Inspired 2 × 2 Antenna Array for Use in Next-Generation Wireless Systems
by Arshad Karimbu Vallappil, Bilal A. Khawaja, Mohamad Kamal A. Rahim, Muhammad Uzair, Mohsin Jamil and Qasim Awais
Fractal Fract. 2023, 7(2), 158; https://doi.org/10.3390/fractalfract7020158 - 5 Feb 2023
Cited by 16 | Viewed by 3643
Abstract
In this paper, the design, simulation, fabrication, and characterization study of a low-cost and directional hybrid four-element (2 × 2 configuration) Minkowski–Sierpinski fractal antenna array (MSFAA) for the high-efficiency IEEE 802.11ax WLANs (Wi-Fi 6E) and the sub-6 GHz 5G wireless system is presented. [...] Read more.
In this paper, the design, simulation, fabrication, and characterization study of a low-cost and directional hybrid four-element (2 × 2 configuration) Minkowski–Sierpinski fractal antenna array (MSFAA) for the high-efficiency IEEE 802.11ax WLANs (Wi-Fi 6E) and the sub-6 GHz 5G wireless system is presented. Each element of the array is separated by 0.7 λ0. The complete four-element fractal antenna array system includes designing the single-element Minkowski–Sierpinski fractal antenna using two different substrates for performance comparison and an equal-split Wilkinson power divider (WPD) to achieve power division and to form a feed network. The single-element antenna, four-element fractal antenna array, and WPDs are fabricated using a flame-resistant (FR4) glass epoxy substrate with a dielectric constant (εr) of 4.3 and thickness (h) of 1.66 mm. For performance comparison, a high-end Rogers thermoset microwave material (TMM4) substrate is also used, having εr = 4.5 and h = 1.524mm, respectively. The designed four-element fractal antenna array operates at the dual-band frequencies of 4.17 and 5.97 GHz, respectively. The various performance parameters of the antenna array, such as return loss, bandwidth, gain, and 2D and 3D radiation patterns, are analyzed using CST Microwave Studio. The fabricated four-element antenna array provides the bandwidth and gain characteristic of 85 MHz/4.19 dB and 182 MHz/9.61 dB at 4.17 and 5.97 GHz frequency bands, respectively. The proposed antenna array design gives an improvement in the bandwidth, gain, and radiation pattern in the boresight at both frequencies. In the IEEE 802.11 ax WLANs (Wi-Fi 6E) deployments and the upcoming 5G wireless and satellite communication systems, it is critical to have directional antenna arrays to focus the radiated power in any specific direction. Therefore, it is believed that the proposed dual-band four-element fractal antenna array with directional radiation patterns can be an ideal candidate for the high-efficiency IEEE 802.11ax WLANs (Wi-Fi 6E) and the upcoming 5G wireless and satellite communication systems. Full article
Show Figures

Figure 1

25 pages, 1529 KB  
Review
Review and Comparison of Genetic Algorithm and Particle Swarm Optimization in the Optimal Power Flow Problem
by Georgios Papazoglou and Pandelis Biskas
Energies 2023, 16(3), 1152; https://doi.org/10.3390/en16031152 - 20 Jan 2023
Cited by 153 | Viewed by 14944
Abstract
Metaheuristic optimization techniques have successfully been used to solve the Optimal Power Flow (OPF) problem, addressing the shortcomings of mathematical optimization techniques. Two of the most popular metaheuristics are the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The literature surrounding GA and [...] Read more.
Metaheuristic optimization techniques have successfully been used to solve the Optimal Power Flow (OPF) problem, addressing the shortcomings of mathematical optimization techniques. Two of the most popular metaheuristics are the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The literature surrounding GA and PSO OPF is vast and not adequately organized. This work filled this gap by reviewing the most prominent works and analyzing the different traits of GA OPF works along seven axes, and of PSO OPF along four axes. Subsequently, cross-comparison between GA and PSO OPF works was undertaken, using the reported results of the reviewed works that use the IEEE 30-bus network to assess the performance and accuracy of each method. Where possible, the practices used in GA and PSO OPF were compared with literature suggestions from other domains. The cross-comparison aimed to act as a first step towards the standardization of GA and PSO OPF, as it can be used to draw preliminary conclusions regarding the tuning of hyper-parameters of GA and PSO OPF. The analysis of the cross-comparison results indicated that works using both GA and PSO OPF offer remarkable accuracy (with GA OPF having a slight edge) and that PSO OPF involves less computational burden. Full article
Show Figures

Figure 1

Back to TopTop