Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = Heat Shock Protein 27

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4933 KiB  
Article
Astragalus membranaceus Extract Induces Apoptosis via Generation of Reactive Oxygen Species and Inhibition of Heat Shock Protein 27 and Androgen Receptor in Prostate Cancers
by Seok-Young Kim, Ji Eon Park, Hyo-Jung Lee, Deok Yong Sim, Chi-Hoon Ahn, Su-Yeon Park, Bum-Sang Shim, Bonglee Kim, Dae Young Lee and Sung-Hoon Kim
Int. J. Mol. Sci. 2024, 25(5), 2799; https://doi.org/10.3390/ijms25052799 - 28 Feb 2024
Cited by 5 | Viewed by 2734
Abstract
Although Astragalus membranaceus is known to have anti-inflammatory, anti-obesity, and anti-oxidant properties, the underlying apoptotic mechanism of Astragalus membranaceus extract has never been elucidated in prostate cancer. In this paper, the apoptotic mechanism of a water extract from the dried root of Astragalus [...] Read more.
Although Astragalus membranaceus is known to have anti-inflammatory, anti-obesity, and anti-oxidant properties, the underlying apoptotic mechanism of Astragalus membranaceus extract has never been elucidated in prostate cancer. In this paper, the apoptotic mechanism of a water extract from the dried root of Astragalus membranaceus (WAM) was investigated in prostate cancer cells in association with heat shock protein 27 (HSP27)/androgen receptor (AR) signaling. WAM increased cytotoxicity and the sub-G1 population, cleaved poly (ADP-ribose) polymerase (PARP) and cysteine aspartyl-specific protease 3 (caspase 3), and attenuated the expression of B-cell lymphoma 2 (Bcl-2) in LNCaP cells after 24 h of exposure. Consistently, WAM significantly increased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive LNCaP cells. WAM decreased the phosphorylation of HSP27 on Ser82 and inhibited the expression of the AR and prostate-specific antigen (PSA), along with reducing the nuclear translocation of p-HSP27 and the AR via the disturbed binding of p-HSP27 with the AR in LNCaP cells. WAM consistently inhibited the expression of the AR and PSA in dihydrotestosterone (DHT)-treated LNCaP cells. WAM also suppressed AR stability, both in the presence and absence of cycloheximide, in LNCaP cells. Taken together, these findings provide evidence that WAM induces apoptosis via the inhibition of HSP27/AR signaling in prostate cancer cells and is a potent anticancer candidate for prostate cancer treatment. Full article
Show Figures

Graphical abstract

11 pages, 1608 KiB  
Article
Triple Silencing of HSP27, cFLIP, and CLU Genes Promotes the Sensitivity of Doxazosin-Induced Apoptosis in PC-3 Prostate Cancer Cells
by Jeong Man Cho, Sojung Sun, Eunji Im, Hyunwon Yang and Tag Keun Yoo
Medicines 2024, 11(3), 7; https://doi.org/10.3390/medicines11030007 - 21 Feb 2024
Viewed by 2536
Abstract
Background: This study investigated how the expression of heat shock protein 27 (HSP27), cellular FLICE-like inhibitory protein (cFLIP), and clusterin (CLU) affects the progression of cancer cells and their susceptibility to doxazosin-induced apoptosis. By silencing each of these genes individually, their effect on [...] Read more.
Background: This study investigated how the expression of heat shock protein 27 (HSP27), cellular FLICE-like inhibitory protein (cFLIP), and clusterin (CLU) affects the progression of cancer cells and their susceptibility to doxazosin-induced apoptosis. By silencing each of these genes individually, their effect on prostate cancer cell viability after doxazosin treatment was investigated. Methods: PC-3 prostate cancer cells were cultured and then subjected to gene silencing using siRNA targeting HSP27, cFLIP, and CLU, either individually, in pairs, or all together. Cells were then treated with doxazosin at various concentrations and their viability was assessed by MTT assay. Results: The study found that silencing the CLU gene in PC-3 cells significantly reduced cell viability after treatment with 25 µM doxazosin. In addition, the dual silencing of cFLIP and CLU decreased cell viability at 10 µM doxazosin. Notably, silencing all three genes of HSP27, cFLIP, CLU was most effective and reduced cell viability even at a lower doxazosin concentration of 1 µM. Conclusions: Taken together, these findings suggest that the simultaneous silencing of HSP27, cFLIP, and CLU genes may be a potential strategy to promote apoptosis in prostate cancer cells, which could inform future research on treatments for malignant prostate cancer. Full article
(This article belongs to the Section Cancer Biology and Anticancer Therapeutics)
Show Figures

Figure 1

15 pages, 4032 KiB  
Article
StHsfB5 Promotes Heat Resistance by Directly Regulating the Expression of Hsp Genes in Potato
by Wenjiao Zhu, Chunmei Xue, Min Chen and Qing Yang
Int. J. Mol. Sci. 2023, 24(22), 16528; https://doi.org/10.3390/ijms242216528 - 20 Nov 2023
Cited by 7 | Viewed by 1686
Abstract
With global warming, high temperatures have become a major environmental stress that inhibits plant growth and development. Plants evolve several mechanisms to cope with heat stress accordingly. One of the important mechanisms is the Hsf (heat shock factor)–Hsp (heat shock protein) signaling pathway. [...] Read more.
With global warming, high temperatures have become a major environmental stress that inhibits plant growth and development. Plants evolve several mechanisms to cope with heat stress accordingly. One of the important mechanisms is the Hsf (heat shock factor)–Hsp (heat shock protein) signaling pathway. Therefore, the plant transcription factor Hsf family plays important roles in response to heat stress. All Hsfs can be divided into three classes (A, B, and C). Usually, class-A Hsfs are transcriptional activators, while class-B Hsfs are transcriptional repressors. In potato, our previous work identified 27 Hsfs in the genome and analyzed HsfA3 and HsfA4C functions that promote potato heat resistance. However, the function of HsfB is still elusive. In this study, the unique B5 member StHsfB5 in potato was obtained, and its characterizations and functions were comprehensively analyzed. A quantitative real-time PCR (qRT-PCR) assay showed that StHsfB5 was highly expressed in root, and its expression was induced by heat treatment and different kinds of phytohormones. The subcellular localization of StHsfB5 was in the nucleus, which is consistent with the characterization of transcription factors. The transgenic lines overexpressing StHsfB5 showed higher heat resistance compared with that of the control nontransgenic lines and inhibitory lines. Experiments on the interaction between protein and DNA indicated that the StHsfB5 protein can directly bind to the promoters of target genes small Hsps (sHsp17.6, sHsp21, and sHsp22.7) and Hsp80, and then induce the expressions of these target genes. All these results showed that StHsfB5 may be a coactivator that promotes potato heat resistance ability by directly inducing the expression of its target genes sHsp17.6, sHsp21, sHsp22.7, and Hsp80. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 4478 KiB  
Article
Effect of a Multi-Strain Probiotic on Growth Performance, Lipid Panel, Antioxidant Profile, and Immune Response in Andaman Local Piglets at Weaning
by Gopal Sarkar, Samiran Mondal, Debasis Bhattacharya, Perumal Ponraj, Sneha Sawhney, Prokasananda Bala, Dibyendu Chakraborty, Jai Sunder and Arun Kumar De
Fermentation 2023, 9(11), 970; https://doi.org/10.3390/fermentation9110970 - 13 Nov 2023
Cited by 4 | Viewed by 2796
Abstract
This study aimed to investigate the role of a multi-strain probiotic compound containing Bacillus mesentericus, Bacillus coagulans, Enterococcus faecalis, and Clostridium butyricum as an in-feed zinc oxide (ZnO) alternative in growth performance, diarrhea incidence, antioxidant profile, lipid panel, stress, and immunity in [...] Read more.
This study aimed to investigate the role of a multi-strain probiotic compound containing Bacillus mesentericus, Bacillus coagulans, Enterococcus faecalis, and Clostridium butyricum as an in-feed zinc oxide (ZnO) alternative in growth performance, diarrhea incidence, antioxidant profile, lipid panel, stress, and immunity in piglets at weaning. Seventy-two piglets weaned at 27 ± 1 day were divided randomly into three groups with four replicates of six piglets each: (i) a negative control group (WC) fed only a basal diet, (ii) a probiotic group (WB) fed a basal diet with the current probiotic formulation, and (iii) a positive control (PC) group fed a basal diet with 2500 mg/kg ZnO. The experiment was conducted for 28 days. Probiotic supplementation showed a positive effect on growth performance and reduced the diarrhea rate. The mean body weight of the piglets in the WB and PC groups was significantly higher than that of piglets in the WC group (14.88 ± 0.12, 14.97 ± 0.13 vs. 13.80 ± 0.06 kg; p ≤ 0.001). The addition of probiotic to the diet improved the lipid panel; the WB group showed a significantly higher level of high-density lipoprotein cholesterol (mg/dL) (32.67 ± 0.85 in WB vs. 12.48 ± 0.76 in WC; p ≤ 0.001) and lower levels of total cholesterol (mg/dL) (59.78 ± 1.97 in WB vs. 119.11 ± 2.12 in WC; p ≤ 0.001) and low-density lipoprotein cholesterol (mg/dL) (17.90 ± 1.12 in WB vs. 69.10 ± 3.37 in WC; p ≤ 0.001) compared with the negative control group. Moreover, probiotic supplementation enhanced the antioxidant defense system and provided protection from oxidative damage by increasing the concentrations of serum catalase, glutathione-S-transferase, and superoxide dismutase and by decreasing the concentrations of serum malonyldialdehyde and total nitric oxide. Heat shock proteins and other stress markers, such as serum cortisol, were reduced in the probiotic-fed group. The probiotic group also displayed higher levels of serum IgG and IgM at all time points and higher IgA on day 28 compared with the negative control group. Altogether, these results indicate that feeding with the currently used multi-strain probiotic formulation minimizes weaning stress, thereby improving the growth performance, antioxidant profile, lipid panel, and systemic and mucosal immunity. Therefore, multi-strain probiotic compounds may be used to replace ZnO in weaned piglets. Full article
(This article belongs to the Special Issue Probiotics: Mediators in Health and Disease)
Show Figures

Figure 1

15 pages, 2410 KiB  
Article
Smoking Induces a Decline in Semen Quality and the Activation of Stress Response Pathways in Sperm
by Magda Carvalho Henriques, Joana Santiago, António Patrício, Maria Teresa Herdeiro, Susana Loureiro and Margarida Fardilha
Antioxidants 2023, 12(10), 1828; https://doi.org/10.3390/antiox12101828 - 4 Oct 2023
Cited by 13 | Viewed by 5019
Abstract
Male infertility is a prevalent concern affecting couples worldwide. While genetic factors, hormonal imbalances, and reproductive system defects play significant roles, emerging evidence suggests that lifestyle choices also profoundly impact male fertility. This study aimed to explore the effects of several lifestyle factors, [...] Read more.
Male infertility is a prevalent concern affecting couples worldwide. While genetic factors, hormonal imbalances, and reproductive system defects play significant roles, emerging evidence suggests that lifestyle choices also profoundly impact male fertility. This study aimed to explore the effects of several lifestyle factors, including tobacco and alcohol consumption, physical activity, and dietary habits, on semen quality parameters and molecular biomarkers. Thirty healthy male volunteers were recruited in the Urology service at Hospital Infante D. Pedro, Aveiro, Portugal. Participants completed lifestyle questionnaires and provided semen samples, which were analyzed according to the World Health Organization criteria by experienced technicians. We also analyzed the expression levels of antioxidant enzymes and heat-shock response-related proteins to explore the activation of signaling pathways involved in stress response within sperm cells. Our results revealed that tobacco consumption reduced semen volume and total sperm count. Although the changes in the percentage of total motility and normal morphology in the smokers’ group did not reach statistical significance, a slight decrease was observed. Moreover, we identified for the first time a significant association between tobacco consumption and increased levels of heat shock protein 27 (HSP27) and phosphorylated HSP27 (p-HSP27) in sperm cells, indicating the potential detrimental effects of tobacco on the reproductive system. This study highlights that lifestyle factors reduce semen quality, possibly by inducing stress in sperm, raising awareness about the effects of these risk factors among populations at risk of male infertility. Full article
Show Figures

Figure 1

19 pages, 14912 KiB  
Article
Characterization of the Heat Shock Transcription Factor Family in Medicago sativa L. and Its Potential Roles in Response to Abiotic Stresses
by Hao Liu, Xianyang Li, Yunfei Zi, Guoqing Zhao, Lihua Zhu, Ling Hong, Mingna Li, Shiqing Wang, Ruicai Long, Junmei Kang, Qingchuan Yang and Lin Chen
Int. J. Mol. Sci. 2023, 24(16), 12683; https://doi.org/10.3390/ijms241612683 - 11 Aug 2023
Cited by 14 | Viewed by 1864
Abstract
Heat shock transcription factors (HSFs) are important regulatory factors in plant stress responses to various biotic and abiotic stresses and play important roles in growth and development. The HSF gene family has been systematically identified and analyzed in many plants but it is [...] Read more.
Heat shock transcription factors (HSFs) are important regulatory factors in plant stress responses to various biotic and abiotic stresses and play important roles in growth and development. The HSF gene family has been systematically identified and analyzed in many plants but it is not in the tetraploid alfalfa genome. We detected 104 HSF genes (MsHSFs) in the tetraploid alfalfa genome (“Xinjiangdaye” reference genome) and classified them into three subgroups: 68 in HSFA, 35 in HSFB and 1 in HSFC subgroups. Basic bioinformatics analysis, including genome location, protein sequence length, protein molecular weight and conserved motif identification, was conducted. Gene expression analysis revealed tissue-specific expression for 13 MsHSFs and tissue-wide expression for 28 MsHSFs. Based on transcriptomic data analysis, 21, 11 and 27 MsHSFs responded to drought stress, cold stress and salt stress, respectively, with seven responding to all three. According to RT–PCR, MsHSF27/33 expression gradually increased with cold, salt and drought stress condition duration; MsHSF6 expression increased over time under salt and drought stress conditions but decreased under cold stress. Our results provide key information for further functional analysis of MsHSFs and for genetic improvement of stress resistance in alfalfa. Full article
Show Figures

Figure 1

16 pages, 3791 KiB  
Article
Targeting Heat Shock Protein 27 and Fatty Acid Oxidation Augments Cisplatin Treatment in Cisplatin-Resistant Ovarian Cancer Cell Lines
by James Patrick Heiserman, Zenab Minhas, Elahe Nikpayam and Dong-Joo Cheon
Int. J. Mol. Sci. 2023, 24(16), 12638; https://doi.org/10.3390/ijms241612638 - 10 Aug 2023
Cited by 7 | Viewed by 2630
Abstract
Most ovarian cancer patients develop recurrent cancers which are often resistant to commonly employed chemotherapy agents, such as cisplatin. We have previously shown that the inhibition of heat shock protein 27 (HSP27) or fatty acid oxidation (FAO) sensitizes cisplatin-resistant ovarian cancer cell lines [...] Read more.
Most ovarian cancer patients develop recurrent cancers which are often resistant to commonly employed chemotherapy agents, such as cisplatin. We have previously shown that the inhibition of heat shock protein 27 (HSP27) or fatty acid oxidation (FAO) sensitizes cisplatin-resistant ovarian cancer cell lines to cisplatin and dual inhibition of both HSP27 and FAO induces substantial cell death in vitro. However, it is unclear how HSP27 and FAO promote cisplatin resistance, and if dual inhibition of both HSP27 and FAO would augment cisplatin treatment in vivo. Here we showed that HSP27 knockdown in two cisplatin-resistant ovarian cancer cell lines (A2780CIS and PEO4) resulted in more ROS production upon cisplatin treatment. HSP27-knockdown cancer cells exhibited decreased levels of reduced glutathione (GSH) and glucose6phosphate dehydrogenase (G6PD), a crucial pentose phosphate pathway enzyme. ROS depletion with the compound N-acetyl cysteine (NAC) attenuated cisplatin-induced upregulation of HSP27, FAO, and markers of apoptosis and ferroptosis in cisplatin-resistant ovarian cancer cell lines. Finally, inhibition of HSP27 and FAO with ivermectin and perhexiline enhanced the cytotoxic effect of cisplatin in A2780CIS xenograft tumors in vivo. Our results suggest that two different cisplatin-resistant ovarian cancer cell lines upregulate HSP27 and FAO to deplete cisplatin-induced ROS to attenuate cisplatin’s cytotoxic effect. Full article
(This article belongs to the Special Issue Cisplatin in Cancer Therapy: Molecular Mechanisms of Action 4.0)
Show Figures

Figure 1

32 pages, 5823 KiB  
Article
The Role of NMDA Receptor Partial Antagonist, Carbamathione, as a Therapeutic Agent for Transient Global Ischemia
by Jigar Pravinchandra Modi, Wen Shen, Janet Menzie-Suderam, Hongyuan Xu, Chun-Hua Lin, Rui Tao, Howard M. Prentice, John Schloss and Jang-Yen Wu
Biomedicines 2023, 11(7), 1885; https://doi.org/10.3390/biomedicines11071885 - 3 Jul 2023
Cited by 2 | Viewed by 2405
Abstract
Carbamathione (Carb), an NMDA glutamate receptor partial antagonist, has potent neuroprotective functions against hypoxia- or ischemia-induced neuronal injury in cell- or animal-based stroke models. We used PC-12 cell cultures as a cell-based model and bilateral carotid artery occlusion (BCAO) for stroke. Whole-cell patch [...] Read more.
Carbamathione (Carb), an NMDA glutamate receptor partial antagonist, has potent neuroprotective functions against hypoxia- or ischemia-induced neuronal injury in cell- or animal-based stroke models. We used PC-12 cell cultures as a cell-based model and bilateral carotid artery occlusion (BCAO) for stroke. Whole-cell patch clamp recording in the mouse retinal ganglion cells was performed. Key proteins involved in apoptosis, endoplasmic reticulum (ER) stress, and heat shock proteins were analyzed using immunoblotting. Carb is effective in protecting PC12 cells against glutamate- or hypoxia-induced cell injury. Electrophysiological results show that Carb attenuates NMDA-mediated glutamate currents in the retinal ganglion cells, which results in activation of the AKT signaling pathway and increased expression of pro-cell survival biomarkers, e.g., Hsp 27, P-AKT, and Bcl2 and decreased expression of pro-cell death markers, e.g., Beclin 1, Bax, and Cleaved caspase 3, and ER stress markers, e.g., CHOP, IRE1, XBP1, ATF 4, and eIF2α. Using the BCAO animal stroke model, we found that Carb reduced the brain infarct volume and decreased levels of ER stress markers, GRP 78, CHOP, and at the behavioral level, e.g., a decrease in asymmetric turns and an increase in locomotor activity. These findings for Carb provide promising and rational strategies for stroke therapy. Full article
(This article belongs to the Special Issue Advanced Research in Stroke)
Show Figures

Figure 1

10 pages, 2419 KiB  
Article
Upregulation of Heat-Shock Protein (hsp)-27 in a Patient with Heterozygous SPG11 c.1951C>T and SYNJ1 c.2614G>T Mutations Causing Clinical Spastic Paraplegia
by Juan Antonio García-Carmona, Joaquín Amores-Iniesta, José Soler-Usero, María Cerdán-Sánchez, Javier Navarro-Zaragoza, María López-López, Juan José Soria-Torrecillas, Ainhoa Ballesteros-Arenas, José Antonio Pérez-Vicente and Pilar Almela
Genes 2023, 14(7), 1320; https://doi.org/10.3390/genes14071320 - 23 Jun 2023
Cited by 2 | Viewed by 1589
Abstract
We report a 49-year-old patient suffering from spastic paraplegia with a novel heterozygous mutation and analyzed the levels of heat shock proteins (hsp)-27, dopamine (DA), and its metabolites in their cerebrospinal fluid (CSF). The hsp27 protein concentration in the patient’s CSF was assayed [...] Read more.
We report a 49-year-old patient suffering from spastic paraplegia with a novel heterozygous mutation and analyzed the levels of heat shock proteins (hsp)-27, dopamine (DA), and its metabolites in their cerebrospinal fluid (CSF). The hsp27 protein concentration in the patient’s CSF was assayed by an ELISA kit, while DA levels and its metabolites in the CSF, 3,4-dihydroxyphenylacetic acid (DOPAC), Cys-DA, and Cys-DOPA were measured by HPLC. Whole exome sequencing demonstrated SPG-11 c.1951C>T and novel SYNJ1 c.2614G>T mutations, both heterozygous recessive. The patient’s DA and DOPAC levels in their CSF were significantly decreased (53.0 ± 6.92 and 473.3 ± 72.19, p < 0.05, respectively) while no differences were found in their Cys-DA. Nonetheless, Cys-DA/DOPAC ratio (0.213 ± 0.024, p < 0.05) and hsp27 levels (1073.0 ± 136.4, p < 0.05) were significantly higher. To the best of our knowledge, the c.2614G>T SYNJ1 mutation has not been previously reported. Our patient does not produce fully functional spatacsin and synaptojanin-1 proteins. In this line, our results showed decreased DA and DOPAC levels in the patient’s CSF, indicating loss of DAergic neurons. Many factors have been described as being responsible for the increased cys-DA/DOPAC ratio, such as MAO inhibition and decreased antioxidant activity in DAergic neurons which would increase catecholquinones and consequently cysteinyl-catechols. In conclusion, haploinsufficiency of spatacsin and synaptojanin-1 proteins might be the underlying cause of neurodegeneration produced by protein trafficking defects, DA vesicle trafficking/recycling processes, autophagy dysfunction, and cell death leading to hsp27 upregulation as a cellular mechanism of protection and/or to balance impaired protein trafficking. Full article
(This article belongs to the Section Neurogenomics)
Show Figures

Figure 1

25 pages, 7137 KiB  
Article
Transcriptomic Response of the Liver Tissue in Trachinotus ovatus to Acute Heat Stress
by Qian-Qian Li, Jing Zhang, Hong-Yang Wang, Su-Fang Niu, Ren-Xie Wu, Bao-Gui Tang, Qing-Hua Wang, Zhen-Bang Liang and Yan-Shan Liang
Animals 2023, 13(13), 2053; https://doi.org/10.3390/ani13132053 - 21 Jun 2023
Cited by 8 | Viewed by 2630
Abstract
Trachinotus ovatus is a major economically important cultured marine fish in the South China Sea. However, extreme weather and increased culture density result in uncontrollable problems, such as increases in water temperature and a decline in dissolved oxygen (DO), hindering the high-quality development [...] Read more.
Trachinotus ovatus is a major economically important cultured marine fish in the South China Sea. However, extreme weather and increased culture density result in uncontrollable problems, such as increases in water temperature and a decline in dissolved oxygen (DO), hindering the high-quality development of aquaculture. In this study, liver transcriptional profiles of T. ovatus were investigated under acute high-temperature stress (31 °C and 34 °C) and normal water temperature (27 °C) using RNA sequencing (RNA-Seq) technology. Differential expression analysis and STEM analysis showed that 1347 differentially expressed genes (DEGs) and four significant profiles (profiles 0, 3, 4, and 7) were screened, respectively. Of these DEGs, some genes involved in heat shock protein (HSPs), hypoxic adaptation, and glycolysis were up-regulated, while some genes involved in the ubiquitin-proteasome system (UPS) and fatty acid metabolism were down-regulated. Our results suggest that protein dynamic balance and function, hypoxia adaptation, and energy metabolism transformation are crucial in response to acute high-temperature stress. Our findings contribute to understanding the molecular response mechanism of T. ovatus under acute heat stress, which may provide some reference for studying the molecular mechanisms of other fish in response to heat stress. Full article
(This article belongs to the Special Issue The Effects of Pollution and Other Stressors on Fish Health)
Show Figures

Figure 1

12 pages, 1152 KiB  
Article
Repeated Rounds of Gonadotropin Stimulation Induce Imbalance in the Antioxidant Machinery and Activation of Pro-Survival Proteins in Mouse Oviducts
by Valentina Di Nisio, Sevastiani Antonouli, Sabrina Colafarina, Osvaldo Zarivi, Gianna Rossi, Sandra Cecconi and Anna Maria Giuseppina Poma
Int. J. Mol. Sci. 2023, 24(11), 9294; https://doi.org/10.3390/ijms24119294 - 26 May 2023
Viewed by 1868
Abstract
Controlled ovarian stimulation (COS) through gonadotropin administration has become a common procedure in assisted reproductive technologies. COS’s drawback is the formation of an unbalanced hormonal and molecular environment that could alter several cellular mechanisms. On this basis, we detected the presence of mitochondrial [...] Read more.
Controlled ovarian stimulation (COS) through gonadotropin administration has become a common procedure in assisted reproductive technologies. COS’s drawback is the formation of an unbalanced hormonal and molecular environment that could alter several cellular mechanisms. On this basis, we detected the presence of mitochondrial DNA (mtDNA) fragmentation, antioxidant enzymes (catalase; superoxide dismutases 1 and 2, SOD-1 and -2; glutathione peroxidase 1, GPx1) and apoptotic (Bcl-2-associated X protein, Bax; cleaved caspases 3 and 7; phosphorylated (p)-heat shock protein 27, p-HSP27) and cell-cycle-related proteins (p-p38 mitogen-activated protein kinase, p-p38 MAPK; p-MAPK activated protein kinase 2, p-MAPKAPK2; p-stress-activated protein kinase/Jun amino-terminal kinase, p-SAPK/JNK; p-c-Jun) in the oviducts of unstimulated (Ctr) and repeatedly hyperstimulated (eight rounds, 8R) mice. While all the antioxidant enzymes were overexpressed after 8R of stimulation, mtDNA fragmentation decreased in the 8R group, denoting a present yet controlled imbalance in the antioxidant machinery. Apoptotic proteins were not overexpressed, except for a sharp increase in the inflammatory-related cleaved caspase 7, accompanied by a significant decrease in p-HSP27 content. On the other hand, the number of proteins involved in pro-survival mechanisms, such as p-p38 MAPK, p-SAPK/JNK and p-c-Jun, increased almost 50% in the 8R group. Altogether, the present results demonstrate that repeated stimulations cause the activation of the antioxidant machinery in mouse oviducts; however, this is not sufficient to induce apoptosis, and is efficiently counterbalanced by activation of pro-survival proteins. Full article
(This article belongs to the Special Issue Gonadotropin Cell Transduction Mechanisms 2.0)
Show Figures

Graphical abstract

20 pages, 2581 KiB  
Article
Online Home-Based Physical Activity Counteracts Changes of Redox-Status Biomarkers and Fitness Profiles during Treatment Programs in Postsurgery Female Breast Cancer Patients
by Chantalle Moulton, Elisa Grazioli, Cristina Antinozzi, Cristina Fantini, Claudia Cerulli, Arianna Murri, Guglielmo Duranti, Roberta Ceci, Maria Chiara Vulpiani, Patrizia Pellegrini, Sveva Maria Nusca, Francesco Cavaliere, Simona Fabbri, Paolo Sgrò, Luigi Di Luigi, Daniela Caporossi, Attilio Parisi and Ivan Dimauro
Antioxidants 2023, 12(5), 1138; https://doi.org/10.3390/antiox12051138 - 22 May 2023
Cited by 8 | Viewed by 3131
Abstract
Breast cancer (BC) is one of the most commonly diagnosed types of cancer in women. Oxidative stress may contribute to cancer etiology through several mechanisms. A large body of evidence indicates that physical activity (PA) has positive effects on different aspects of BC [...] Read more.
Breast cancer (BC) is one of the most commonly diagnosed types of cancer in women. Oxidative stress may contribute to cancer etiology through several mechanisms. A large body of evidence indicates that physical activity (PA) has positive effects on different aspects of BC evolution, including mitigation of negative effects induced by medical treatment. With the aim to verify the capacity of PA to counteract negative effects of BC treatment on systemic redox homeostasis in postsurgery female BC patients, we have examined the modulation of circulating levels of oxidative stress and inflammation markers. Moreover, we evaluated the impacts on physical fitness and mental well-being by measuring functional parameters, body mass index, body composition, health-related quality of life (QoL), and fatigue. Our investigation revealed that PA was effective in maintaining plasma levels of superoxide dismutase (SOD) activity and tGSH, as well as peripheral blood mononuclear cells’ (PBMCs) mRNA levels of SOD1 and heat-shock protein 27. Moreover, we found a significant decrease in plasma interleukin-6 (≈0.57 ± 0.23-fold change, p < 0.05) and increases in both interleukin-10 (≈1.15 ± 0.35-fold change, p < 0.05) and PBMCs’ mRNA level of SOD2 (≈1.87 ± 0.36-fold change, p < 0.05). Finally, PA improves functional parameters (6 min walking test, ≈+6.50%, p < 0.01; Borg, ≈−58.18%, p < 0.01; sit-and-reach, ≈+250.00%, p < 0.01; scratch right, ≈−24.12%, and left, ≈−18.81%, p < 0.01) and body composition (free fat mass, ≈+2.80%, p < 0.05; fat mass, ≈−6.93%, p < 0.05) as well as the QoL (physical function, ≈+5.78%, p < 0.05) and fatigue (cognitive fatigue, ≈−60%, p < 0.05) parameters. These results suggest that a specific PA program not only is effective in improving functional and anthropometric parameters but may also activate cellular responses through a multitude of actions in postsurgery BC patients undergoing adjuvant therapy. These may include modulation of gene expression and protein activity and impacting several signaling pathways/biological activities involved in tumor-cell growth; metastasis; and inflammation, as well as moderating distress symptoms known to negatively affect QoL. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

15 pages, 666 KiB  
Article
Interactive Effect of Dietary Gamma-Aminobutyric Acid (GABA) and Water Temperature on Growth Performance, Blood Plasma Indices, Heat Shock Proteins and GABAergic Gene Expression in Juvenile Olive Flounder Paralichthys olivaceus
by Seunghan Lee, Mohammad Moniruzzaman, Nathaniel Farris, Taesun Min and Sungchul C. Bai
Metabolites 2023, 13(5), 619; https://doi.org/10.3390/metabo13050619 - 30 Apr 2023
Cited by 16 | Viewed by 5486
Abstract
Gamma-aminobutyric acid (GABA) is an important inhibitory neurotransmitter in the central nervous system of living organisms and has the ability to reduce the magnitude of stress in humans and animals. In this study, we evaluated the supplemental effects of GABA on normal and [...] Read more.
Gamma-aminobutyric acid (GABA) is an important inhibitory neurotransmitter in the central nervous system of living organisms and has the ability to reduce the magnitude of stress in humans and animals. In this study, we evaluated the supplemental effects of GABA on normal and high water temperature based on growth, blood plasma composition as well as heat shock proteins and GABA-related gene expression in juvenile olive flounder. For this, a 2 × 2 factorial design of experiment was employed to investigate the dietary effects of GABA at 0 mg/kg of diet (GABA0 diet) and 200 mg/kg of diet (GABA200 diet) in water temperatures of 20 ± 1 °C (normal temperature) and 27 ± 1 °C (high temperature) for 28 days. A total of 180 fish with an average initial weight of 40.1 ± 0.4 g (mean ± SD) were distributed into 12 tanks, of which, each tank contained 15 fish based on the 4 dietary treatment groups in triplicate. At the end of the feeding trial, the results demonstrated that both temperature and GABA had significant effects on the growth performance of the fish. However, fish fed the GABA200 diet had a significantly higher final body weight, weight gain and specific growth rate as well as a significantly lower feed conversion ratio than the fish fed the GABA0 diet at the high water temperature. A significant interactive effect of water temperature and GABA was observed on the growth performance of olive flounder based on the two-way analysis of variance. The plasma GABA levels in fish were increased in a dose-dependent manner at normal or high water temperatures, whereas cortisol and glucose levels were decreased in fish fed GABA-supplemented diets under temperature stress. The GABA-related mRNA expression in the brains of the fish such as GABA type A receptor-associated protein (Gabarap), GABA type B receptor 1 (Gabbr1) and glutamate decarboxylase 1 (Gad1) were not significantly affected by GABA-supplemented diets under normal or temperature stressed conditions. On the other hand, the mRNA expression of heat shock proteins (hsp) in the livers of the fish, such as hsp70 and hsp90, were unchanged in fish fed the GABA diets compared to the control diet at the high water temperature. Collectively, the present study showed that dietary supplementation with GABA could enhance growth performance, and improve the feed utilization, plasma biochemical parameters and heat shock proteins and GABA-related gene expression under the stress of high water temperatures in juvenile olive flounder. Full article
Show Figures

Figure 1

13 pages, 1672 KiB  
Article
Antioxidant Enzyme Activity and Serum HSP70 Concentrations in Relation to Insulin Resistance and Lipid Profile in Lean and Overweight Young Men
by Anna Lubkowska, Wioleta Dudzińska and Waldemar Pluta
Antioxidants 2023, 12(3), 655; https://doi.org/10.3390/antiox12030655 - 6 Mar 2023
Cited by 16 | Viewed by 2346
Abstract
Oxidants are generated by all cells during normal oxidative respiration, and as long as they are under the control of appropriate mechanisms, they act as intracellular signaling molecules participating in complex functions. Oxidative stress can also affect insulin levels in the body. The [...] Read more.
Oxidants are generated by all cells during normal oxidative respiration, and as long as they are under the control of appropriate mechanisms, they act as intracellular signaling molecules participating in complex functions. Oxidative stress can also affect insulin levels in the body. The production of reactive oxygen species by-products can lead to insulin resistance. Heat shock proteins (70 kDa) protect cells from the damaging effects of heat shock but also oxidative stress. The aim of the study was to investigate the serum concentration of HSP70 in young, non-obese but overweight men (BMI ≤ 30 kg/m2) and to assess its association with the insulin resistance, lipid profile and antioxidant system of red blood cells. Fifty-seven young men were examined and divided into two groups: lean men (n = 30) and men overweight (n = 27). A statistically significant difference was observed in the BMI (p < 0.007), HSP70 concentration (p < 0.000), serum insulin concentration (p < 0.000), HOMA-IR (p < 0.0001), superoxide dismutase (p < 0.02) and glutathione peroxidase (p < 0.05) between the studied groups. There was a negative correlation between the concentration of HSP70 with the insulin level (r = −0.50; p < 0.0004) and with the HOMA-IR (r = −0.50; p < 0.0004). These changes were associated with an increase in the activity of antioxidant enzymes. Our findings suggest that measuring the extracellular concentration of HSP70 can be an important indicator in disorders of glucose homeostasis. Full article
Show Figures

Figure 1

12 pages, 2897 KiB  
Article
HSP27 Interacts with Nonstructural Proteins of Porcine Reproductive and Respiratory Syndrome Virus and Promotes Viral Replication
by Chunhui Song, Hanze Liu, Zhi Cao, Hu Shan and Qiaoya Zhang
Pathogens 2023, 12(1), 91; https://doi.org/10.3390/pathogens12010091 - 5 Jan 2023
Cited by 4 | Viewed by 2061
Abstract
Heat shock protein 27 (HSP27) is a multifunctional protein and belongs to the small HSP family. It has been shown that HSP27 is involved in viral replication as a cellular chaperone, but the function of HSP27 during porcine reproductive and respiratory syndrome virus [...] Read more.
Heat shock protein 27 (HSP27) is a multifunctional protein and belongs to the small HSP family. It has been shown that HSP27 is involved in viral replication as a cellular chaperone, but the function of HSP27 during porcine reproductive and respiratory syndrome virus (PRRSV) infections remains unexplored. Here, we found that PRRSV replication can induce HSP27 expression and phosphorylation in vitro. HSP27 overexpression promoted PRRSV replication, whereas its knockdown reduced PRRSV proliferation. Additionally, suppressing HSP27 phosphorylation reduced PRRSV replication and the level of viral double-stranded RNA (dsRNA), a marker of the viral replication and transcription complexes (RTCs). Furthermore, HSP27 can interact with multiple viral nonstructural proteins (nsps), including nsp1α, nsp1β, nsp5, nsp9, nsp11 and nsp12. Suppressing the phosphorylation of HSP27 almost completely disrupted its interaction with nsp1β and nsp12. Altogether, our study revealed that HSP27 plays an important role in PRRSV replication. Full article
Show Figures

Figure 1

Back to TopTop