Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = Heteractis crispa

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 7194 KB  
Review
The Sea Anemone Neurotoxins Modulating Sodium Channels: An Insight at Structure and Functional Activity after Four Decades of Investigation
by Margarita Mikhailovna Monastyrnaya, Rimma Sergeevna Kalina and Emma Pavlovna Kozlovskaya
Toxins 2023, 15(1), 8; https://doi.org/10.3390/toxins15010008 - 21 Dec 2022
Cited by 16 | Viewed by 4397
Abstract
Many human cardiovascular and neurological disorders (such as ischemia, epileptic seizures, traumatic brain injury, neuropathic pain, etc.) are associated with the abnormal functional activity of voltage-gated sodium channels (VGSCs/NaVs). Many natural toxins, including the sea anemone toxins (called neurotoxins), are an [...] Read more.
Many human cardiovascular and neurological disorders (such as ischemia, epileptic seizures, traumatic brain injury, neuropathic pain, etc.) are associated with the abnormal functional activity of voltage-gated sodium channels (VGSCs/NaVs). Many natural toxins, including the sea anemone toxins (called neurotoxins), are an indispensable and promising tool in pharmacological researches. They have widely been carried out over the past three decades, in particular, in establishing different NaV subtypes functional properties and a specific role in various pathologies. Therefore, a large number of publications are currently dedicated to the search and study of the structure-functional relationships of new sea anemone natural neurotoxins–potential pharmacologically active compounds that specifically interact with various subtypes of voltage gated sodium channels as drug discovery targets. This review presents and summarizes some updated data on the structure-functional relationships of known sea anemone neurotoxins belonging to four structural types. The review also emphasizes the study of type 2 neurotoxins, produced by the tropical sea anemone Heteractis crispa, five structurally homologous and one unique double-stranded peptide that, due to the absence of a functionally significant Arg14 residue, loses toxicity but retains the ability to modulate several VGSCs subtypes. Full article
(This article belongs to the Special Issue Cnidarian Venom)
Show Figures

Figure 1

20 pages, 4203 KB  
Article
Nicotinic Acetylcholine Receptors Are Novel Targets of APETx-like Toxins from the Sea Anemone Heteractis magnifica
by Rimma S. Kalina, Igor E. Kasheverov, Sergey G. Koshelev, Oksana V. Sintsova, Steve Peigneur, Ernesto Lopes Pinheiro-Junior, Roman S. Popov, Victoria E. Chausova, Margarita M. Monastyrnaya, Pavel S. Dmitrenok, Marina P. Isaeva, Jan Tytgat, Sergey A. Kozlov, Emma P. Kozlovskaya, Elena V. Leychenko and Irina N. Gladkikh
Toxins 2022, 14(10), 697; https://doi.org/10.3390/toxins14100697 - 11 Oct 2022
Cited by 9 | Viewed by 3004
Abstract
The nicotinic acetylcholine receptors (nAChRs) are prototypical ligand-gated ion channels, provide cholinergic signaling, and are modulated by various venom toxins and drugs in addition to neurotransmitters. Here, four APETx-like toxins, including two new toxins, named Hmg 1b-2 Metox and Hmg 1b-5, were [...] Read more.
The nicotinic acetylcholine receptors (nAChRs) are prototypical ligand-gated ion channels, provide cholinergic signaling, and are modulated by various venom toxins and drugs in addition to neurotransmitters. Here, four APETx-like toxins, including two new toxins, named Hmg 1b-2 Metox and Hmg 1b-5, were isolated from the sea anemone Heteractis magnifica and characterized as novel nAChR ligands and acid-sensing ion channel (ASIC) modulators. All peptides competed with radiolabeled α-bungarotoxin for binding to Torpedo californica muscle-type and human α7 nAChRs. Hmg 1b-2 potentiated acetylcholine-elicited current in human α7 receptors expressed in Xenopus laevis oocytes. Moreover, the multigene family coding APETx-like peptides library from H. magnifica was described and in silico surface electrostatic potentials of novel peptides were analyzed. To explain the 100% identity of some peptide isoforms between H. magnifica and H. crispa, 18S rRNA, COI, and ITS analysis were performed. It has been shown that the sea anemones previously identified by morphology as H. crispa belong to the species H. magnifica. Full article
(This article belongs to the Special Issue Ion Channels, Venom, and Toxins)
Show Figures

Figure 1

10 pages, 1467 KB  
Article
Adaptive Responses of the Sea Anemone Heteractis crispa to the Interaction of Acidification and Global Warming
by Yangyang Wu, Wenfei Tian, Chunxing Chen, Quanqing Ye, Liu Yang and Jiaoyun Jiang
Animals 2022, 12(17), 2259; https://doi.org/10.3390/ani12172259 - 31 Aug 2022
Cited by 2 | Viewed by 3971
Abstract
Ocean acidification and warming are two of the most important threats to the existence of marine organisms and are predicted to co-occur in oceans. The present work evaluated the effects of acidification (AC: 24 ± 0.1 °C and 900 μatm CO2), [...] Read more.
Ocean acidification and warming are two of the most important threats to the existence of marine organisms and are predicted to co-occur in oceans. The present work evaluated the effects of acidification (AC: 24 ± 0.1 °C and 900 μatm CO2), warming (WC: 30 ± 0.1 °C and 450 μatm CO2), and their combination (CC: 30 ± 0.1 °C and 900 μatm CO2) on the sea anemone, Heteractis crispa, from the aspects of photosynthetic apparatus (maximum quantum yield of photosystem II (PS II), chlorophyll level, and Symbiodiniaceae density) and sterol metabolism (cholesterol content and total sterol content). In a 15-day experiment, acidification alone had no apparent effect on the photosynthetic apparatus, but did affect sterol levels. Upregulation of their chlorophyll level is an important strategy for symbionts to adapt to high partial pressure of CO2 (pCO2). However, after warming stress, the benefits of high pCO2 had little effect on stress tolerance in H. crispa. Indeed, thermal stress was the dominant driver of the deteriorating health of H. crispa. Cholesterol and total sterol contents were significantly affected by all three stress conditions, although there was no significant change in the AC group on day 3. Thus, cholesterol or sterol levels could be used as important indicators to evaluate the impact of climate change on cnidarians. Our findings suggest that H. crispa might be relatively insensitive to the impact of ocean acidification, whereas increased temperature in the future ocean might impair viability of H. crispa. Full article
Show Figures

Figure 1

23 pages, 5908 KB  
Article
Kunitz-Type Peptides from Sea Anemones Protect Neuronal Cells against Parkinson’s Disease Inductors via Inhibition of ROS Production and ATP-Induced P2X7 Receptor Activation
by Aleksandra Kvetkina, Evgeny Pislyagin, Ekaterina Menchinskaya, Ekaterina Yurchenko, Rimma Kalina, Sergei Kozlovskiy, Leonid Kaluzhskiy, Alexander Menshov, Natalia Kim, Steve Peigneur, Jan Tytgat, Alexis Ivanov, Naira Ayvazyan, Elena Leychenko and Dmitry Aminin
Int. J. Mol. Sci. 2022, 23(9), 5115; https://doi.org/10.3390/ijms23095115 - 4 May 2022
Cited by 16 | Viewed by 3983
Abstract
Parkinson’s disease (PD) is a socially significant disease, during the development of which oxidative stress and inflammation play a significant role. Here, we studied the neuroprotective effects of four Kunitz-type peptides from Heteractis crispa and Heteractis magnifica sea anemones against PD inductors. The [...] Read more.
Parkinson’s disease (PD) is a socially significant disease, during the development of which oxidative stress and inflammation play a significant role. Here, we studied the neuroprotective effects of four Kunitz-type peptides from Heteractis crispa and Heteractis magnifica sea anemones against PD inductors. The peptide HCIQ1c9, which was obtained for the first time, inhibited trypsin less than other peptides due to unfavorable interactions of Arg17 with Lys43 in the enzyme. Its activity was reduced by up to 70% over the temperature range of 60–100 °C, while HCIQ2c1, HCIQ4c7, and HMIQ3c1 retained their conformation and stayed active up to 90–100 °C. All studied peptides inhibited paraquat- and rotenone-induced intracellular ROS formation, in particular NO, and scavenged free radicals outside the cells. The peptides did not modulate the TRPV1 channels but they affected the P2X7R, both of which are considered therapeutic targets in Parkinson’s disease. HMIQ3c1 and HCIQ4c7 almost completely inhibited the ATP-induced uptake of YO-PRO-1 dye in Neuro-2a cells through P2X7 ion channels and significantly reduced the stable calcium response in these cells. The complex formation of the peptides with the P2X7R extracellular domain was determined via SPR analysis. Thus, these peptides may be considered promising compounds to protect neuronal cells against PD inductors, which act as ROS production inhibitors and partially act as ATP-induced P2X7R activation inhibitors. Full article
Show Figures

Figure 1

13 pages, 3056 KB  
Article
A Tale of Toxin Promiscuity: The Versatile Pharmacological Effects of Hcr 1b-2 Sea Anemone Peptide on Voltage-Gated Ion Channels
by Ernesto Lopes Pinheiro-Junior, Rimma Kalina, Irina Gladkikh, Elena Leychenko, Jan Tytgat and Steve Peigneur
Mar. Drugs 2022, 20(2), 147; https://doi.org/10.3390/md20020147 - 17 Feb 2022
Cited by 12 | Viewed by 3970
Abstract
Sea anemones are a rich source of biologically active compounds. Among approximately 1100 species described so far, Heteractis crispa species, also known as sebae anemone, is native to the Indo-Pacific area. As part of its venom components, the Hcr 1b-2 peptide was first [...] Read more.
Sea anemones are a rich source of biologically active compounds. Among approximately 1100 species described so far, Heteractis crispa species, also known as sebae anemone, is native to the Indo-Pacific area. As part of its venom components, the Hcr 1b-2 peptide was first described as an ASIC1a and ASIC3 inhibitor. Using Xenopus laevis oocytes and the two-electrode voltage-clamp technique, in the present work we describe the remarkable lack of selectivity of this toxin. Besides the acid-sensing ion channels previously described, we identified 26 new targets of this peptide, comprising 14 voltage-gated potassium channels, 9 voltage-gated sodium channels, and 3 voltage-gated calcium channels. Among them, Hcr 1b-2 is the first sea anemone peptide described to interact with isoforms from the Kv7 family and T-type Cav channels. Taken together, the diversity of Hcr 1b-2 targets turns this toxin into an interesting tool to study different types of ion channels, as well as a prototype to develop new and more specific ion channel ligands. Full article
Show Figures

Figure 1

17 pages, 3240 KB  
Article
Sea Anemone Kunitz-Type Peptides Demonstrate Neuroprotective Activity in the 6-Hydroxydopamine Induced Neurotoxicity Model
by Oksana Sintsova, Irina Gladkikh, Margarita Monastyrnaya, Valentin Tabakmakher, Ekaterina Yurchenko, Ekaterina Menchinskaya, Evgeny Pislyagin, Yaroslav Andreev, Sergey Kozlov, Steve Peigneur, Jan Tytgat, Dmitry Aminin, Emma Kozlovskaya and Elena Leychenko
Biomedicines 2021, 9(3), 283; https://doi.org/10.3390/biomedicines9030283 - 10 Mar 2021
Cited by 25 | Viewed by 3833
Abstract
Kunitz-type peptides from venomous animals have been known to inhibit different proteinases and also to modulate ion channels and receptors, demonstrating analgesic, anti-inflammatory, anti-histamine and many other biological activities. At present, there is evidence of their neuroprotective effects. We have studied eight Kunitz-type [...] Read more.
Kunitz-type peptides from venomous animals have been known to inhibit different proteinases and also to modulate ion channels and receptors, demonstrating analgesic, anti-inflammatory, anti-histamine and many other biological activities. At present, there is evidence of their neuroprotective effects. We have studied eight Kunitz-type peptides of the sea anemone Heteractis crispa to find molecules with cytoprotective activity in the 6-OHDA-induced neurotoxicity model on neuroblastoma Neuro-2a cells. It has been shown that only five peptides significantly increase the viability of neuronal cells treated with 6-OHDA. The TRPV1 channel blocker, HCRG21, has revealed the neuroprotective effect that could be indirect evidence of TRPV1 involvement in the disorders associated with neurodegeneration. The pre-incubation of Neuro-2a cells with HCRG21 followed by 6-OHDA treatment has resulted in a prominent reduction in ROS production compared the untreated cells. It is possible that the observed effect is due to the ability of the peptide act as an efficient free-radical scavenger. One more leader peptide, InhVJ, has shown a neuroprotective activity and has been studied at concentrations of 0.01–10.0 µM. The target of InhVJ is still unknown, but it was the best of all eight homologous peptides in an absolute cell viability increment on 38% of the control in the 6-OHDA-induced neurotoxicity model. The targets of the other three active peptides remain unknown. Full article
(This article belongs to the Special Issue Peptide-Based Drug Development)
Show Figures

Figure 1

21 pages, 3048 KB  
Article
Anti-Inflammatory and Analgesic Effects of TRPV1 Polypeptide Modulator APHC3 in Models of Osteo- and Rheumatoid Arthritis
by Yulia A. Logashina, Yulia A. Palikova, Viktor A. Palikov, Vitaly A. Kazakov, Sviatlana V. Smolskaya, Igor A. Dyachenko, Nadezhda V. Tarasova and Yaroslav A. Andreev
Mar. Drugs 2021, 19(1), 39; https://doi.org/10.3390/md19010039 - 17 Jan 2021
Cited by 34 | Viewed by 6537
Abstract
Arthritis is a widespread inflammatory disease associated with progressive articular surface degradation, ongoing pain, and hyperalgesia causing the development of functional limitations and disability. TRPV1 channel is one of the high-potential targets for the treatment of inflammatory diseases. Polypeptide APHC3 from sea anemone [...] Read more.
Arthritis is a widespread inflammatory disease associated with progressive articular surface degradation, ongoing pain, and hyperalgesia causing the development of functional limitations and disability. TRPV1 channel is one of the high-potential targets for the treatment of inflammatory diseases. Polypeptide APHC3 from sea anemone Heteractis crispa is a mode-selective TRPV1 antagonist that causes mild hypothermia and shows significant anti-inflammatory and analgesic activity in different models of pain. We evaluated the anti-inflammatory properties of APHC3 in models of monosodium iodoacetate (MIA)-induced osteoarthritis and complete Freund’s adjuvant (CFA)-induced rheumatoid monoarthritis in comparison with commonly used non-steroidal anti-inflammatory drugs (NSAIDs) such as diclofenac, ibuprofen, and meloxicam. Subcutaneous administration of APHC3 (0.1 mg/kg) significantly reversed joint swelling, disability, grip strength impairment, and thermal and mechanical hypersensitivity. The effect of APHC3 was equal to or better than that of reference NSAIDs. Protracted treatment with APHC3 decreased IL-1b concentration in synovial fluid, reduced inflammatory changes in joints, and prevented the progression of cartilage degradation. Therefore, polypeptide APHC3 has the potential to be an analgesic and anti-inflammatory substance for the alleviation of arthritis symptoms. Full article
(This article belongs to the Collection Bioactive Compounds from Marine Invertebrates)
Show Figures

Figure 1

13 pages, 2484 KB  
Article
Sea Anemone Heteractis crispa Actinoporin Demonstrates In Vitro Anticancer Activities and Prevents HT-29 Colorectal Cancer Cell Migration
by Aleksandra Kvetkina, Olesya Malyarenko, Aleksandra Pavlenko, Sergey Dyshlovoy, Gunhild von Amsberg, Svetlana Ermakova and Elena Leychenko
Molecules 2020, 25(24), 5979; https://doi.org/10.3390/molecules25245979 - 17 Dec 2020
Cited by 17 | Viewed by 3416
Abstract
Actinoporins are the most abundant group of sea anemone cytolytic toxins. Their membranolytic activity is of high interest for the development of novel anticancer drugs. However, to date the activity of actinoporins in malignant cells has been poorly studied. Here, we report on [...] Read more.
Actinoporins are the most abundant group of sea anemone cytolytic toxins. Their membranolytic activity is of high interest for the development of novel anticancer drugs. However, to date the activity of actinoporins in malignant cells has been poorly studied. Here, we report on recombinant analog of Hct-S3 (rHct-S3), belonging to the combinatory library of Heteractis crispa actinoporins. rHct-S3 exhibited cytotoxic activity against breast MDA-MB-231 (IC50 = 7.3 µM), colorectal HT-29 (IC50 = 6.8 µM), and melanoma SK-MEL-28 (IC50 = 8.3 µM) cancer cells. The actinoporin effectively prevented epidermal growth factor -induced neoplastic transformation of JB6 Cl41 cells by 34% ± 0.2 and decreased colony formation of HT-29 cells by 47% ± 0.9, MDA-MB-231 cells by 37% ± 1.2, and SK-MEL-28 cells by 34% ± 3.6. Moreover, rHct-S3 decreased proliferation and suppressed migration of colorectal carcinoma cells by 31% ± 5.0 and 99% ± 6.4, respectively. The potent anti-migratory activity was proposed to mediate by decreased matrix metalloproteinases-2 and -9 expression. In addition, rHct-S3 induced programmed cell death by cleavage of caspase-3 and poly (ADP-ribose) polymerase, as well as regulation of Bax and Bcl-2. Our results indicate rHct-S3 to be a promising anticancer drug with a high anti-migratory potential. Full article
Show Figures

Figure 1

17 pages, 2546 KB  
Article
Kunitz-Type Peptides from the Sea Anemone Heteractis crispa Demonstrate Potassium Channel Blocking and Anti-Inflammatory Activities
by Irina Gladkikh, Steve Peigneur, Oksana Sintsova, Ernesto Lopes Pinheiro-Junior, Anna Klimovich, Alexander Menshov, Anatoly Kalinovsky, Marina Isaeva, Margarita Monastyrnaya, Emma Kozlovskaya, Jan Tytgat and Elena Leychenko
Biomedicines 2020, 8(11), 473; https://doi.org/10.3390/biomedicines8110473 - 4 Nov 2020
Cited by 27 | Viewed by 3902
Abstract
The Kunitz/BPTI peptide family includes unique representatives demonstrating various biological activities. Electrophysiological screening of peptides HCRG1 and HCRG2 from the sea anemone Heteractis crispa on six Kv1.x channel isoforms and insect Shaker IR channel expressed in Xenopus laevis oocytes revealed their potassium channels [...] Read more.
The Kunitz/BPTI peptide family includes unique representatives demonstrating various biological activities. Electrophysiological screening of peptides HCRG1 and HCRG2 from the sea anemone Heteractis crispa on six Kv1.x channel isoforms and insect Shaker IR channel expressed in Xenopus laevis oocytes revealed their potassium channels blocking activity. HCRG1 and HCRG2 appear to be the first Kunitz-type peptides from sea anemones blocking Kv1.3 with IC50 of 40.7 and 29.7 nM, respectively. In addition, peptides mainly vary in binding affinity to the Kv1.2 channels. It was established that the single substitution, Ser5Leu, in the TRPV1 channel antagonist, HCRG21, induces weak blocking activity of Kv1.1, Kv1.2, and Kv1.3. Apparently, for the affinity and selectivity of Kunitz-fold toxins to Kv1.x isoforms, the number and distribution along their molecules of charged, hydrophobic, and polar uncharged residues, as well as the nature of the channel residue at position 379 (Tyr, Val or His) are important. Testing the compounds in a model of acute local inflammation induced by the introduction of carrageenan administration into mice paws revealed that HCRG1 at doses of 0.1–1 mg/kg reduced the volume of developing edema during 24 h, similar to the effect of the nonsteroidal anti-inflammatory drug, indomethacin, at a dose of 5 mg/kg. ELISA analysis of the animals blood showed that the peptide reduced the synthesis of TNF-α, a pro-inflammatory mediator playing a leading role in the development of edema in this model. Full article
(This article belongs to the Special Issue Animal Venoms–Curse or Cure?)
Show Figures

Figure 1

18 pages, 2581 KB  
Article
APETx-Like Peptides from the Sea Anemone Heteractis crispa, Diverse in Their Effect on ASIC1a and ASIC3 Ion Channels
by Rimma S. Kalina, Sergey G. Koshelev, Elena A. Zelepuga, Natalia Y. Kim, Sergey A. Kozlov, Emma P. Kozlovskaya, Margarita M. Monastyrnaya and Irina N. Gladkikh
Toxins 2020, 12(4), 266; https://doi.org/10.3390/toxins12040266 - 20 Apr 2020
Cited by 16 | Viewed by 6175
Abstract
Currently, five peptide modulators of acid-sensing ion channels (ASICs) attributed to structural class 1b of sea anemone toxins have been described. The APETx2 toxin is the first and most potent ASIC3 inhibitor, so its homologs from sea anemones are known as the APETx-like [...] Read more.
Currently, five peptide modulators of acid-sensing ion channels (ASICs) attributed to structural class 1b of sea anemone toxins have been described. The APETx2 toxin is the first and most potent ASIC3 inhibitor, so its homologs from sea anemones are known as the APETx-like peptides. We have discovered that two APETx-like peptides from the sea anemone Heteractis crispa, Hcr 1b-3 and Hcr 1b-4, demonstrate different effects on rASIC1a and rASIC3 currents. While Hcr 1b-3 inhibits both investigated ASIC subtypes with IC50 4.95 ± 0.19 μM for rASIC1a and 17 ± 5.8 μM for rASIC3, Hcr 1b-4 has been found to be the first potentiator of ASIC3, simultaneously inhibiting rASIC1a at similar concentrations: EC50 1.53 ± 0.07 μM and IC50 1.25 ± 0.04 μM. The closest homologs, APETx2, Hcr 1b-1, and Hcr 1b-2, previously demonstrated the ability to inhibit hASIC3 with IC50 63 nM, 5.5, and 15.9 μM, respectively, while Hcr 1b-2 also inhibited rASIC1a with IC50 4.8 ± 0.3 μM. Computer modeling allowed us to describe the peculiarities of Hcr 1b-2 and Hcr 1b-4 interfaces with the rASIC1a channel and the stabilization of the expanded acidic pocket resulting from peptides binding which traps the rASIC1a channel in the closed state. Full article
(This article belongs to the Special Issue Sea Anemone Venom)
Show Figures

Figure 1

18 pages, 4781 KB  
Article
New Insights into the Type II Toxins from the Sea Anemone Heteractis crispa
by Rimma S. Kalina, Steve Peigneur, Elena A. Zelepuga, Pavel S. Dmitrenok, Aleksandra N. Kvetkina, Natalia Y. Kim, Elena V. Leychenko, Jan Tytgat, Emma P. Kozlovskaya, Margarita M. Monastyrnaya and Irina N. Gladkikh
Toxins 2020, 12(1), 44; https://doi.org/10.3390/toxins12010044 - 10 Jan 2020
Cited by 19 | Viewed by 5372
Abstract
Toxins modulating NaV channels are the most abundant and studied peptide components of sea anemone venom. Three type-II toxins, δ-SHTX-Hcr1f (= RpII), RTX-III, and RTX-VI, were isolated from the sea anemone Heteractis crispa. RTX-VI has been found to be an unusual [...] Read more.
Toxins modulating NaV channels are the most abundant and studied peptide components of sea anemone venom. Three type-II toxins, δ-SHTX-Hcr1f (= RpII), RTX-III, and RTX-VI, were isolated from the sea anemone Heteractis crispa. RTX-VI has been found to be an unusual analog of RTX-III. The electrophysiological effects of Heteractis toxins on nine NaV subtypes were investigated for the first time. Heteractis toxins mainly affect the inactivation of the mammalian NaV channels expressed in the central nervous system (NaV1.1–NaV1.3, NaV1.6) as well as insect and arachnid channels (BgNaV1, VdNaV1). The absence of Arg13 in the RTX-VI structure does not prevent toxin binding with the channel but it has changed its pharmacological profile and potency. According to computer modeling data, the δ-SHTX-Hcr1f binds within the extracellular region of the rNaV1.2 voltage-sensing domain IV and pore-forming domain I through a network of strong interactions, and an additional fixation of the toxin at the channel binding site is carried out through the phospholipid environment. Our data suggest that Heteractis toxins could be used as molecular tools for NaV channel studies or insecticides rather than as pharmacological agents. Full article
(This article belongs to the Special Issue Venoms and Ion Channels)
Show Figures

Figure 1

19 pages, 2357 KB  
Article
Multigene Family of Pore-Forming Toxins from Sea Anemone Heteractis crispa
by Elena Leychenko, Marina Isaeva, Ekaterina Tkacheva, Elena Zelepuga, Aleksandra Kvetkina, Konstantin Guzev, Margarita Monastyrnaya and Emma Kozlovskaya
Mar. Drugs 2018, 16(6), 183; https://doi.org/10.3390/md16060183 - 24 May 2018
Cited by 24 | Viewed by 5128
Abstract
Sea anemones produce pore-forming toxins, actinoporins, which are interesting as tools for cytoplasmic membranes study, as well as being potential therapeutic agents for cancer therapy. This investigation is devoted to structural and functional study of the Heteractis crispa actinoporins diversity. Here, we described [...] Read more.
Sea anemones produce pore-forming toxins, actinoporins, which are interesting as tools for cytoplasmic membranes study, as well as being potential therapeutic agents for cancer therapy. This investigation is devoted to structural and functional study of the Heteractis crispa actinoporins diversity. Here, we described a multigene family consisting of 47 representatives expressed in the sea anemone tentacles as prepropeptide-coding transcripts. The phylogenetic analysis revealed that actinoporin clustering is consistent with the division of sea anemones into superfamilies and families. The transcriptomes of both H. crispa and Heteractis magnifica appear to contain a large repertoire of similar genes representing a rapid expansion of the actinoporin family due to gene duplication and sequence divergence. The presence of the most abundant specific group of actinoporins in H. crispa is the major difference between these species. The functional analysis of six recombinant actinoporins revealed that H. crispa actinoporin grouping was consistent with the different hemolytic activity of their representatives. According to molecular modeling data, we assume that the direction of the N-terminal dipole moment tightly reflects the actinoporins’ ability to possess hemolytic activity. Full article
(This article belongs to the Special Issue Marine Invertebrate Toxins)
Show Figures

Graphical abstract

20 pages, 3843 KB  
Article
Kunitz-Type Peptide HCRG21 from the Sea Anemone Heteractis crispa Is a Full Antagonist of the TRPV1 Receptor
by Margarita Monastyrnaya, Steve Peigneur, Elena Zelepuga, Oksana Sintsova, Irina Gladkikh, Elena Leychenko, Marina Isaeva, Jan Tytgat and Emma Kozlovskaya
Mar. Drugs 2016, 14(12), 229; https://doi.org/10.3390/md14120229 - 15 Dec 2016
Cited by 59 | Viewed by 8580
Abstract
Sea anemone venoms comprise multifarious peptides modulating biological targets such as ion channels or receptors. The sequence of a new Kunitz-type peptide, HCRG21, belonging to the Heteractis crispa RG (HCRG) peptide subfamily was deduced on the basis of the gene sequence obtained from [...] Read more.
Sea anemone venoms comprise multifarious peptides modulating biological targets such as ion channels or receptors. The sequence of a new Kunitz-type peptide, HCRG21, belonging to the Heteractis crispa RG (HCRG) peptide subfamily was deduced on the basis of the gene sequence obtained from the Heteractis crispa cDNA. HCRG21 shares high structural homology with Kunitz-type peptides APHC1–APHC3 from H. crispa, and clusters with the peptides from so named “analgesic cluster” of the HCGS peptide subfamily but forms a separate branch on the NJ-phylogenetic tree. Three unique point substitutions at the N-terminus of the molecule, Arg1, Gly2, and Ser5, distinguish HCRG21 from other peptides of this cluster. The trypsin inhibitory activity of recombinant HCRG21 (rHCRG21) was comparable with the activity of peptides from the same cluster. Inhibition constants for trypsin and α-chymotrypsin were 1.0 × 10−7 and 7.0 × 10−7 M, respectively. Electrophysiological experiments revealed that rHCRG21 inhibits 95% of the capsaicin-induced current through transient receptor potential family member vanilloid 1 (TRPV1) and has a half-maximal inhibitory concentration of 6.9 ± 0.4 μM. Moreover, rHCRG21 is the first full peptide TRPV1 inhibitor, although displaying lower affinity for its receptor in comparison with other known ligands. Macromolecular docking and full atom Molecular Dynamics (MD) simulations of the rHCRG21–TRPV1 complex allow hypothesizing the existence of two feasible, intra- and extracellular, molecular mechanisms of blocking. These data provide valuable insights in the structural and functional relationships and pharmacological potential of bifunctional Kunitz-type peptides. Full article
(This article belongs to the Collection Bioactive Compounds from Marine Invertebrates)
Show Figures

Figure 1

16 pages, 3135 KB  
Article
Evolution of the Cytolytic Pore-Forming Proteins (Actinoporins) in Sea Anemones
by Jason Macrander and Marymegan Daly
Toxins 2016, 8(12), 368; https://doi.org/10.3390/toxins8120368 - 8 Dec 2016
Cited by 39 | Viewed by 7623
Abstract
Sea anemones (Cnidaria, Anthozoa, and Actiniaria) use toxic peptides to incapacitate and immobilize prey and to deter potential predators. Their toxin arsenal is complex, targeting a variety of functionally important protein complexes and macromolecules involved in cellular homeostasis. Among these, actinoporins are one [...] Read more.
Sea anemones (Cnidaria, Anthozoa, and Actiniaria) use toxic peptides to incapacitate and immobilize prey and to deter potential predators. Their toxin arsenal is complex, targeting a variety of functionally important protein complexes and macromolecules involved in cellular homeostasis. Among these, actinoporins are one of the better characterized toxins; these venom proteins form a pore in cellular membranes containing sphingomyelin. We used a combined bioinformatic and phylogenetic approach to investigate how actinoporins have evolved across three superfamilies of sea anemones (Actinioidea, Metridioidea, and Actinostoloidea). Our analysis identified 90 candidate actinoporins across 20 species. We also found clusters of six actinoporin-like genes in five species of sea anemone (Nematostella vectensis, Stomphia coccinea, Epiactis japonica, Heteractis crispa, and Diadumene leucolena); these actinoporin-like sequences resembled actinoporins but have a higher sequence similarity with toxins from fungi, cone snails, and Hydra. Comparative analysis of the candidate actinoporins highlighted variable and conserved regions within actinoporins that may pertain to functional variation. Although multiple residues are involved in initiating sphingomyelin recognition and membrane binding, there is a high rate of replacement for a specific tryptophan with leucine (W112L) and other hydrophobic residues. Residues thought to be involved with oligomerization were variable, while those forming the phosphocholine (POC) binding site and the N-terminal region involved with cell membrane penetration were highly conserved. Full article
(This article belongs to the Collection Evolution of Venom Systems)
Show Figures

Figure 1

26 pages, 1952 KB  
Article
New Kunitz-Type HCRG Polypeptides from the Sea Anemone Heteractis crispa
by Irina Gladkikh, Margarita Monastyrnaya, Elena Zelepuga, Oksana Sintsova, Valentin Tabakmakher, Oksana Gnedenko, Alexis Ivanov, Kuo-Feng Hua and Emma Kozlovskaya
Mar. Drugs 2015, 13(10), 6038-6063; https://doi.org/10.3390/md13106038 - 24 Sep 2015
Cited by 30 | Viewed by 6946
Abstract
Sea anemones are a rich source of Kunitz-type polypeptides that possess not only protease inhibitor activity, but also Kv channels toxicity, analgesic, antihistamine, and anti-inflammatory activities. Two Kunitz-type inhibitors belonging to a new Heteractis crispa RG (HCRG) polypeptide subfamily have been isolated from [...] Read more.
Sea anemones are a rich source of Kunitz-type polypeptides that possess not only protease inhibitor activity, but also Kv channels toxicity, analgesic, antihistamine, and anti-inflammatory activities. Two Kunitz-type inhibitors belonging to a new Heteractis crispa RG (HCRG) polypeptide subfamily have been isolated from the sea anemone Heteractis crispa. The amino acid sequences of HCRG1 and HCRG2 identified using the Edman degradation method share up to 95% of their identity with the representatives of the HCGS polypeptide multigene subfamily derived from H. crispa cDNA. Polypeptides are characterized by positively charged Arg at the N-terminus as well as P1 Lys residue at their canonical binding loop, identical to those of bovine pancreatic trypsin inhibitor (BPTI). These polypeptides are shown by our current evidence to be more potent inhibitors of trypsin than the known representatives of the HCGS subfamily with P1Thr. The kinetic and thermodynamic characteristics of the intermolecular interactions between inhibitors and serine proteases were determined by the surface plasmon resonance (SPR) method. Residues functionally important for polypeptide binding to trypsin were revealed using molecular modeling methods. Furthermore, HCRG1 and HCRG2 possess anti-inflammatory activity, reducing tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) secretions, as well as proIL-1β expression in lipopolysaccharide (LPS)-activated macrophages. However, there was no effect on nitric oxide (NO) generation. Full article
Show Figures

Graphical abstract

Back to TopTop