Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,687)

Search Parameters:
Keywords = Hydrophobic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2588 KB  
Article
Effect of Drying Methods on the Morphological and Functional Properties of Cellulose Ester Films
by Tanuj Kattamanchi, Heikko Kallakas, Elvira Tarasova, Percy Festus Alao, Tiit Kaljuvee, Arvo Mere, Atanas Katerski, Rünno Lõhmus, Andres Krumme and Jaan Kers
Polymers 2025, 17(22), 3026; https://doi.org/10.3390/polym17223026 - 14 Nov 2025
Abstract
This study presents the synthesis and characterisation of cellulose long chain fatty acid ester films using a novel distillable ionic liquid (IL), 5-methyl-1,5,7-triaza-bicyclo-[4.3.0] non-6-enium acetate [mTBNH][OAc] in combination with DMSO as a cosolvent. The cellulose esters cellulose diacetate (CDA), cellulose laurate (CL), and [...] Read more.
This study presents the synthesis and characterisation of cellulose long chain fatty acid ester films using a novel distillable ionic liquid (IL), 5-methyl-1,5,7-triaza-bicyclo-[4.3.0] non-6-enium acetate [mTBNH][OAc] in combination with DMSO as a cosolvent. The cellulose esters cellulose diacetate (CDA), cellulose laurate (CL), and cellulose palmitate (CP) were fabricated through an evaporation-induced phase separation method (EIPS) and dried under two conditions: conventional oven drying (RO) and vacuum oven drying (VO). The influence of drying conditions on the structural, thermal, and surface properties of the films was evaluated using XRD, TGA, SEM, AFM, and contact angle measurement techniques. XRD confirmed an amorphous structure in all films, with no significant effect on the drying conditions. TGA revealed consistent thermal degradation profiles across all samples, with ester group decomposition accruing between 140 and 250 °C and main cellulose backbone degradation near 350 °C. The SEM cross-section showed a uniform film, devoid of cavities and layered structures. AFM analysis demonstrated that VO-dried films had smoother surfaces compared to RO-dried films, correlating with increased contact angles and enhanced hydrophobicity. A strong inverse relationship between surface roughness and hydrophobicity was observed, particularly in VO-dried samples, although this was not statistically significant due to data variability. Overall, the drying method had minimal impact on the internal structure and thermal stability; it significantly influenced surface morphology and wettability. Full article
Show Figures

Figure 1

24 pages, 3287 KB  
Article
Optimizing Postharvest Edible Coatings for Fruit and Vegetables with Plant-Based Polysaccharides
by Marcos D. Ferreira, Luís E. De S. Vitolano, Fernanda R. Procopio, Ramon Peres Brexó, Larissa G. R. Duarte, Pedro H. B. Nogueira, Vitor P. Bandini, Milene C. Mitsuyuki and Elaine C. Paris
Foods 2025, 14(22), 3897; https://doi.org/10.3390/foods14223897 - 14 Nov 2025
Abstract
Polysaccharide-based edible coatings are increasingly explored as sustainable strategies for maintaining quality of fresh produce, acting as barriers to gas exchange while improving mechanical and optical properties. However, their effectiveness depends not only on the intrinsic features but also on the structural and [...] Read more.
Polysaccharide-based edible coatings are increasingly explored as sustainable strategies for maintaining quality of fresh produce, acting as barriers to gas exchange while improving mechanical and optical properties. However, their effectiveness depends not only on the intrinsic features but also on the structural and physiological diversity of fruits and vegetables, which vary in peel composition, hydrophobicity, and texture. This study investigated plant-derived polysaccharide films (cassava starch, potato starch, corn starch, carboxymethylcellulose, hydroxypropylmethylcellulose, and pectin) characterized for moisture resistance, solubility, permeability, thermal stability, hydrophilicity, opacity, gloss, and mechanical strength. Concurrently, different fruits and vegetables (fruit, root, and tubers) were analyzed for their surface hydrophilicity to establish correlations between film properties and peel characteristics. The findings emphasize that no single polymer can be universally applied. In addition, the choice of matrix must be guided by both film functionality and produce surface traits. Starch-based films presented high hydrophilicity, suggesting better wettability, while pectin and cellulose derivatives presented distinct advantages for less hydrophilic peels. This work highlights the importance of tailoring edible coatings according to the physicochemical compatibility between films and fresh produce surfaces, providing insights for improving post-harvest preservation strategies and guiding the development of effective, sustainable coatings for diverse horticultural commodities. Full article
Show Figures

Figure 1

14 pages, 1661 KB  
Article
On the Hydrophobicity, Superhydrophobicity and Icephobicity of Etched Aluminum Surfaces
by Marcella Balordi, Andrea Cammi, Alessandro Casali, Francesco Pini and Giorgio Santucci de Magistris
Coatings 2025, 15(11), 1328; https://doi.org/10.3390/coatings15111328 - 14 Nov 2025
Abstract
Several hydrophobic and superhydrophobic aluminum surfaces were prepared with a three-step process that includes chemical etching, a treatment in hot water and a further coating with fluoroalkysiloxane (FAS). By varying the concentration of the etchant, the immersion time in the etchant and the [...] Read more.
Several hydrophobic and superhydrophobic aluminum surfaces were prepared with a three-step process that includes chemical etching, a treatment in hot water and a further coating with fluoroalkysiloxane (FAS). By varying the concentration of the etchant, the immersion time in the etchant and the boiling time, surfaces characterized by different roughness were obtained, with a wettability ranging from hydrophobic to superhydrophobic values. The icephobic properties were tested and the results reveal important differences among the samples, related to the roughness of the surface and the etching and boiling treatment processes. Full article
(This article belongs to the Special Issue Superhydrophobic Surfaces and Coatings)
Show Figures

Figure 1

22 pages, 2296 KB  
Article
Chemical Profile, Bioactive Constituents and In Vitro Growth Stimulation Properties of Cold-Pressed Hemp Seed Oils from Romanian Varieties: In Vitro and In Silico Evaluation
by Doris Floares (Oarga), Diana Obistioiu, Anca Hulea, Mukhtar Adeiza Suleiman, Iuliana Popescu, Ciprian Buzna, Adina Berbecea, Ersilia Alexa, Cristina Dehelean and Isidora Radulov
Plants 2025, 14(22), 3465; https://doi.org/10.3390/plants14223465 - 13 Nov 2025
Abstract
Industrial hemp (Cannabis sativa L.; Cannabaceae), traditionally cultivated for fiber, also represents a valuable source of nutrient-rich seed oil. In this study, cold-pressed hemp seed oils from three Romanian varieties (Teodora, Silvana, and Armanca) were evaluated for their fatty acid composition, [...] Read more.
Industrial hemp (Cannabis sativa L.; Cannabaceae), traditionally cultivated for fiber, also represents a valuable source of nutrient-rich seed oil. In this study, cold-pressed hemp seed oils from three Romanian varieties (Teodora, Silvana, and Armanca) were evaluated for their fatty acid composition, minor bioactive constituents, antioxidant activity, growth-promoting property toward probiotic strains in vitro, and molecular docking interactions with probiotic targets. Gas chromatography revealed a fatty acid profile dominated by linoleic (49.4–51.9%), oleic (16.3–22.8%), and α-linolenic acids (9.8–14.4%), resulting in favorable PUFA/SFA ratios (5.17–6.39) and ω-6/ω-3 ratios (3.93–5.53). The oils also contained phenolics (118–160 mg GAE/kg), chlorophylls (6.18–8.31 mg/kg), and carotenoids (2.58–3.37 mg/kg), which contributed to their antioxidant activity (DPPH inhibition 35.92 µM TE/100 g–43.37 µM TE/100 g). Broth microdilution assays against Lacticaseibacillus rhamnosus GG, L. paracasei ATCC BAA-52, and L. acidophilus ATCC 4356 demonstrated strain- and dose-dependent potential to promote probiotic growth under in vitro conditions. While L. rhamnosus and L. paracasei were inhibited at low concentrations and only mildly stimulated at higher levels, L. acidophilus showed robust growth promotion, reaching +54.7% effect and CP = 1.55 with Teodora oil at 16 mg/mL. Molecular docking highlighted strong binding affinities of γ-linolenic and linoleic acids with key metabolic enzymes involved in probiotic metabolism (hydratase, enolase, glyceraldehyde-3-phosphate dehydrogenase, ribonucleoside hydrolase), forming stable hydrophilic and hydrophobic interactions which are explored in defining the stability of the ligand-protein complexes. These results indicate that both major fatty acids and minor bioactive constituents contribute to the nutritional and antioxidant value of Romanian hemp seed oils and reveal a potential to promote probiotic growth under in vitro conditions, as supported by complementary in silico evidence. Full article
Show Figures

Figure 1

22 pages, 13581 KB  
Article
Hot-Dip PVC-Based Polymeric Composite Coating for Advanced Electrical Insulation of Electric Vehicle Battery Systems
by Ekrem Altuncu, Arzu Parten Altuncu, Nilay Tüccar Kılıç, Zeynep Uçanok and Handan Yilmaz
J. Compos. Sci. 2025, 9(11), 629; https://doi.org/10.3390/jcs9110629 - 12 Nov 2025
Abstract
Polyvinyl chloride (PVC) is a widely used polymer in composite systems due to its versatility and processability, with growing use in advanced engineering applications. This study presents the formulation, processing optimisation, and detailed characterisation of a hot-dip PVC-based plastisol composite coating developed for [...] Read more.
Polyvinyl chloride (PVC) is a widely used polymer in composite systems due to its versatility and processability, with growing use in advanced engineering applications. This study presents the formulation, processing optimisation, and detailed characterisation of a hot-dip PVC-based plastisol composite coating developed for electrical insulation in electric vehicle (EV) battery systems. A series of plastisol formulations with varying filler contents were prepared and applied via dip-coating at withdrawal speeds of 5, 10, and 15 mm s−1. The 5 mm s−1 withdrawal speed resulted in the most uniform coatings with thicknesses of 890–2100 µm. Mechanical testing showed that lower filler content significantly improved performance: Group 1 (lowest filler) exhibited the highest tensile strength (11.9 N mm−2), elongation at break (465%), tear strength (92 N mm−1), and abrasion resistance. SEM and EDX analyses confirmed more homogeneous filler dispersion in Group 1, while FTIR spectra indicated stronger polymer–plasticiser interactions. Contact-angle measurements showed an increase of 38 in low-filler samples, indicating enhanced surface hydrophobicity. Furthermore, Group 1 coatings demonstrated superior dielectric strength (22.1 kV mm−1) and excellent corrosion resistance, maintaining integrity for over 2000 h in salt-spray testing. These findings highlight the importance of filler optimisation in balancing mechanical, electrical, and environmental performance. The proposed PVC-based composite coating offers a durable, cost-effective solution for next-generation EV battery insulation systems and has potential applicability in other high-performance engineering applications. Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Figure 1

14 pages, 9095 KB  
Article
Facile Preparation of Glass Fiber Wool/MTMS Aerogels with Improved Thermal Insulation and Safety
by Yong Ren, Huanlin Zhang, Xingwei Jiang, Miao Liu and Zhi Li
Gels 2025, 11(11), 906; https://doi.org/10.3390/gels11110906 - 12 Nov 2025
Abstract
With the continuous increase in global energy consumption and the escalating severity of climate change, the development of high-performance thermal insulation materials is crucial for reducing energy waste and carbon emissions. In this work, a facile method was proposed to prepare thermal-insulating glass [...] Read more.
With the continuous increase in global energy consumption and the escalating severity of climate change, the development of high-performance thermal insulation materials is crucial for reducing energy waste and carbon emissions. In this work, a facile method was proposed to prepare thermal-insulating glass fiber wool/methyltrimethoxysilane aerogel (GFWA) composites through vacuum-assisted impregnation. The obtained results indicated that GFWA composites exhibited excellent thermal insulation and hydrophobic properties, with GFWA-30 containing 30 wt.% glass fiber wool having a thermal conductivity of 35.3 mW/m·K and a water contact angle of 125.8°. Additionally, the Young’s modulus of this composite was 21.2% higher than that of MTMS aerogel. In terms of thermal safety performance, compared to methyltrimethoxysilane aerogel, the GFWA-30 composite showed reductions of 21.6%, 18.8%, and 27.95% in peak heat release rate, total heat release, and gross calorific value, respectively. This study offers a simple and feasible approach to fabricating high-performance thermal insulation materials, which display huge potential for widespread application in the fields of building insulation and other fields with thermal insulation requirements. Full article
(This article belongs to the Special Issue Synthesis and Emerging Applications of Novel Aerogel Materials)
Show Figures

Graphical abstract

23 pages, 808 KB  
Article
ACGA a Novel Biomimetic Hybrid Optimisation Algorithm Based on a HP Protein Visualizer: An Interpretable Web-Based Tool for 3D Protein Folding Based on the Hydrophobic-Polar Model
by Ioan Sima, Daniela-Maria Cristea, Laszlo Barna Iantovics and Virginia Niculescu
Biomimetics 2025, 10(11), 763; https://doi.org/10.3390/biomimetics10110763 - 12 Nov 2025
Abstract
In this study, we used the hydrophobic-polar (HP) two-dimensional square and three-dimensional cubic lattice models for the problem of protein structure prediction (PSP). This kind of lattice reduces computational time and calculations, the conformational space from 9n to 3n2 [...] Read more.
In this study, we used the hydrophobic-polar (HP) two-dimensional square and three-dimensional cubic lattice models for the problem of protein structure prediction (PSP). This kind of lattice reduces computational time and calculations, the conformational space from 9n to 3n2 for the 2D square lattice and 5n2 for the 3D cubic lattice. Even within this context, it remains challenging for genetic algorithms or other metaheuristics to identify the optimal solutions. The contributions of the paper consist of: (1) implementation of a high-performing novel genetic algorithm (GA); instead of considering only the self-avoiding walk (SAW) conformations approached in other work, we decided to allow any conformation to appear in the population at all stages of the proposed all conformations biomimetic genetic algorithm (ACGA). This increases the probability of achieving good conformations (self avoiding walk ones), with the lowest energy. In addition to classical crossover and mutation operators, (2) we introduced specific translation operators for these two operations. We have proposed and implemented an HP Protein Visualizer tool which offers interpretability, a hybrid approach in that the visualizer gives some insight to the algorithm, that analyse and optimise protein structures HP model. The program resulted based on performed research, provides a molecular modeling tool for studying protein folding using technologies such as Node.js, Express and p5js for 3D rendering, and includes optimization algorithms to simulate protein folding. Full article
(This article belongs to the Special Issue Bio-Inspired Artificial Intelligence in Healthcare)
Show Figures

Figure 1

24 pages, 4646 KB  
Review
Lipocalin-2 in Triple-Negative Breast Cancer: A Review of Its Pathophysiological Role in the Metastatic Cascade
by Diandra T. Keller, Ralf Weiskirchen and Sarah K. Schröder-Lange
Int. J. Mol. Sci. 2025, 26(22), 10938; https://doi.org/10.3390/ijms262210938 - 12 Nov 2025
Viewed by 46
Abstract
Lipocalin-2 (LCN2) is a 25 kDa glycoprotein that has been shown to be a multifunctional player in the metastasis of triple-negative breast cancer (TNBC). In physiological contexts, LCN2 exhibits bacteriostatic properties and plays key roles in iron homeostasis and the transport of hydrophobic [...] Read more.
Lipocalin-2 (LCN2) is a 25 kDa glycoprotein that has been shown to be a multifunctional player in the metastasis of triple-negative breast cancer (TNBC). In physiological contexts, LCN2 exhibits bacteriostatic properties and plays key roles in iron homeostasis and the transport of hydrophobic molecules. However, several studies have shown that aberrant LCN2 expression is associated with poor prognosis in various malignancies, including breast cancer, which is the most common cancer in women worldwide and can be classified into four molecular subtypes. Among these, TNBC represents a disproportionately aggressive subtype characterized by poor prognosis and high metastatic potential. Although LCN2 has been extensively studied in breast cancer overall, its specific role in TNBC progression and metastasis is only beginning to be understood. Recent evidence suggests that LCN2 contributes to several tumor-promoting processes such as angiogenesis, therapy resistance and modulation of the tumor microenvironment. Moreover, LCN2 appears to influence organ-specific metastasis, particularly to the lung and brain, while its role in liver and bone dissemination remains unclear. Collectively, current data identify LCN2 as a critical mediator of TNBC progression and highlight its potential as a prognostic factor and modulator of disease progression. This review aims to summarize insights from both in vitro and in vivo studies, with particular focus on the role of LCN2 in the metastatic cascade, while also addressing existing research gaps and critically evaluating the current findings. Full article
Show Figures

Figure 1

23 pages, 5447 KB  
Article
3D-Printed Alginate–Chitosan Hydrogel Loaded with Cannabidiol as a Platform for Drug Delivery: Design and Mechanistic Characterization
by Hernan Santiago Garzon, Camilo Alfonso-Rodríguez, João G. S. Souza, Lina J. Suárez and Daniel R. Suárez
J. Funct. Biomater. 2025, 16(11), 422; https://doi.org/10.3390/jfb16110422 - 12 Nov 2025
Viewed by 130
Abstract
Alginate and chitosan (Ag/Cs) combined form an effective platform to develop biocompatible hydrogels with customizable properties for controlled drug release. Cannabidiol (CBD), a hydrophobic compound with anti-inflammatory and antibacterial effects, represents a powerful strategy to enhance their therapeutic performance. A/Cs hydrogels were produced [...] Read more.
Alginate and chitosan (Ag/Cs) combined form an effective platform to develop biocompatible hydrogels with customizable properties for controlled drug release. Cannabidiol (CBD), a hydrophobic compound with anti-inflammatory and antibacterial effects, represents a powerful strategy to enhance their therapeutic performance. A/Cs hydrogels were produced using the CELLINK® printer with 12 and 24 mg/mL of CBD. SEM and FTIR were assessed. Viscoelasticity was assessed using oscillatory rheology. Structural strength was evaluated via uniaxial compression. Swelling and absorption were measured gravimetrically under physiological conditions. CBD was successfully incorporated into the 3D-printed A/Cs hydrogel. Increasing the CBD concentration led to mechanical changes such as a dose-dependent decrease in G′ and a slight reduction in the linearity threshold (typically 10–30% from medium loads), while still maintaining G′ > G″. FTIR showed shifts in O–H/N–H and C=O, indicating hydrogen bonding without new reactive bands. Microscopic images revealed moderate pore compaction and increased tortuosity with dose. At higher CBD concentrations, the hydrogel resisted compression but could deform further before failure. Equilibrium swelling and absorption kinetics decreased with increasing dose, resulting in a reduced initial burst and lower water uptake capacity. The CBD-loaded hydrogel provides a mechanically suitable and molecularly stable platform for local drug release in the oral cavity. Full article
(This article belongs to the Special Issue Biomaterials and Bioengineering in Dentistry (2nd Edition))
Show Figures

Figure 1

12 pages, 2307 KB  
Article
Application of Droplet-Array Sandwiching Technology to Click Reactions for High-Throughput Screening
by Yoshinori Miyata, Shoma Nishimura, Sora Kawakami, Yuriko Higuchi and Satoshi Konishi
Micromachines 2025, 16(11), 1270; https://doi.org/10.3390/mi16111270 - 12 Nov 2025
Viewed by 57
Abstract
High-throughput screening (HTS) is an essential process in drug discovery, requiring platforms that ensure reagent economy, high efficiency, and resistance to cross-contamination. Click chemistry is well suited for HTS because of its biocompatibility, high selectivity, and quantitative fluorescent readout. We focus on droplet-array [...] Read more.
High-throughput screening (HTS) is an essential process in drug discovery, requiring platforms that ensure reagent economy, high efficiency, and resistance to cross-contamination. Click chemistry is well suited for HTS because of its biocompatibility, high selectivity, and quantitative fluorescent readout. We focus on droplet-array sandwiching technology (DAST), in which two droplet microarrays (DMAs) are vertically opposed to achieve solute transport and reagent mixing by controlled contact and separation. Herein, we integrate click chemistry with DAST and evaluate its feasibility as a HTS platform. In DAST, DMAs are formed on wettability-patterned (WP; hydrophilic/hydrophobic) substrates, preserving resistance to cross-contamination. First, we immobilized dibenzocyclooctyne (DBCO) on a WP substrate and verified the occurrence of DBCO–azide reaction using an azide-functional fluorescent dye. The fluorescence intensity increased with concentration and reached a plateau at higher concentrations, indicating saturation behavior in the DBCO–azide click reaction. Second, acoustic mixing with repeated droplet contact–separation was applied to generate concentration gradients on a single substrate while maintaining droplet independence. Third, we qualitatively reproduced the expected concentration dependence of manual handling by combining DAST-based gradient formation with click reaction fluorescence readout. These results reveal that DAST enables a reagent-efficient, cross-contamination-resistant, and low-instrument-dependent HTS foundation for click-chemistry-based assays. Full article
(This article belongs to the Special Issue Advanced Developments in Droplet Microfluidics)
Show Figures

Figure 1

23 pages, 3383 KB  
Article
Protozoan Neglected Tropical Diseases (NTDs) Target Inhibition of Alkaloids from Croton linearis Jacq Leaves: A Molecular Docking and ADMET Approach
by Julio A. Rojas-Vargas, Jesús García-Díaz, Julio César Escalona-Arranz, Jakub Chlebek, Lianet Monzote, William N. Setzer and Juan A. Castillo-Garit
Pharmaceuticals 2025, 18(11), 1715; https://doi.org/10.3390/ph18111715 - 12 Nov 2025
Viewed by 60
Abstract
Background/Objectives: Neglected tropical diseases (NTDs) caused by protozoan parasites such as Trypanosoma cruzi, Trypanosoma brucei, Leishmania spp., and Plasmodium falciparum remain a global health challenge due to limited therapies and increasing drug resistance. Natural products provide diverse scaffolds for antiparasitic drug [...] Read more.
Background/Objectives: Neglected tropical diseases (NTDs) caused by protozoan parasites such as Trypanosoma cruzi, Trypanosoma brucei, Leishmania spp., and Plasmodium falciparum remain a global health challenge due to limited therapies and increasing drug resistance. Natural products provide diverse scaffolds for antiparasitic drug discovery. This study aimed to investigate the multitarget inhibitory potential of alkaloids isolated from Croton linearis Jacq. against validated protozoan enzymes. Methods: Eighteen alkaloids were virtually screened against 17 molecular targets relevant to protozoan parasites. Protein–ligand docking simulations were performed using crystallographic structures of enzymes, including Cyp51, DHFR-TS, PTR1, AD-kinase, and DHODH. Predicted interactions were analyzed to identify hydrogen bonds, hydrophobic contacts, and π–π stacking with key residues in the active sites. Results: Several alkaloids exhibited high binding affinities, in some cases surpassing co-crystallized ligands. Reticuline, norsalutaridine, laudanosine, and jacularine consistently showed the strongest activity, with docking scores ranging from −8.0 to −9.3 kcal/mol across multiple targets. Notably, norsalutaridine displayed the highest predicted affinity for L. infantum Cyp51, while reticuline showed strong binding to T. cruzi DHFR-TS and L. major PTR1. Conclusions: The study highlights the potential of C. linearis alkaloids as multitarget inhibitors against protozoan parasites. These compounds represent promising lead candidates for the development of antiparasitic agents, while emphasizing the value of natural product scaffolds for neglected disease drug discovery. The findings also support the future exploration of semisynthetic derivatives to optimize activity and selectivity. Full article
Show Figures

Graphical abstract

18 pages, 2585 KB  
Article
Optimizing the Cement Rheology and Hydrophobicity Using Polycarboxylate Ether (PCE)-Based Grinding Aids
by Kenan Çinku, Ebru Dengiz Özcan, Şenel Özdamar and Hasan Ergin
Polymers 2025, 17(22), 3002; https://doi.org/10.3390/polym17223002 - 12 Nov 2025
Viewed by 88
Abstract
Newly developed polymer-based grinding chemicals demonstrate superior dispersion, grinding, and strength outcomes compared to traditional amine-based additives. This study provides a comprehensive analysis of the mechanisms underlying the improved performance of polymers in the grinding process. It examines the influence of polymer-based grinding [...] Read more.
Newly developed polymer-based grinding chemicals demonstrate superior dispersion, grinding, and strength outcomes compared to traditional amine-based additives. This study provides a comprehensive analysis of the mechanisms underlying the improved performance of polymers in the grinding process. It examines the influence of polymer-based grinding aids (A1-A2-A3) on the hydrophobicity and rheological behavior of CEM I 42.5 R Portland cement. A systematic analysis was conducted using six different grinding aids, comprising three synthesized polycarboxylate ether (PCE)-based polymers and three commercial amine group products. Key properties, including surface tension, hydrophobicity (water contact angle, WCA), slump flow, FT-IR, and rheological parameters, were evaluated. Among the compounds tested, the A2 polymer exhibited the most favorable performance, achieving a high contact angle (131.7°), low surface tension (56.7 dyn/cm), and enhanced mortar fluidity (25 cm slump flow). FT-IR spectroscopy confirmed strong interactions between A2 and cement particles, particularly in the CH3 bonding regions. Rheological analyses further revealed that A2—2.5 g significantly decreased viscosity and improved shear stress response, indicating superior dispersion and water reduction capability. The findings highlight A2 as a promising eco-efficient additive for enhancing the efficiency, performance, and workability of cementitious systems through polymer-based grinding technology. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

21 pages, 30182 KB  
Article
Performance and Durability of Biopolymer Blends Containing Modified Metal Oxide Particles
by Giulia Infurna, Andrea Antonino Scamporrino, Elisabetta Morici, Elena Bruno, Giuseppe Pecoraro and Nadka Tz. Dintcheva
Polymers 2025, 17(22), 3000; https://doi.org/10.3390/polym17223000 - 11 Nov 2025
Viewed by 111
Abstract
This study applies circular and sustainable principles to the formulation of biopolymer-based materials using naturally occurring additives. To improve the affinity between the host matrix and additives such as metal oxides, the work involves adding stearic acid-modified zinc oxide (f-ZnO) and [...] Read more.
This study applies circular and sustainable principles to the formulation of biopolymer-based materials using naturally occurring additives. To improve the affinity between the host matrix and additives such as metal oxides, the work involves adding stearic acid-modified zinc oxide (f-ZnO) and sonicated titanium dioxide (s-TiO2) to a polylactic acid and bio-derived polyamide 11 (PLA/PA11 = 70/30 w/w biopolymer blend via melt mixing. To evaluate the impact of the functionalization and sonication on metal oxides (i.e., f-ZnO and s-TiO2) introduced into the PLA/PA11 blend, composites containing unmodified ZnO and TiO2 prepared under the same processing conditions were compared with the modified ones. All of the composites were characterised in terms of their solid-state properties, morphology, melt behaviour, and photo-oxidation resistance. The addition of both f-ZnO and s-TiO2 appears to exert a plasticising effect on the rheological behaviour, in contrast to unmodified ZnO and TiO2. The presence of stearic acid tails on ZnO has been estimated at approximately 4%, whereas sonication reduces the diameter of TiO2 particles by half. In the solid state, both unmodified and modified particles can reinforce the biopolymer matrix, enhancing the Young′s (elastic) modulus. Calorimetry analysis suggests that unmodified and modified metal oxide particles do not influence the glass transition of the PLA phase but affect the melt temperatures of both biopolymeric phases by reducing macromolecular mobility. Morphology analysis shows that the presence of both f-ZnO and s-TiO2 particles does not reduce the size of the PA11 droplets. The f-ZnO particles, which have long stearic tails and are more compatible with the less-polar phase (PLA), are probably located at the interface between the two biopolymeric phases or in the PLA phase. Furthermore, s-TiO2 particles, like TiO2, do not reduce the dimensions of PA11 droplets, suggesting that there is no preferential location of the particles. Due to the presence of both f-ZnO and s-TiO2, an increase in the hydrophobicity of the PLA/PA11 blend has been detected, suggesting enhanced water resistance. The photo-oxidation resistance of the PLA/PA11 blend is significantly reduced by the presence of unmodified metal oxides and even more so by the presence of modified metal oxides. This suggests that metal oxides could be considered photo-sensitive degradant agents for biopolymer blends. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

14 pages, 8180 KB  
Article
Impact of Replicated Biomimetic Microstructures on the Wettability of Injection-Molded Polymer Surfaces
by Vojtěch Šorm, Jakub Bittner, Petr Lenfeld, Dora Kroisová and Štěpánka Dvořáčková
Biomimetics 2025, 10(11), 759; https://doi.org/10.3390/biomimetics10110759 - 11 Nov 2025
Viewed by 108
Abstract
This article evaluates the influence of replicated natural structures, produced by micro-machining, on the wettability of plastic parts made from hydrophilic and hydrophobic polymer materials under various temperature and pressure conditions. Although many studies have focused on biomimetic surface design, the effect of [...] Read more.
This article evaluates the influence of replicated natural structures, produced by micro-machining, on the wettability of plastic parts made from hydrophilic and hydrophobic polymer materials under various temperature and pressure conditions. Although many studies have focused on biomimetic surface design, the effect of specific processing parameters on the accurate replication of natural topologies and their resulting wettability has been only partially explored. This study addresses this gap by systematically analyzing the effect of melt temperature and packing pressure on the functional replication of micro-machined biomimetic structures. The research describes the design of hierarchical microstructures inspired by biomimetics and their fabrication by micro-milling on molded parts. Test samples were prepared from polypropylene (PP), acrylonitrile butadiene styrene (ABS), and polyamide 6.6 (PA 6.6) under different processing parameters, and wettability was assessed using contact angle (CA) measurements. The results confirmed significant variations in surface wettability depending on polymer type, melt temperature, and packing pressure. For the hydrophilic relief (Rock Moss), contact angles below 90° were obtained for all tested polymers, including PP, which decreased from 98.7° on a flat surface to 82.4° at 220 °C and 500 bar. In PA 6.6, a reduction of up to 12% in contact angle was observed compared to smooth samples at 310 °C and 500 bar. For hydrophobic reliefs (Three-part Hibiscus and Tricolor Pansy), contact angles exceeded 100–110°, with the highest value of 108.3 ± 1.6° for PP at 200 °C and 500 bar. Suitable combinations of melt temperature and packing pressure enabled accurate replication of microstructures while preserving their functional wettability, demonstrating the possibility of tuning surface properties through topological design. Full article
(This article belongs to the Special Issue Bioinspired Engineered Systems)
Show Figures

Graphical abstract

25 pages, 18404 KB  
Article
Protein Representation in Metric Spaces for Protein Druggability Prediction: A Case Study on Aspirin
by Jiayang Xu, Shuaida He, Yangzhou Chen and Xin Chen
Pharmaceuticals 2025, 18(11), 1711; https://doi.org/10.3390/ph18111711 - 11 Nov 2025
Viewed by 61
Abstract
Background: Accurately predicting protein druggability is crucial for successful drug development, as it significantly reduces the time and resources required to identify viable drug targets. However, existing methods often face trade-offs between accuracy, efficiency, and interpretability. This study aims to introduce a lightweight [...] Read more.
Background: Accurately predicting protein druggability is crucial for successful drug development, as it significantly reduces the time and resources required to identify viable drug targets. However, existing methods often face trade-offs between accuracy, efficiency, and interpretability. This study aims to introduce a lightweight framework designed to address these challenges effectively. Methods: We present a lightweight framework that embeds proteins into four biologically informed, non-Euclidean metric spaces, derived from analyses of amino acid sequences, predicted secondary structures, and curated post-translational modification (PTM) annotations. These representations capture key features such as hydrophobicity profiles, PTM densities, spatial patterns, and secondary structure composition, providing interpretable proxies for structure-related determinants of druggability. This approach enhances our understanding of protein functionality while improving druggability predictability in a biologically relevant context. Results: Evaluated on an Aspirin-binding protein dataset using leave-one-out cross-validation (LOOCV), our distance-based ensemble achieves 92.25% accuracy (AUC = 0.9358) in the whole-protein setting. This performance significantly outperforms common sequence-only baselines in the literature while remaining computationally efficient. Conclusions: On a refined single-chain subset, our framework demonstrates performance comparable to established feature engineering pipelines, highlighting its potential effectiveness in practical applications. Together, these results strongly suggest that biologically grounded, non-Euclidean embeddings provide an effective and interpretable alternative to resource-intensive 3D pipelines for target assessment in drug discovery. This approach not only enhances our ability to assess protein druggability but also streamlines the overall process of target identification and validation. Full article
(This article belongs to the Section AI in Drug Development)
Show Figures

Figure 1

Back to TopTop