Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,381)

Search Parameters:
Keywords = High mobility group A

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 3410 KB  
Review
Application of Rejuvenators in Asphalt Binders: Classification and Micro- and Macro-Properties
by Chengwei Xing, Weichao Zhou, Bohan Zhu, Haozongyang Li and Shixian Tang
Coatings 2025, 15(10), 1177; https://doi.org/10.3390/coatings15101177 - 8 Oct 2025
Abstract
Rejuvenating aged asphalt is critical for sustainable road construction and resource utilization. This paper systematically reviews the current research on rejuvenators, focusing on their classification and the micro-, and macro-properties of rejuvenated asphalt. Rejuvenators are categorized into mineral oil-based, bio-based, and compound types. [...] Read more.
Rejuvenating aged asphalt is critical for sustainable road construction and resource utilization. This paper systematically reviews the current research on rejuvenators, focusing on their classification and the micro-, and macro-properties of rejuvenated asphalt. Rejuvenators are categorized into mineral oil-based, bio-based, and compound types. Each type offers distinct advantages in recovering the performance of aged asphalt. Mineral oil-based rejuvenators primarily enhance low-temperature cracking resistance through physical dilution, while bio-based rejuvenators demonstrate superior environmental sustainability and stability. Compound rejuvenators, particularly those incorporating reactive compounds, show the best results in repairing degraded polymer modifiers and improving both low- and high-temperature properties of aged, modified asphalt. Atomic Force Microscopy (AFM), Fluorescence Microscopy (FM), and Scanning Electron Microscopy (SEM) have been applied to analyze the micro-properties of rejuvenated asphalt. These techniques have revealed that rejuvenators can restore the microstructure of aged asphalt by dispersing agglomerated asphaltenes and promoting molecular mobility. Functional groups and molecular weight changes, characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Gel Permeation Chromatography (GPC), indicate that rejuvenators effectively reduce oxidation products and molecular weight of aged asphalt, restoring its physicochemical properties. Macro-property evaluations show that rejuvenators significantly improve penetration, ductility, and fatigue resistance. Finally, this review identifies the key characteristics and challenges associated with rejuvenator applications and provides an outlook on future research directions. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

38 pages, 6401 KB  
Review
Silicon Nanostructures for Hydrogen Generation and Storage
by Gauhar Mussabek, Gulmira Yar-Mukhamedova, Sagi Orazbayev, Valeriy Skryshevsky and Vladimir Lysenko
Nanomaterials 2025, 15(19), 1531; https://doi.org/10.3390/nano15191531 - 7 Oct 2025
Abstract
Today, hydrogen is already widely regarded as up-and-coming source of energy. It is essential to meet energy needs while reducing environmental pollution, since it has a high energy capacity and does not emit carbon oxide when burned. However, for the widespread application of [...] Read more.
Today, hydrogen is already widely regarded as up-and-coming source of energy. It is essential to meet energy needs while reducing environmental pollution, since it has a high energy capacity and does not emit carbon oxide when burned. However, for the widespread application of hydrogen energy, it is necessary to search new technical solutions for both its production and storage. A promising effective and cost-efficient method of hydrogen generation and storage can be the use of solid materials, including nanomaterials in which chemical or physical adsorption of hydrogen occurs. Focusing on the recommendations of the DOE, the search is underway for materials with high gravimetric capacity more than 6.5% wt% and in which sorption and release of hydrogen occurs at temperatures from −20 to +100 °C and normal pressure. This review aims to summarize research on hydrogen generation and storage using silicon nanostructures and silicon composites. Hydrogen generation has been observed in Si nanoparticles, porous Si, and Si nanowires. Regardless of their size and surface chemistry, the silicon nanocrystals interact with water/alcohol solutions, resulting in their complete oxidation, the hydrolysis of water, and the generation of hydrogen. In addition, porous Si nanostructures exhibit a large internal specific surface area covered by SiHx bonds. A key advantage of porous Si nanostructures is their ability to release molecular hydrogen through the thermal decomposition of SiHx groups or in interaction with water/alkali. The review also covers simulations and theoretical modeling of H2 generation and storage in silicon nanostructures. Using hydrogen with fuel cells could replace Li-ion batteries in drones and mobile gadgets as more efficient. Finally, some recent applications, including the potential use of Si-based agents as hydrogen sources to address issues associated with new approaches for antioxidative therapy. Hydrogen acts as a powerful antioxidant, specifically targeting harmful ROS such as hydroxyl radicals. Antioxidant therapy using hydrogen (often termed hydrogen medicine) has shown promise in alleviating the pathology of various diseases, including brain ischemia–reperfusion injury, Parkinson’s disease, and hepatitis. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

31 pages, 9930 KB  
Review
A Comprehensive Review of Improved A* Path Planning Algorithms and Their Hybrid Integrations
by Doan Thanh Xuan, Nguyen Thanh Hung and Vu Toan Thang
Automation 2025, 6(4), 52; https://doi.org/10.3390/automation6040052 - 7 Oct 2025
Viewed by 21
Abstract
The A* algorithm is a cornerstone in mobile robot navigation. However, the traditional A* suffers from key limitations such as poor path smoothness, lack of adaptability to dynamic environments, and high computational costs in large-scale maps. This review presents a comprehensive analysis of [...] Read more.
The A* algorithm is a cornerstone in mobile robot navigation. However, the traditional A* suffers from key limitations such as poor path smoothness, lack of adaptability to dynamic environments, and high computational costs in large-scale maps. This review presents a comprehensive analysis of 20 recent studies (2020–2025) on improved A* variants and their hybrid integrations with complementary algorithms. The improvements are categorized into two core strategies: (i) geometric and structural optimization, heuristic weighting and adaptive search schemes in A* algorithm, and (ii) hybrid models combining A* with local planners such as Dynamic Window Approach (DWA), Artificial Potential Field (APF), and Particle Swarm Optimization (PSO). For each group, the mathematical formulations of evaluation functions, smoothing techniques, and constraint handling mechanisms are detailed. Notably, hybrid frameworks demonstrate improved robustness in dynamic or partially known environments by leveraging A* for global optimality and local planners for real-time adaptability. Case studies with simulated grid maps and benchmark scenarios show that even marginal improvements in path length can coincide with substantial gains in safety and directional stability. This review not only synthesizes the state of the art in A*-based planning but also outlines design principles for building intelligent, adaptive, and computationally efficient navigation systems. Full article
(This article belongs to the Section Robotics and Autonomous Systems)
Show Figures

Figure 1

15 pages, 1082 KB  
Article
Effects of High-Intensity Interval Training on Functional Fitness in Older Adults
by André Schneider, Luciano Bernardes Leite, Fernando Santos, José Teixeira, Pedro Forte, Tiago M. Barbosa and António Miguel Monteiro
Appl. Sci. 2025, 15(19), 10745; https://doi.org/10.3390/app151910745 - 6 Oct 2025
Viewed by 312
Abstract
(1) Background: The global increase in life expectancy has generated growing interest in strategies that support functional independence and quality of life among older adults. Functional fitness—including strength, mobility, flexibility, and aerobic endurance—is essential for preserving autonomy during aging. In this context, physical [...] Read more.
(1) Background: The global increase in life expectancy has generated growing interest in strategies that support functional independence and quality of life among older adults. Functional fitness—including strength, mobility, flexibility, and aerobic endurance—is essential for preserving autonomy during aging. In this context, physical exercise, particularly High-Intensity Interval Training (HIIT), has gained attention for its time efficiency and physiological benefits. This randomized controlled trial aimed to evaluate the effects of a group-based HIIT program on functional fitness in older adults; (2) Methods: Functional outcomes were assessed before, during, and after a 65-week intervention using standardized field tests, including measures of upper and lower body strength, flexibility, aerobic endurance, and agility. This study was prospectively registered at ClinicalTrials.gov (NCT07170579); (3) Results: Significant improvements were observed in the HIIT group across multiple domains of functional fitness compared to the control group, notably in upper body strength, lower limb flexibility, cardiorespiratory endurance, and mobility; (4) Conclusions: These results suggest that HIIT is an effective and adaptable strategy for improving functional fitness in older adults, with the potential to enhance performance in daily activities and support healthy aging in community settings. Full article
(This article belongs to the Special Issue Sports, Exercise and Healthcare)
Show Figures

Figure 1

23 pages, 2731 KB  
Article
Catalytic IgG Antibodies Hydrolyze DNA, Histones, and HMGB1 in Systemic Lupus Erythematosus
by Mark M. Melamud, Evgeny A. Ermakov, Anna S. Tolmacheva, Irina A. Kostrikina, Alexey E. Sizikov, Georgy A. Nevinsky and Valentina N. Buneva
Int. J. Mol. Sci. 2025, 26(19), 9635; https://doi.org/10.3390/ijms26199635 - 2 Oct 2025
Viewed by 303
Abstract
Antinuclear antibodies, especially anti-DNA antibodies, are known to be a hallmark of systemic lupus erythematosus (SLE) and represent a diverse pool of autoantibodies with different origins, antigenic properties, and physicochemical features. Antibodies with catalytic properties have been found among the antibody repertoire in [...] Read more.
Antinuclear antibodies, especially anti-DNA antibodies, are known to be a hallmark of systemic lupus erythematosus (SLE) and represent a diverse pool of autoantibodies with different origins, antigenic properties, and physicochemical features. Antibodies with catalytic properties have been found among the antibody repertoire in SLE, but the specific features and clinical associations of such antibodies have not been sufficiently studied. This study showed that chromatographically purified IgG from the serum of SLE patients effectively hydrolyzed DNA and DNA-associated proteins such as histones and high-mobility group box 1 (HMGB1) compared to healthy individuals. Remarkably, the level of hydrolysis of DNA and DNA-associated proteins was closely correlated. At the same time, these antibodies did not hydrolyze the control protein, tumor necrosis factor-α (TNFα), which does not possess DNA-binding properties. IgG DNase activity levels varied significantly, so patients were divided into high- and low-activity subgroups using the DBSCAN algorithm, with the difference between median values being greater than 49 times. The subgroup with high IgG DNase activity was characterized by an increase in anti-DNA antibodies (p < 0.04) than the subgroup with low activity, which had a shorter duration of the disease (p = 0.03) and was more often characterized by a subacute rather than a non-chronic course of the disease (p = 0.048). High catalase-like activity of IgG was also detected in SLE. Thus, the antibody pool in SLE contains not only high-affinity antinuclear autoantibodies but also catalytic antibodies capable of hydrolyzing DNA and DNA-associated proteins. These findings expand our understanding of the heterogeneity of the repertoire of catalytic autoantibodies among SLE patients. Full article
Show Figures

Figure 1

13 pages, 1151 KB  
Article
Effects of Neuromuscular Training on Stable Versus Unstable Surfaces on Unilateral Force Production and Stability in Elite Male Soccer Players
by Sergio Jiménez-Rubio, David García-Albín, José Luis Estévez Rodríguez and Sergio L. Jiménez-Sáiz
J. Funct. Morphol. Kinesiol. 2025, 10(4), 379; https://doi.org/10.3390/jfmk10040379 - 1 Oct 2025
Viewed by 666
Abstract
Background: Neuromuscular training is widely implemented in professional football to enhance performance and reduce injury risk. Although unstable surfaces are commonly used for proprioceptive and rehabilitation purposes, limited evidence supports their effectiveness in improving sport-specific force production and stability in elite athletes. This [...] Read more.
Background: Neuromuscular training is widely implemented in professional football to enhance performance and reduce injury risk. Although unstable surfaces are commonly used for proprioceptive and rehabilitation purposes, limited evidence supports their effectiveness in improving sport-specific force production and stability in elite athletes. This study aimed to compare the effects of multicomponent neuromuscular training performed on stable versus unstable surfaces on unilateral force production, mobility, and agility in elite male soccer players. Methods: Twenty-seven professional male soccer players from the Spanish first division were randomly assigned to either a stable surface group (SSG; n = 14) or an unstable surface group (USG; n = 13). Both groups completed a 10-week intervention in addition to their regular training routines. Pre- and post-intervention assessments included dorsiflexion range of motion (DFt), Y-Balance Test (YBT), single-leg countermovement jump (SLCMJ), single-leg hop for distance (SLH), side-hop (SH), Speedy Jump (SpJ), Agility T-test (TT), and the Lower Extremity Functional Test (LEFT). A two-way repeated-measures ANOVA and Hedges’ g effect sizes were used for statistical analysis. Results: The SSG showed significant improvements in most performance variables, including DFt, YBT, SLH, SH, SpJ, TT, and LEFT (percent change range: 1.6% to 9.8%; Hedges’ g ranging from 0.52 to 2.57). The USG showed limited improvements, with significant changes only in LEFT (percent change = 1.18%; Hedges’ g = 0.53). Notably, the stable surface group demonstrated enhanced force production and agility, particularly in the non-dominant limb. Conclusions: Multicomponent neuromuscular training on stable surfaces appears more effective than training on unstable surfaces for improving unilateral strength, mobility, and agility in elite soccer players. These findings suggest that stable surface training may provide superior performance benefits and should be considered a priority in high-performance environments. Full article
Show Figures

Figure 1

16 pages, 619 KB  
Systematic Review
Risk Factors and Prevention of Musculoskeletal Injuries in Adolescent and Adult High-Performance Tennis Players: A Systematic Review
by María Soledad Amor-Salamanca, Eva María Rodríguez-González, Domingo Rosselló, María de Lluc-Bauza, Francisco Hermosilla-Perona, Adrián Martín-Castellanos and Ivan Herrera-Peco
Sports 2025, 13(10), 336; https://doi.org/10.3390/sports13100336 - 1 Oct 2025
Viewed by 445
Abstract
Background: High-performance tennis exposes players to repetitive high-load strokes and abrupt directional changes, which substantially increase musculoskeletal injury risk. This systematic review synthesized evidence on epidemiology, risk factors, and physiotherapy-led preventive strategies in elite adolescent and adult players. Methods: Following a PROSPERO-registered protocol, [...] Read more.
Background: High-performance tennis exposes players to repetitive high-load strokes and abrupt directional changes, which substantially increase musculoskeletal injury risk. This systematic review synthesized evidence on epidemiology, risk factors, and physiotherapy-led preventive strategies in elite adolescent and adult players. Methods: Following a PROSPERO-registered protocol, MEDLINE, Web of Science, and Scopus were searched (2011–2024) for observational studies reporting epidemiological outcomes in high-performance tennis. Methodological quality was appraised with NIH tools, and certainty of evidence was graded with GRADE. Results: Thirty-seven studies met inclusion criteria: 16 in adolescents, 18 in adults, and 3 mixed. Incidence ranged from 2.1 to 3.5 injuries/1000 h in juniors and 1.25 to 56.6/1000 h in adults. Seasonal prevalence was 46–54% in juniors and 30–54% in professionals. Lower-limb trauma (48–56%) predominated, followed by lumbar (12–39%) and shoulder overuse syndromes. Across age groups, abrupt increases in the acute-to-chronic workload ratio (≥1.3 in juniors; ≥1.5 in adults) were the strongest extrinsic predictor of injury. Intrinsic contributors included reduced glenohumeral internal rotation, scapular dyskinesis, and poor core stability. Three prevention clusters emerged: (1) External load control, four-week “ramp-up” strategies reduced injury incidence by up to 21%; (2) Kinetic-chain conditioning, core stability plus eccentric rotator-cuff training decreased overuse by 26% and preserved shoulder mobility; and (3) Technique/equipment adjustments, grip-size personalization halved lateral epicondylalgia, while serve-timing modifications reduced shoulder torque. Conclusions: Injury risk in high-performance tennis is quantifiable and preventable. Progressive load management targeted kinetic-chain conditioning, and tailored technique/equipment modifications represent the most effective evidence-based safeguards for adolescent and adult elite players. Full article
Show Figures

Figure 1

69 pages, 1993 KB  
Review
Glycyrrhizin (Glycyrrhizic Acid)—Pharmacological Applications and Associated Molecular Mechanisms
by Deepak Kumar Semwal, Ankit Kumar, Ruchi Badoni Semwal, Nand Kishor Dadhich, Ashutosh Chauhan and Vineet Kumar
Drugs Drug Candidates 2025, 4(4), 44; https://doi.org/10.3390/ddc4040044 - 30 Sep 2025
Viewed by 818
Abstract
Background/Objectives: Natural products, especially plant metabolites, play a crucial role in drug development and are widely used in medicine, cosmetics, and nutrition. The present review aims to provide a comprehensive overview of the pharmacological profile of Glycyrrhizin (GL), with a specific focus on [...] Read more.
Background/Objectives: Natural products, especially plant metabolites, play a crucial role in drug development and are widely used in medicine, cosmetics, and nutrition. The present review aims to provide a comprehensive overview of the pharmacological profile of Glycyrrhizin (GL), with a specific focus on its molecular targets. Methods: Scientific literature was thoroughly retrieved from reputable databases, including Scopus, Web of Science, and PubMed, up to 30 July 2025. The keywords “glycyrrhizin” and “glycyrrhizic acid” were used to identify relevant references, with a focus on pharmacological applications. Studies on synthetic analogs, non-English publications, non-pharmacological applications, and GL containing crude extracts were largely excluded. Results: Glycyrrhizin, the major bioactive constituent of Glycyrrhiza glabra, exhibits diverse pharmacological activities, including anti-inflammatory, antiviral, hepatoprotective, antitumor, neuroprotective, and immunomodulatory effects. These actions are primarily mediated through the inhibition of high-mobility group box 1 (HMGB1) and the modulation of key signaling pathways, including nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), and various cytokine networks. As a result of its therapeutic potential, GL-based formulations, including Stronger Neo-Minophagen C, and GL-rich extracts of G. glabra are commercially available as pharmaceutical preparations and food additives. Conclusions: Despite its therapeutic potential, the clinical application of GL is limited by poor oral bioavailability, metabolic variability, and adverse effects such as pseudoaldosteronism. Hence, careful consideration of pharmacokinetics and safety is essential for translating its therapeutic potential into clinical practice. Full article
(This article belongs to the Section Drug Candidates from Natural Sources)
Show Figures

Graphical abstract

21 pages, 1038 KB  
Article
In-Hospital LSVT BIG Training Versus Structured Rehabilitation Treatment in Parkinson’s Disease: Feasibility and Primary Evaluation on Functional and Respiratory Outcomes
by Francesco Estatico, Adriana Olivares, Laura Comini, Mara Paneroni, Michele Vitacca, Francesca Tavolazzi, Giovanna Maffi, Chiara Forlani and Giuliana Vezzadini
Appl. Sci. 2025, 15(19), 10611; https://doi.org/10.3390/app151910611 - 30 Sep 2025
Viewed by 118
Abstract
Lee Silverman Voice Treatment (LSVT) BIG, primarily developed for outpatient use, is a prominent intervention for patients with Parkinson’s disease thanks to its high-intensity, repetitive exercises involving large movements. This study first evaluated the feasibility of an in-hospital LSVT BIG training program by [...] Read more.
Lee Silverman Voice Treatment (LSVT) BIG, primarily developed for outpatient use, is a prominent intervention for patients with Parkinson’s disease thanks to its high-intensity, repetitive exercises involving large movements. This study first evaluated the feasibility of an in-hospital LSVT BIG training program by assessing recruitment capability, compliance, and adherence. The secondary objective was to evaluate the effects of LSVT BIG training on gait, balance, and functional outcomes, as well as respiratory function and quality of life, in comparison with a progressive structured rehabilitation program (SC) of similar intensity and frequency. In-hospital LSVT BIG training for people with Parkinson’s disease was feasible, with 95% recruitment rates and 100% safety and adherence. SC (n = 19) and LSVT BIG (n = 19) significantly improved (for all, p < 0.05) pre-to-post balance (MiniBESTest) and lower limb effort tolerance (6MWT). Delta changes between groups favored LSVT for upper limb effort tolerance (UULEX level, time, p < 0.001), gait speed, and UULEX SatO2 mean, PCEF, MiniBESTest and 6MWT (for all, p < 0.05). Evaluation of the probability associated with the LSVT BIG showed MiniBESTest as being 8.5 times more likely to exceed the MCID compared to SC. Quality of life was unchanged across both groups. This study successfully demonstrates the feasibility of in-hospital LSVT-BIG® training, and comparison of outcomes, although exploratory and underpowered, showed better improvements in mobility, balance, and effort tolerance, suggesting a complementary role within traditional rehabilitation protocols. Full article
(This article belongs to the Special Issue Advances in Neurological Physical Therapy)
10 pages, 1628 KB  
Article
Improving the Performance of Ultrathin ZnO TFTs Using High-Pressure Hydrogen Annealing
by Hae-Won Lee, Minjae Kim, Jae Hyeon Jun, Useok Choi and Byoung Hun Lee
Nanomaterials 2025, 15(19), 1484; https://doi.org/10.3390/nano15191484 - 28 Sep 2025
Viewed by 260
Abstract
Ultrathin oxide semiconductors are promising channel materials for next-generation thin-film transistors (TFTs), but their performance is severely limited by bulk and interface defects as the channel thickness approaches a few nanometers. In this study, we show that high-pressure hydrogen annealing (HPHA) effectively mitigates [...] Read more.
Ultrathin oxide semiconductors are promising channel materials for next-generation thin-film transistors (TFTs), but their performance is severely limited by bulk and interface defects as the channel thickness approaches a few nanometers. In this study, we show that high-pressure hydrogen annealing (HPHA) effectively mitigates these limitations in 3.6 nm thick ZnO TFTs. HPHA-treated devices exhibit a nearly four-fold increase in on-current, a steeper subthreshold swing, and a negative shift in threshold voltage compared to reference groups. X-ray photoelectron spectroscopy reveals a marked reduction in oxygen vacancies and hydroxyl groups, while capacitance–voltage measurements confirm more than a three-fold decrease in interface trap density. Low-frequency noise analysis further demonstrates noise suppression and a transition in the dominant noise mechanism from carrier number fluctuation to mobility fluctuation. These results establish HPHA as a robust strategy for defect passivation in ultrathin oxide semiconductor channels and provide critical insights for their integration into future low-power, high-density electronic systems. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Graphical abstract

19 pages, 880 KB  
Article
Economic Burden of Human Immunodeficiency Virus and Hypertension Care Among MOPHADHIV Trial Participants: Patient Costs and Determinants of Out-of-Pocket Expenditure in South Africa
by Danleen James Hongoro, Andre Pascal Kengne, Nasheeta Peer, Kim Nguyen, Kirsty Bobrow and Olufunke A. Alaba
Int. J. Environ. Res. Public Health 2025, 22(10), 1488; https://doi.org/10.3390/ijerph22101488 - 25 Sep 2025
Viewed by 221
Abstract
Background: Human immunodeficiency virus and hypertension increasingly co-occur in South Africa. Despite publicly funded care, patients with multimorbidity face high out-of-pocket costs, yet limited evidence exists from the patient perspective. Purpose: To quantify the economic burden of comorbid HIV and hypertension, assess predictors [...] Read more.
Background: Human immunodeficiency virus and hypertension increasingly co-occur in South Africa. Despite publicly funded care, patients with multimorbidity face high out-of-pocket costs, yet limited evidence exists from the patient perspective. Purpose: To quantify the economic burden of comorbid HIV and hypertension, assess predictors of monthly out-of-pocket costs, and explore coping mechanisms. Methods: We conducted a cross-sectional analysis using patient-level data from the Mobile Phone Text Messages to Improve Hypertension Medication Adherence in Adults with HIV (MOPHADHIV trial) [Trial number: PACTR201811878799717], a randomized controlled trial evaluating short messages services adherence support for hypertension care in people with HIV. We calculated the monthly direct non-medical, indirect, and coping costs from a patient perspective, valuing indirect costs using both actual income and minimum wage assumptions. Generalized linear models with a gamma distribution and log link were used to identify cost determinants. Catastrophic expenditure thresholds (10–40% of monthly income) were assessed. Results: Among 683 participants, mean monthly total costs were ZAR 105.81 (USD 5.72) using actual income and ZAR 182.3 (USD 9.9) when valuing indirect costs by minimum wage. These time-related productivity losses constituted the largest share of overall expenses. Regression models revealed a strong income gradient: participants in the richest quintile incurred ZAR 131.9 (95% CI: 63.6–200.1) more per month than the poorest. However, this gradient diminished or reversed under standardized wage assumptions, suggesting a heavier proportional burden on middle-income groups. Other socio-demographic factors (gender, employment, education) not significantly associated with total costs, likely reflecting the broad reach of South Africa’s primary health system. Nearly half of the participants also reported resorting to coping mechanisms such as borrowing or asset sales. Conclusions: Comorbid HIV and hypertension impose substantial patient costs, predominantly indirect. Income disparities drive variation, raising equity concerns. Strengthening integrated human immunodeficiency virus—non-communicable diseases care and targeting financial support are key to advancing South Africa’s Universal Health Coverage reforms. Full article
(This article belongs to the Special Issue Health Inequalities in Primary Care)
Show Figures

Figure 1

18 pages, 3816 KB  
Article
The HMGB1-RAGE Axis Drives the Proneural-to-Mesenchymal Transition and Aggressiveness in Glioblastoma
by Hao-Chien Yang, Yu-Kai Su, Vijesh Kumar Yadav, Iat-Hang Fong, Heng-Wei Liu and Chien-Min Lin
Int. J. Mol. Sci. 2025, 26(19), 9352; https://doi.org/10.3390/ijms26199352 - 25 Sep 2025
Viewed by 291
Abstract
Glioblastoma (GBM) remains the most lethal primary brain tumor, owing to profound intratumoral heterogeneity and the limited efficacy of standard treatments. The mesenchymal (MES) molecular subtype is particularly aggressive, exhibiting heightened invasiveness, therapy resistance, and dismal patient survival compared with the proneural (PN) [...] Read more.
Glioblastoma (GBM) remains the most lethal primary brain tumor, owing to profound intratumoral heterogeneity and the limited efficacy of standard treatments. The mesenchymal (MES) molecular subtype is particularly aggressive, exhibiting heightened invasiveness, therapy resistance, and dismal patient survival compared with the proneural (PN) subtype. Emerging evidence implicates the High Mobility Group Box 1 (HMGB1) protein and its cognate receptor, the Receptor for Advanced Glycation End Products (RAGE), as drivers of malignant progression, yet their contribution to the PN-to-MES transition is incompletely defined. We integrated transcriptomic analyses of TCGA-GBM and TCGA-LGG cohorts with immunohistochemistry on in-house patient specimens. Functional studies in patient-derived and established GBM cell lines included migration and invasion assays, tumorsphere formation assays, shRNA knockdowns, and Seahorse XF metabolic profiling to interrogate the HMGB1-RAGE axis. HMGB1 and RAGE expression was markedly elevated in MES GBM tissues and cell lines. Importantly, higher HMGB1 expression correlated with shortened overall survival (p < 0.009). HMGB1 silencing curtailed cell motility and downregulated core epithelial-to-mesenchymal transition markers (N-cadherin, Snail). RAGE knockdown diminished tumorsphere formation efficiency and reduced transcription of stemness genes (OCT4), underscoring its role in sustaining tumor-initiating capacity. Metabolically, HMGB1/RAGE activation boosted both mitochondrial respiration and glycolysis, conferring the bioenergetic flexibility characteristic of MES GBM. The HMGB1-RAGE signaling axis orchestrates mesenchymal identity, invasiveness, stem cell-like properties, and metabolic reprogramming in GBM. Targeting this pathway may disrupt the PN-to-MES transition, mitigate therapeutic resistance, and ultimately improve outcomes for glioblastoma patients. Full article
(This article belongs to the Special Issue Advanced Molecular Research in Brain Tumors)
Show Figures

Graphical abstract

13 pages, 990 KB  
Article
Spinal Sagittal Alignment Assessment and Hip Range of Motion in Ambulatory Boys with Duchenne Muscular Dystrophy: Reliability, Diagnosis and Implications for Physiotherapy Management
by Agnieszka Stępień, Katarzyna Maślanko, Weronika Kruk-Majtyka and Grzegorz Gargas
Healthcare 2025, 13(19), 2392; https://doi.org/10.3390/healthcare13192392 - 23 Sep 2025
Viewed by 235
Abstract
Background/Objectives: Duchenne muscular dystrophy (DMD) leads to postural abnormalities and increased lumbar lordosis, which may affect gait and spinal load. This study aimed to assess the reliability of sagittal spinal curvature measurements using the Rippstein plurimeter and to analyze spinal curvature in ambulant [...] Read more.
Background/Objectives: Duchenne muscular dystrophy (DMD) leads to postural abnormalities and increased lumbar lordosis, which may affect gait and spinal load. This study aimed to assess the reliability of sagittal spinal curvature measurements using the Rippstein plurimeter and to analyze spinal curvature in ambulant boys with DMD compared to healthy peers. Additionally, the study examined the effect of lower limb positioning in standing on sagittal spinal alignment in boys with DMD and investigated the relationship between hip adduction and extension range and spinal alignment. Methods: The study included 42 boys with DMD and 36 healthy peers aged 5–14 years. In boys with DMD, spinal curvature was measured using the Rippstein plurimeter in two positions: feet in alignment with hip joints axis and with feet together. In healthy participants, measurements were taken in the first position only. Hip adduction and extension ranges were also assessed in both groups. Results: Plurimeter measurements demonstrated high reliability. Boys with DMD showed significantly increased cervical retraction, greater sternal deviation from the vertical, and increased lumbar lordosis compared to healthy peers. Lower limb positioning (adduction) altered sagittal spinal alignment. Hip adduction and extension ranges were decreased in the DMD group and showed a correlation with spinal alignment. Conclusions: The Rippstein plurimeter provides reliable measurements and is useful for monitoring posture in boys with DMD. Reduced hip mobility and lower limb positioning influence lumbar lordosis and should be considered in physiotherapy planning for DMD. Full article
Show Figures

Figure 1

18 pages, 848 KB  
Article
Nomophobia Profiles Among High School and College Students: A Multi-Group Latent Profile Analysis
by Wenqin Chen, Bin Gao, Yang Zhou and Xiaoqi Yan
Behav. Sci. 2025, 15(9), 1282; https://doi.org/10.3390/bs15091282 - 18 Sep 2025
Viewed by 428
Abstract
In school settings, nomophobia—a newly identified form of problematic mobile phone use characterized by anxiety and discomfort experienced when an individual is unable to use or access their smartphone—poses significant challenges to students’ learning and daily life. Prior research on nomophobia has predominantly [...] Read more.
In school settings, nomophobia—a newly identified form of problematic mobile phone use characterized by anxiety and discomfort experienced when an individual is unable to use or access their smartphone—poses significant challenges to students’ learning and daily life. Prior research on nomophobia has predominantly adopted a variable-centered perspective. However, if nomophobia is heterogeneous across subgroups, acknowledging this heterogeneity may inform the advancement of more tailored and productive therapeutic methods. Latent profile analysis (LPA) was conducted separately among high school students (N = 446) and college students (N = 667) to identify potential subgroup heterogeneity in nomophobia. To examine cross-group similarities in nomophobia profiles, a multi-group LPA was employed. Based on multiple model fit criteria, a three-profile solution—high nomophobia, moderate nomophobia, and low nomophobia—was identified for both groups. However, the multi-group LPA provided only partial support for the similarity of nomophobia profiles across educational stages, specifically in terms of configural and dispersion similarity. While similar nomophobia profiles emerged across groups, the partial equivalence suggests that intervention strategies for nomophobia may not be universally applicable across different educational levels. Additional studies should investigate the mechanisms underlying students’ nomophobia profiles and to inform differentiated interventions for educators, institutions, and policymakers. Full article
Show Figures

Figure 1

18 pages, 14580 KB  
Article
Face the Challenge—Generalization of Presentation Attack Detection
by Adam Baran and Ewelina Bartuzi-Trokielewicz
Sensors 2025, 25(18), 5792; https://doi.org/10.3390/s25185792 - 17 Sep 2025
Viewed by 468
Abstract
Face recognition is one of the most widely adopted biometric technologies, with applications in mobile devices, banking, and access control. However, its widespread use raises security concerns. One of the most common threats is presentation attacks (PAs), in which adversaries spoof the system [...] Read more.
Face recognition is one of the most widely adopted biometric technologies, with applications in mobile devices, banking, and access control. However, its widespread use raises security concerns. One of the most common threats is presentation attacks (PAs), in which adversaries spoof the system using printed photos, videos, or masks. Developing effective Presentation Attack Detection (PAD) methods has become critical, yet generalizing to unseen Presentation Attack Instruments (PAIs) remains a major challenge. This is further complicated by the fact that most public PAD datasets are closed and limited in attack diversity and acquisition conditions. Standard evaluation protocols are typically based on intra- and inter-dataset setups, which may not reflect real-world variability. To address this, we propose analyzing presentation attacks using a novel metric, the Presentation Attack Similarity Index, which quantifies the similarity between different attacks. Based on this, we identify Presentation Attack Similarity Clusters, grouping attacks with high interchangeability. This approach offers deeper insight into PAI relationships, allowing for the strategic selection of representative attacks and the design of more balanced training datasets. Full article
Show Figures

Figure 1

Back to TopTop