Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,978)

Search Parameters:
Keywords = Hybrid vehicle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1578 KB  
Review
Advances in Folding-Wing Flying Underwater Drone (FUD) Technology
by Jianqiu Tu, Junjie Zhuang, Haixin Chen, Changjian Zhao, Hairui Zhang and Wenbiao Gan
Drones 2026, 10(1), 62; https://doi.org/10.3390/drones10010062 - 15 Jan 2026
Abstract
The evolution of modern warfare and civil exploration requires platforms that can operate seamlessly across the air–water interface. The folding-wing Hybrid Air and Underwater Vehicle (FUD) has emerged as a transformative solution, combining the high-speed cruising capabilities of fixed-wing aircraft with the stealth [...] Read more.
The evolution of modern warfare and civil exploration requires platforms that can operate seamlessly across the air–water interface. The folding-wing Hybrid Air and Underwater Vehicle (FUD) has emerged as a transformative solution, combining the high-speed cruising capabilities of fixed-wing aircraft with the stealth characteristics of underwater navigation. This review thoroughly analyzes the advancements and challenges in folding-wing FUD technology. The discussion is framed around four interconnected pillars: the overall design driven by morphing technology, adaptation of the propulsion system, multi-phase dynamic modeling and control, and experimental verification. The paper systematically compares existing technical pathways, including lateral and longitudinal folding mechanisms, as well as dual-use and hybrid propulsion strategies. The analysis indicates that, although significant progress has been made with prototypes demonstrating the ability to transition between air and water, core challenges persist. These challenges include underwater endurance, structural reliability under impact loads, and effective integration of the power system. Additionally, this paper explores promising application scenarios in both military and civilian domains, discussing future development trends that focus on intelligence, integration, and clustering. This review not only consolidates the current state of technology but also emphasizes the necessity for interdisciplinary approaches. By combining advanced materials, computational intelligence, and robust control systems, we can overcome existing barriers to progress. In conclusion, FUD technology is moving from conceptual validation to practical engineering applications, positioning itself to become a crucial asset in future cross-domain operations. Full article
(This article belongs to the Special Issue Advances in Autonomous Underwater Drones: 2nd Edition)
23 pages, 1784 KB  
Article
A Soft Actor-Critic-Based Energy Management Strategy for Fuel Cell Vehicles Considering Fuel Cell Degradation
by Handong Zeng, Changqing Du and Yifeng Hu
Energies 2026, 19(2), 430; https://doi.org/10.3390/en19020430 - 15 Jan 2026
Abstract
Energy management strategies (EMSs) play a critical role in improving both the efficiency and durability of fuel cell electric vehicles (FCEVs). To overcome the limited adaptability and insufficient durability consideration of existing deep reinforcement learning-based EMSs, this study develops a degradation-aware energy management [...] Read more.
Energy management strategies (EMSs) play a critical role in improving both the efficiency and durability of fuel cell electric vehicles (FCEVs). To overcome the limited adaptability and insufficient durability consideration of existing deep reinforcement learning-based EMSs, this study develops a degradation-aware energy management strategy based on the Soft Actor–Critic (SAC) algorithm. By leveraging SAC’s maximum-entropy framework, the proposed method enhances exploration efficiency and avoids premature convergence to operating patterns that are unfavorable to fuel cell durability. A reward function explicitly penalizing hydrogen consumption, power fluctuation, and degradation-related operating behaviors is designed, and the influences of reward weighting and key hyperparameters on learning stability and performance are systematically analyzed. The proposed SAC-based EMS is evaluated against Deep Q-Network (DQN) and Proximal Policy Optimization (PPO) strategies under both training and unseen driving cycles. Simulation results demonstrate that SAC achieves a superior and robust trade-off between hydrogen economy and degradation mitigation, maintaining improved adaptability and durability under varying operating conditions. These findings indicate that integrating degradation awareness with entropy-regularized reinforcement learning provides an effective framework for practical EMS design in FCEVs. Full article
(This article belongs to the Section E: Electric Vehicles)
25 pages, 1237 KB  
Article
A Comprehensive Analysis of Safety Failures in Autonomous Driving Using Hybrid Swiss Cheese and SHELL Approach
by Benedictus Rahardjo, Samuel Trinata Winnyarto, Firda Nur Rizkiani and Taufiq Maulana Firdaus
Future Transp. 2026, 6(1), 21; https://doi.org/10.3390/futuretransp6010021 - 15 Jan 2026
Abstract
The advancement of automated driving technologies offers potential safety and efficiency gains, yet safety remains the primary barrier to higher-level deployment. Failures in automated driving systems rarely result from a single technical malfunction. Instead, they emerge from coupled organizational, technical, human, and environmental [...] Read more.
The advancement of automated driving technologies offers potential safety and efficiency gains, yet safety remains the primary barrier to higher-level deployment. Failures in automated driving systems rarely result from a single technical malfunction. Instead, they emerge from coupled organizational, technical, human, and environmental factors, particularly in partial and conditional automation where human supervision and intervention remain critical. This study systematically identifies safety failures in automated driving systems and analyzes how they propagate across system layers and human–machine interactions. A qualitative case-based analytical approach is adopted by integrating the Swiss Cheese model and the SHELL model. The Swiss Cheese model is used to represent multilayer defensive structures, including governance and policy, perception, planning and decision-making, control and actuation, and human–machine interfaces. The SHELL model structures interaction failures between liveware and software, hardware, environment, and other liveware. The results reveal recurrent cross-layer failure pathways in which interface-level mismatches, such as low-salience alerts, sensor miscalibration, adverse environmental conditions, and inadequate handover communication, align with latent system weaknesses to produce unsafe outcomes. These findings demonstrate that autonomous driving safety failures are predominantly socio-technical in nature rather than purely technological. The proposed hybrid framework provides actionable insights for system designers, operators, and regulators by identifying critical intervention points for improving interface design, operational procedures, and policy-level safeguards in autonomous driving systems. Full article
20 pages, 2787 KB  
Article
FWISD: Flood and Waterfront Infrastructure Segmentation Dataset with Model Evaluations
by Kaiwen Xue and Cheng-Jie Jin
Remote Sens. 2026, 18(2), 281; https://doi.org/10.3390/rs18020281 - 15 Jan 2026
Abstract
The increasing severity of extreme weather events necessitates rapid methods for post-disaster damage assessment. Current remote sensing datasets often lack the spatial resolution required for a detailed evaluation of critical waterfront infrastructure, which is vulnerable during hurricanes. To address this limitation, we introduce [...] Read more.
The increasing severity of extreme weather events necessitates rapid methods for post-disaster damage assessment. Current remote sensing datasets often lack the spatial resolution required for a detailed evaluation of critical waterfront infrastructure, which is vulnerable during hurricanes. To address this limitation, we introduce the Flood and Waterfront Infrastructure Segmentation Dataset (FWISD), a new dataset constructed from high-resolution unmanned aerial vehicle imagery captured after a major hurricane, comprising 3750 annotated 1024 × 1024 pixel image patches. The dataset provides semantic labels for 11 classes, specifically designed to distinguish between intact and damaged structures. We conducted comprehensive experiments to evaluate the performance of both convolution and Transformer-based models. Our results indicate that hybrid models integrating Transformer encoders with convolutional decoders achieve a superior balance of contextual understanding and spatial precision. Regression analysis indicates that the distance to water has the maximum influence on the detection success rate, while comparative experiments emphasize the unique complexity of waterfront infrastructure compared to homogenous datasets. In summary, FWISD provides a valuable resource for developing and evaluating advanced models, establishing a foundation for automated systems that can improve the timeliness and precision of post-disaster response. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

38 pages, 13699 KB  
Review
A Comprehensive Review of Magnetic Coupling Mechanisms, Compensation Networks, and Control Strategies for Electric Vehicle Wireless Power Transfer Systems
by Yanxia Wu, Pengqiang Nie, Zhenlin Wang, Lijuan Wang, Seiji Hashimoto and Takahiro Kawaguchi
Processes 2026, 14(2), 287; https://doi.org/10.3390/pr14020287 - 14 Jan 2026
Abstract
Wireless power transfer (WPT) has emerged as a key enabling technology for the large-scale adoption of electric vehicles (EVs), offering enhanced charging flexibility, improved safety, and seamless integration with intelligent transportation and renewable energy infrastructures. This paper presents a comprehensive review and technical [...] Read more.
Wireless power transfer (WPT) has emerged as a key enabling technology for the large-scale adoption of electric vehicles (EVs), offering enhanced charging flexibility, improved safety, and seamless integration with intelligent transportation and renewable energy infrastructures. This paper presents a comprehensive review and technical synthesis of WPT technologies spanning both near-field and far-field domains, including inductive power transfer (IPT), magnetically coupled resonant WPT (MCR-WPT), capacitive power transfer (CPT), microwave power transfer (MPT), and laser wireless charging (LPT). Particular emphasis is placed on MCR-WPT, the most widely adopted approach for EV wireless charging, for which the coupler structures, resonant compensation networks, power converter architectures, and control strategies are systematically analyzed. The review further identifies that hybrid WPT architectures, adaptive compensation design and wide-coverage coupling mechanisms will be central to enabling high-power, long-distance, and misalignment-resilient wireless charging solutions for next-generation electric transportation systems. Full article
Show Figures

Figure 1

37 pages, 10017 KB  
Article
U-H-Mamba: An Uncertainty-Aware Hierarchical State-Space Model for Lithium-Ion Battery Remaining Useful Life Prediction Using Hybrid Laboratory and Real-World Datasets
by Zhihong Wen, Xiangpeng Liu, Wenshu Niu, Hui Zhang and Yuhua Cheng
Energies 2026, 19(2), 414; https://doi.org/10.3390/en19020414 - 14 Jan 2026
Abstract
Accurate prognosis of the remaining useful life (RUL) for lithium-ion batteries is critical for mitigating range anxiety and ensuring the operational safety of electric vehicles. However, existing data-driven methods often struggle to maintain robustness when transferring from controlled laboratory conditions to complex, sensor-limited, [...] Read more.
Accurate prognosis of the remaining useful life (RUL) for lithium-ion batteries is critical for mitigating range anxiety and ensuring the operational safety of electric vehicles. However, existing data-driven methods often struggle to maintain robustness when transferring from controlled laboratory conditions to complex, sensor-limited, real-world environments. To bridge this gap, this study presents U-H-Mamba, a novel uncertainty-aware hierarchical framework trained on a massive hybrid repository comprising over 146,000 charge–discharge cycles from both laboratory benchmarks and operational electric vehicle datasets. The proposed architecture employs a two-level design to decouple degradation dynamics, where a Multi-scale Temporal Convolutional Network functions as the base encoder to extract fine-grained electrochemical fingerprints, including derived virtual impedance proxies, from high-frequency intra-cycle measurements. Subsequently, an enhanced Pressure-Aware Multi-Head Mamba decoder models the long-range inter-cycle degradation trajectories with linear computational complexity. To guarantee reliability in safety-critical applications, a hybrid uncertainty quantification mechanism integrating Monte Carlo Dropout with Inductive Conformal Prediction is implemented to generate calibrated confidence intervals. Extensive empirical evaluations demonstrate the framework’s superior performance, achieving a RMSE of 3.2 cycles on the NASA dataset and 5.4 cycles on the highly variable NDANEV dataset, thereby outperforming state-of-the-art baselines by 20–40%. Furthermore, SHAP-based interpretability analysis confirms that the model correctly identifies physics-informed pressure dynamics as critical degradation drivers, validating its zero-shot generalization capabilities. With high accuracy and linear scalability, the U-H-Mamba model offers a viable and physically interpretable solution for cloud-based prognostics in large-scale electric vehicle fleets. Full article
(This article belongs to the Section F5: Artificial Intelligence and Smart Energy)
Show Figures

Figure 1

29 pages, 2810 KB  
Article
PAIR: A Hybrid A* with PPO Path Planner for Multi-UAV Navigation in 2-D Dynamic Urban MEC Environments
by Bahaa Hussein Taher, Juan Luo, Ying Qiao and Hussein Ridha Sayegh
Drones 2026, 10(1), 58; https://doi.org/10.3390/drones10010058 - 13 Jan 2026
Viewed by 10
Abstract
Emerging multi-unmanned aerial vehicle (multi-UAV) applications in smart cities must navigate cluttered airspace while meeting tight mobile edge computing (MEC) deadlines. Classical grid planners, including A-star (A*), D-star Lite (D* Lite), and conflict-based search with D-star Lite (CBS-D*) and metaheuristics such asparticle swarm [...] Read more.
Emerging multi-unmanned aerial vehicle (multi-UAV) applications in smart cities must navigate cluttered airspace while meeting tight mobile edge computing (MEC) deadlines. Classical grid planners, including A-star (A*), D-star Lite (D* Lite), and conflict-based search with D-star Lite (CBS-D*) and metaheuristics such asparticle swarm optimization (PSO), either replan too slowly in dynamic scenes or waste energy on long detours. This paper presents PPO-adjusted incremental refinement (PAIR), a decentralized hybrid planner that couples an A* global backbone with a continuous PPO refinement module for multi-UAV navigation on two-dimensional (2-D) urban grids. A* produces feasible waypoint routes, while a shared risk-aware PPO policy applies local offsets from a compact state encoding. MEC tasks are allocated by a separate heterogeneous scheduler; PPO optimizes geometric objectives (path length, risk, and a normalized propulsion-energy surrogate). Across nine benchmark scenarios with static and Markovian dynamic obstacles, PAIR achieves 100% mission success (matching the strongest baselines) while delivering the best energy surrogate (104.9 normalized units) and shortest mean travel time (207.8 s) on a reproducible 100×100 grid at fixed UAV speed. Relative to the strongest non-learning baseline (PSO), PAIR reduces energy by about 4% and travel time by about 3%, and yields roughly 10–20% gains over the remaining planners. An obstacle-density sweep with 5–30 moving obstacles further shows that PAIR maintains shorter paths and the lowest cumulative replanning time, supporting real-time multi-UAV navigation in dynamic urban MEC environments. Full article
(This article belongs to the Special Issue Path Planning, Trajectory Tracking and Guidance for UAVs: 3rd Edition)
Show Figures

Figure 1

23 pages, 1961 KB  
Article
Quantum-Resilient Federated Learning for Multi-Layer Cyber Anomaly Detection in UAV Systems
by Canan Batur Şahin
Sensors 2026, 26(2), 509; https://doi.org/10.3390/s26020509 - 12 Jan 2026
Viewed by 133
Abstract
Unmanned Aerial Vehicles (UAVs) are increasingly used in civilian and military applications, making their communication and control systems targets for cyber attacks. The emerging threat of quantum computing amplifies these risks. Quantum computers could break the classical cryptographic schemes used in current UAV [...] Read more.
Unmanned Aerial Vehicles (UAVs) are increasingly used in civilian and military applications, making their communication and control systems targets for cyber attacks. The emerging threat of quantum computing amplifies these risks. Quantum computers could break the classical cryptographic schemes used in current UAV networks. This situation underscores the need for quantum-resilient, privacy-preserving security frameworks. This paper proposes a quantum-resilient federated learning framework for multi-layer cyber anomaly detection in UAV systems. The framework combines a hybrid deep learning architecture. A Variational Autoencoder (VAE) performs unsupervised anomaly detection. A neural network classifier enables multi-class attack categorization. To protect sensitive UAV data, model training is conducted using federated learning with differential privacy. Robustness against malicious participants is ensured through Byzantine-robust aggregation. Additionally, CRYSTALS-Dilithium post-quantum digital signatures are employed to authenticate model updates and provide long-term cryptographic security. Researchers evaluated the proposed framework on a real UAV attack dataset containing GPS spoofing, GPS jamming, denial-of-service, and simulated attack scenarios. Experimental results show the system achieves 98.67% detection accuracy with only 6.8% computational overhead compared to classical cryptographic approaches, while maintaining high robustness under Byzantine attacks. The main contributions of this study are: (1) a hybrid VAE–classifier architecture enabling both zero-day anomaly detection and precise attack classification, (2) the integration of Byzantine-robust and privacy-preserving federated learning for UAV security, and (3) a practical post-quantum security design validated on real UAV communication data. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

20 pages, 1248 KB  
Article
A Custom Transformer-Based Framework for Joint Traffic Flow and Speed Prediction in Autonomous Driving Contexts
by Behrouz Samieiyan and Anjali Awasthi
Future Transp. 2026, 6(1), 15; https://doi.org/10.3390/futuretransp6010015 - 12 Jan 2026
Viewed by 61
Abstract
Short-term traffic prediction is vital for intelligent transportation systems, enabling adaptive congestion control, real-time signal management, and dynamic route planning for autonomous vehicles (AVs). This study introduces a custom Transformer-based deep learning framework for joint forecasting of traffic flow and vehicle speed, leveraging [...] Read more.
Short-term traffic prediction is vital for intelligent transportation systems, enabling adaptive congestion control, real-time signal management, and dynamic route planning for autonomous vehicles (AVs). This study introduces a custom Transformer-based deep learning framework for joint forecasting of traffic flow and vehicle speed, leveraging handcrafted positional encoding and stacked multi-head attention layers to model multivariate traffic patterns. Evaluated against baselines including Long Short-Term Memory (LSTM), Support Vector Machine (SVM), Random Tree, and Random Forest on the Next-Generation Simulation (NGSIM) dataset, the model achieves 94.2% accuracy (Root Mean Squared Error (RMSE) 0.16) for flow and 92.1% accuracy for speed, outperforming traditional and deep learning approaches. A hybrid evaluation metric, integrating RMSE and threshold-based accuracy tailored to AV operational needs, enhances its practical relevance. With its parallel processing capability, this framework offers a scalable, real-time solution, advancing AV ecosystems and smart mobility infrastructure. Full article
Show Figures

Figure 1

18 pages, 1241 KB  
Article
Performance Evaluation of Cooperative Driving Automation Services Enabled by Edge Roadside Units
by Un-Seon Jung and Cheol Mun
Sensors 2026, 26(2), 504; https://doi.org/10.3390/s26020504 - 12 Jan 2026
Viewed by 112
Abstract
Research on Cooperative Driving Automation (CDA) has advanced to overcome the limited perception range of onboard sensors and the difficulty of inferring surrounding vehicles’ intentions by leveraging vehicle-to-everything (V2X) communications. This paper models how an autonomous vehicle receives cooperative sensing and cooperative maneuvering [...] Read more.
Research on Cooperative Driving Automation (CDA) has advanced to overcome the limited perception range of onboard sensors and the difficulty of inferring surrounding vehicles’ intentions by leveraging vehicle-to-everything (V2X) communications. This paper models how an autonomous vehicle receives cooperative sensing and cooperative maneuvering information generated at an edge roadside unit (edge RSU) that integrates roadside units (RSUs) with multi-access edge computing (MEC), and how the vehicle fuses this information with its onboard situational awareness and path-planning modules. We then analyze the performance gains of edge RSU-enabled services across diverse traffic environments. In a highway-merging scenario, simulations show that employing the edge RSU’s sensor sharing service (SSS) reduces collision risk relative to onboard-only baselines. For unsignalized intersections and roundabouts, we further propose a guidance-driven Hybrid Pairing Optimization (HPO) scheme in which the edge RSU aggregates CAV intents/trajectories, resolves spatiotemporal conflicts via lightweight pairing and time window allocation, and broadcasts maneuver guidance through MSCM. Unlike a first-come, first-served (FCFS) policy that serializes passage, HPO injects edge guidance as soft constraints while preserving arrival order fairness, enabling safe concurrent passage opportunities when feasible. Across intersections and roundabouts, HPO improves average speed by up to 192% and traffic throughput by up to 209% compared with FCFS under identical demand in our simulations. Full article
(This article belongs to the Special Issue Cooperative Perception and Control for Autonomous Vehicles)
Show Figures

Figure 1

24 pages, 7954 KB  
Article
Machine Learning-Based Prediction of Maximum Stress in Observation Windows of HOV
by Dewei Li, Zhijie Wang, Zhongjun Ding and Xi An
J. Mar. Sci. Eng. 2026, 14(2), 151; https://doi.org/10.3390/jmse14020151 - 10 Jan 2026
Viewed by 162
Abstract
With advances in deep-sea exploration technologies, utilizing human-occupied vehicles (HOV) in marine science has become widespread. The observation window is a critical component, as its structural strength affects submersible safety and performance. Under load, it experiences stress concentration, deformation, cracking, and catastrophic failure. [...] Read more.
With advances in deep-sea exploration technologies, utilizing human-occupied vehicles (HOV) in marine science has become widespread. The observation window is a critical component, as its structural strength affects submersible safety and performance. Under load, it experiences stress concentration, deformation, cracking, and catastrophic failure. The observation window will experience different stress distributions in high-pressure environments. The maximum principal stress is the most significant phenomenon that determines the most likely failure of materials in windows of HOV. This study proposes an artificial intelligence-based method to predict the maximum principal stress of observation windows in HOV for rapid safety assessment. Samples were designed, while strain data with corresponding maximum principal stress values were collected under different loading conditions. Three machine learning algorithms—transformer–CNN-BiLSTM, CNN-LSTM, and Gaussian process regression (GP)—were employed for analysis. Results show that the transformer–CNN-BiLSTM model achieved the highest accuracy, particularly at the point exhibiting the maximum the principal stress value. Evaluation metrics, including mean squared error (MSE), mean absolute error (MAE), and root squared residual (RSR), confirmed its superior performance. The proposed hybrid model incorporates a positional encoding layer to enrich input data with locational information and combines the strengths of bidirectional long short-term memory (LSTM), one-dimensional CNN, and transformer–CNN-BiLSTM encoders. This approach effectively captures local and global stress features, offering a reliable predictive tool for health monitoring of submersible observation windows. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 1614 KB  
Article
A Hybrid Genetic Algorithm for Sustainable Multi-Site Logistics: Integrating Production, Inventory, and Distribution Planning with Proactive CO2 Emission Forecasting
by Nejah Jemal, Imen Raies, Amira Sellami, Zied Hajej and Kamar Diaz
Sustainability 2026, 18(2), 671; https://doi.org/10.3390/su18020671 - 8 Jan 2026
Viewed by 120
Abstract
This paper introduces a novel, integrated optimization framework for sustainable multi-site logistics planning, which simultaneously addresses production, inventory, and distribution decisions. The proposed hybrid methodology combines a Genetic Algorithm (GA) with Linear Programming (LP) to minimize total logistics costs while proactively integrating environmental [...] Read more.
This paper introduces a novel, integrated optimization framework for sustainable multi-site logistics planning, which simultaneously addresses production, inventory, and distribution decisions. The proposed hybrid methodology combines a Genetic Algorithm (GA) with Linear Programming (LP) to minimize total logistics costs while proactively integrating environmental impact assessment. The model determines optimal production schedules across multiple facilities, manages inventory levels, and solves the Vehicle Routing Problem (VRP) for distribution. A key innovation is the incorporation of a CO2 emission forecasting module directly into the optimization loop, allowing the algorithm to anticipate and mitigate the environmental consequences of logistics decisions during the planning phase, rather than performing a post-hoc evaluation. The framework was implemented in Python 3.13.4, utilizing the PuLP library for LP components and custom-developed GA routines. Its performance was validated through a numerical case study and a series of sensitivity analyses, which investigated the effects of fluctuating demand and key cost parameters. The results demonstrate that the inclusion of emission forecasting enables the identification of solutions that achieve a superior balance between economic and environmental objectives, leading to significant reductions in both total costs and predicted CO2 emissions. This work provides practitioners with a scalable and practical decision-support tool for designing more sustainable and resilient multi-echelon supply chains. Full article
Show Figures

Figure 1

19 pages, 2727 KB  
Article
Research on Effectiveness Evaluation Method of Vehicle Speed Prediction in Predictive Energy Management
by Chaoyang Sun, Daxin Chen, Guowei Cao, Mingwei Zeng and Tao Chen
Energies 2026, 19(2), 325; https://doi.org/10.3390/en19020325 - 8 Jan 2026
Viewed by 139
Abstract
Speed prediction is fundamental to optimizing energy management strategies. Common evaluation metrics such as Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) focus primarily on the numerical deviation between predicted and actual speeds. However, when applied to hybrid vehicle energy management [...] Read more.
Speed prediction is fundamental to optimizing energy management strategies. Common evaluation metrics such as Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) focus primarily on the numerical deviation between predicted and actual speeds. However, when applied to hybrid vehicle energy management strategy optimization, speed prediction models based on these metrics show a random deviation between energy consumption results and the theoretical optimal, indicating that these metrics are not effective in this application domain. To explore a more effective method for evaluating the practical application of speed prediction curves, this study uses multiple metrics to assess numerous speed prediction curves and analyses the correlation between each metric and the deviation from the optimal energy consumption during energy management strategy optimization. The results show that considering acceleration is more aligned with the needs of energy management strategy optimization than merely evaluating the proximity of speed values. Specifically, the standard deviation of the acceleration time ratio deviation performs better than traditional metrics like RMSE and MAE in distinguishing the effectiveness of speed prediction curves. The smaller the standard deviation of the acceleration time ratio deviation between the predicted and actual speed curves, the closer the energy consumption results of energy management based on the predicted speed curve are to the theoretical optimal. Full article
Show Figures

Figure 1

15 pages, 16716 KB  
Article
MCAH-ACO: A Multi-Criteria Adaptive Hybrid Ant Colony Optimization for Last-Mile Delivery Vehicle Routing
by De-Tian Chu, Xin-Yu Cheng, Lin-Yuan Bai and Hai-Feng Ling
Sensors 2026, 26(2), 401; https://doi.org/10.3390/s26020401 - 8 Jan 2026
Viewed by 154
Abstract
The growing demand for efficient last-mile delivery has made routing optimization a critical challenge for logistics providers. Traditional vehicle routing models typically minimize a single criterion, such as travel distance or time, without considering broader social and environmental impacts. This paper proposes a [...] Read more.
The growing demand for efficient last-mile delivery has made routing optimization a critical challenge for logistics providers. Traditional vehicle routing models typically minimize a single criterion, such as travel distance or time, without considering broader social and environmental impacts. This paper proposes a novel Multi-Criteria Adaptive Hybrid Ant Colony Optimization (MCAH-ACO) algorithm for solving the delivery vehicle routing problem formulated as a Multiple Traveling Salesman Problem (MTSP). The proposed MCAH-ACO introduces three key innovations: a multi-criteria pheromone decomposition strategy that maintains separate pheromone matrices for each optimization objective, an adaptive weight balancing mechanism that dynamically adjusts criterion weights to prevent dominance by any single objective, and a 2-opt local search enhancement integrated with elite archive diversity preservation. A comprehensive cost function is designed to integrate four categories of factors: distance, time, social-environmental impact, and safety. Extensive experiments on real-world data from the Greater Toronto Area demonstrate that MCAH-ACO significantly outperforms existing approaches including Genetic Algorithm (GA), Adaptive GA, and standard Max–Min Ant System (MMAS), achieving 12.3% lower total cost and 18.7% fewer safety-critical events compared with the best baseline while maintaining computational efficiency. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

30 pages, 4746 KB  
Article
Influence of Blending Model n-Butanol Alcoholysis Derived Advanced Biofuel Blends with Diesel on the Regulated Emissions from a Diesel Hybrid Vehicle
by Scott Wiseman, Karl Ropkins, Hu Li and Alison S. Tomlin
Energies 2026, 19(2), 308; https://doi.org/10.3390/en19020308 - 7 Jan 2026
Viewed by 156
Abstract
Decarbonisation of the transport sector, whilst reducing pollutant emissions, will likely involve the utilisation of multiple strategies, including hybridisation and the use of alternative fuels such as advanced biofuels as mandated by the EU. Alcoholysis of lignocellulosic feedstocks, using n-butanol as the [...] Read more.
Decarbonisation of the transport sector, whilst reducing pollutant emissions, will likely involve the utilisation of multiple strategies, including hybridisation and the use of alternative fuels such as advanced biofuels as mandated by the EU. Alcoholysis of lignocellulosic feedstocks, using n-butanol as the solvent, can produce such potential advanced biofuel blends. Butyl blends, consisting of n-butyl levulinate (nBL), di-n-butyl ether, and n-butanol, were selected for this study. Three butyl blends with diesel, two at 10 vol% biofuel and one at 25 vol% biofuel, were tested in a Euro 6b-compliant diesel hybrid vehicle to determine the influence of the blends on regulated emissions and fuel economy. Real Driving Emissions (RDE) were measured for three cold start tests with each fuel using a Portable Emissions Measurement System (PEMS) for carbon monoxide (CO), particle number (PN), and nitrogen oxides (NOX = NO + NO2). When using the butyl blends, there was no noticeable change in vehicle drivability and only a small fuel economy penalty of up to 5% with the biofuel blends relative to diesel. CO, NOX, and PN emissions were below or within one standard deviation of the Euro 6 not-to-exceed limits for all fuels tested. The CO and PN emissions reduced relative to diesel by up to 72% and 57%, respectively. NOX emissions increased relative to diesel by up to 25% and increased with both biofuel fraction and the amount of nBL in that fraction. The CO emitted during the cold start period was reduced by up to 52% for the 10 vol% blends but increased by 25% when using the 25 vol% blend. NOX and PN cold start emissions reduced relative to diesel for all three biofuel blends by up to 29% and 88%, respectively. It is envisaged that the butyl blends could reduce net carbon emissions without compromising or even improving air pollutant emissions, although optimisation of the after-treatment systems may be necessary to ensure emissions limits are met. Full article
(This article belongs to the Special Issue Performance and Emissions of Vehicles and Internal Combustion Engines)
Show Figures

Figure 1

Back to TopTop