Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (98)

Search Parameters:
Keywords = HSC transplantation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 13067 KiB  
Article
Engineering Marrow-Mimetic Hydrogel Platforms Enhance Erythropoiesis: A Mechanobiology-Driven Approach for Transfusion Red Blood Cell Production
by Qinqin Yang, Runjin Liu and Xiang Wang
Gels 2025, 11(8), 594; https://doi.org/10.3390/gels11080594 - 31 Jul 2025
Viewed by 136
Abstract
Red blood cell (RBC) production from bone marrow hematopoietic stem cells (BMHSCs) in vitro overlooks the mechanical signals of the bone marrow niche and overly relies on growth factors. Considering that the fate of hematopoietic stem cells (HSCs) is determined by the natural [...] Read more.
Red blood cell (RBC) production from bone marrow hematopoietic stem cells (BMHSCs) in vitro overlooks the mechanical signals of the bone marrow niche and overly relies on growth factors. Considering that the fate of hematopoietic stem cells (HSCs) is determined by the natural bone marrow microenvironment, differences in mechanical microenvironments provide a reference for the regulation of HSC differentiation. This study seek to reveal the role of mechanobiology cues in erythropoiesis and provide a new perspective for the design of in vitro erythropoiesis platforms. The hydrogel platforms we designed simulate the stiffness gradient of the bone marrow niche to culture HSCs and induce their differentiation into the erythroid system. Cells on the low-stiffness scaffold have higher potential for erythrocyte differentiation and faster differentiation efficiency and promote erythrocyte differentiation after erythropoietin (EPO) restriction. In vivo transplantation experiments demonstrated that these cells have the ability for continuous proliferation and differentiation into mature erythrocytes. By combining mechanical cues with in vitro erythrocyte production, this method is expected to provide insights for in vitro hematopoietic design and offer a scalable cell manufacturing platform for transfusion medicine. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

12 pages, 744 KiB  
Article
Feasibility Assessment of Autologous Human Immune System (HIS) ImmunoGraft Platform Development Using Autologous Mobilized Peripheral Blood (MPB) CD34 Cells Derived from Adult HNSCC Patient
by Bhavna Verma, Georgia Zhuo Chen, Edmund K. Waller, Mihir Patel, Allyson Anderson, Neal Goodwin, Amy Wesa, Yong Teng and Nabil F. Saba
Int. J. Mol. Sci. 2025, 26(11), 5269; https://doi.org/10.3390/ijms26115269 - 30 May 2025
Viewed by 523
Abstract
Humanized mice generated by hematopoietic stem cell (HSC) transplantation are limited by the immune system developed being allogeneic to the tumor. We have innovated a platform to reconstitute an autologous human immune system (HIS) in immunodeficient NOG-EXL mice from mobilized peripheral blood (MPB)-CD34 [...] Read more.
Humanized mice generated by hematopoietic stem cell (HSC) transplantation are limited by the immune system developed being allogeneic to the tumor. We have innovated a platform to reconstitute an autologous human immune system (HIS) in immunodeficient NOG-EXL mice from mobilized peripheral blood (MPB)-CD34 cells, along with PDX generated from the same patient’s tumor tissue. Patients consented under an IRB-approved protocol for tumor biopsy and HSC apheresis at Emory University. HSC collection included mobilization with G-CSF and plerixafor, immunomagnetic bead isolation with CliniMACS, and cryopreservation of CD34+ cells. PDX were established from biopsies or surgical specimens by passaging into immunodeficient mice. Irradiated NOG-EXL mice were engrafted with HSCs by intravenous transplantation of CD34+ HSC. Engraftment of human T cells, B cells, and myeloid cells in peripheral blood was assessed by serial flow cytometry of blood samples, with final assessment of immune components in spleen and bone marrow at 30 weeks. Twenty-eight PDX models were generated from 43 patients with HNSCC; 1 patient underwent apheresis. HSC engraftment in blood was observed in 100% of NOG-EXL mice at 8 weeks post-transplant, with 5–20% hCD45+ cells present in the periphery. B-cell development was predominant at early time points and declined over time. Human T-cell and subset development of CD4+ and CD8+ T cells were observed in blood from 15 weeks post-transplant. Strong development of the myeloid lineage (CD33+) was observed starting at 8 weeks and persisted throughout the study. These data demonstrate that mobilization and apheresis of HNSCC patients is technically and clinically feasible and may allow the establishment of autologous HIS-PDX mice. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

15 pages, 2660 KiB  
Article
Integrin β2 Plays a Significant Role in Therapeutic Angiogenesis Through Hematopoietic Stem Cell Transplantation
by Orie Saino, Yuko Ogawa, Kazuta Yasui, Akihiro Fuchizaki, Rie Akamatsu, Yoriko Irie, Mitsunobu Tanaka, Takafumi Kimura and Akihiko Taguchi
Life 2025, 15(2), 195; https://doi.org/10.3390/life15020195 - 28 Jan 2025
Cited by 1 | Viewed by 1011
Abstract
The efficacy of hematopoietic stem cell (HSC) therapy for cerebral infarction has been previously demonstrated. However, the lack of response in some patients has hindered its widespread use. To establish HSC therapy as a standard treatment, it is important to examine the causes [...] Read more.
The efficacy of hematopoietic stem cell (HSC) therapy for cerebral infarction has been previously demonstrated. However, the lack of response in some patients has hindered its widespread use. To establish HSC therapy as a standard treatment, it is important to examine the causes of non-responsiveness. In this study, we aimed to identify the specifications of transplanted cells based on their therapeutic mechanisms to predict treatment success. We found that HSC therapy activates injured cerebral endothelial cells via gap junctions because cell adhesion between HSCs and the endothelium plays an essential role in cellular communication via gap junctions. The expression of the adhesion molecule integrin β2 (CD18) in CD34-positive (CD34+) cells was identified as critical for the therapeutic effect on cerebral infarction in a murine model. Cells with low CD18 expression exhibited a weaker therapeutic effect than cells with high CD18 expression, even when the same number of HSCs was administered. The expression of CD18 in CD34+ cells can be used as a specification marker for transplanted HSCs and is useful for identifying non-responders. Furthermore, quantification of CD18 expression is crucial for evaluating the cellular potential of cell-based therapies for diseases where therapeutic effects are mediated through cell adhesion. Full article
(This article belongs to the Special Issue Revolutionizing Neuroregeneration)
Show Figures

Figure 1

54 pages, 3352 KiB  
Review
Deciphering the Complexities of Adult Human Steady State and Stress-Induced Hematopoiesis: Progress and Challenges
by Suzanne M. Watt and Maria G. Roubelakis
Int. J. Mol. Sci. 2025, 26(2), 671; https://doi.org/10.3390/ijms26020671 - 14 Jan 2025
Cited by 1 | Viewed by 2315
Abstract
Human hematopoietic stem cells (HSCs) have traditionally been viewed as self-renewing, multipotent cells with enormous potential in sustaining essential steady state blood and immune cell production throughout life. Indeed, around 86% (1011–1012) of new cells generated daily in a [...] Read more.
Human hematopoietic stem cells (HSCs) have traditionally been viewed as self-renewing, multipotent cells with enormous potential in sustaining essential steady state blood and immune cell production throughout life. Indeed, around 86% (1011–1012) of new cells generated daily in a healthy young human adult are of hematopoietic origin. Therapeutically, human HSCs have contributed to over 1.5 million hematopoietic cell transplants (HCTs) globally, making this the most successful regenerative therapy to date. We will commence this review by briefly highlighting selected key achievements (from 1868 to the end of the 20th century) that have contributed to this accomplishment. Much of our knowledge of hematopoiesis is based on small animal models that, despite their enormous importance, do not always recapitulate human hematopoiesis. Given this, we will critically review the progress and challenges faced in identifying adult human HSCs and tracing their lineage differentiation trajectories, referring to murine studies as needed. Moving forward and given that human hematopoiesis is dynamic and can readily adjust to a variety of stressors, we will then discuss recent research advances contributing to understanding (i) which HSPCs maintain daily steady state human hematopoiesis, (ii) where these are located, and (iii) which mechanisms come into play when homeostatic hematopoiesis switches to stress-induced or emergency hematopoiesis. Full article
Show Figures

Graphical abstract

18 pages, 4581 KiB  
Article
Seasonal Characterization of the Aerobiome in Hematopoietic Stem Cell Transplant Rooms: Potential Risk for Immunosuppressed Patients
by Emilio Mariano Durán-Manuel, Edgar Fiscal-Baxin, Andres Emmanuel Nolasco-Rojas, Miguel Ángel Loyola-Cruz, Clemente Cruz-Cruz, Marianela Paredes-Mendoza, Adolfo López-Ornelas, Dulce Milagros Razo Blanco-Hernández, Nayeli Goreti Nieto-Velázquez, Aída Verónica Rodríguez-Tovar, Adrián Ramírez-Granillo, Enzo Vásquez-Jiménez, Verónica Fernández-Sánchez, Erika Gómez-Zamora, Mónica Alethia Cureño-Díaz, Andrea Milán-Salvatierra, Carlos Alberto Jiménez-Zamarripa, Claudia Camelia Calzada-Mendoza and Juan Manuel Bello-López
Microorganisms 2024, 12(11), 2352; https://doi.org/10.3390/microorganisms12112352 - 18 Nov 2024
Cited by 1 | Viewed by 1452
Abstract
Infections pose a risk for patients undergoing hematopoietic stem cell (HSC) transplants due to their immunosuppression, making them susceptible to opportunistic infections. Therefore, understanding the composition of the aerobiome in this area is vital. The aim of this study was to characterize the [...] Read more.
Infections pose a risk for patients undergoing hematopoietic stem cell (HSC) transplants due to their immunosuppression, making them susceptible to opportunistic infections. Therefore, understanding the composition of the aerobiome in this area is vital. The aim of this study was to characterize the aerobiome in an HSC transplant area, evaluating the impact of infrastructure and health personnel operations on air contamination. The environmental parameters and aerobiome of the HSC transplant area at Hospital Juárez de México were quantified over one year. Finally, a double-entry Vester matrix was constructed to classify problems according to their degree of causality. The abundance and taxonomic diversity of the aerobiome were dependent on seasonality, environmental factors, and high-efficiency filtration. Gram-positive bacteria predominated, followed by fungi and Gram-negative bacteria. ANOVA revealed significant differences in the bacterial aerobiome but not in the fungal aerobiome among the transplant rooms. Clinically, fungi such as Aspergillus fumigatus, Alternaria spp., Cladosporium spp., and Penicillium spp. were identified. ESKAPE bacteria typing revealed clonal dispersion. Finally, the Vester matrix highlighted critical problems associated with contamination due to the absence of HEPA filtration and non-adherence in patient management practices. HEPA filtration and positive pressure are essential to improve the air quality and reduce the microbiological load. However, the control areas will depend on patient management and routine activities, such as entry protocols in controlled areas. Full article
(This article belongs to the Section Public Health Microbiology)
Show Figures

Figure 1

15 pages, 1387 KiB  
Review
Transplant Immunology in Liver Transplant, Rejection, and Tolerance
by Masaya Yokoyama, Daisuke Imai, Samuel Wolfe, Ligee George, Yuzuru Sambommatsu, Aamir A. Khan, Seung Duk Lee, Muhammad I. Saeed, Amit Sharma, Vinay Kumaran, Adrian H. Cotterell, Marlon F. Levy and David A. Bruno
Livers 2024, 4(3), 420-434; https://doi.org/10.3390/livers4030031 - 9 Sep 2024
Viewed by 3468
Abstract
Liver transplantation is the most effective treatment for end-stage liver disease. Despite improvements in surgical techniques, transplant rejection remains a significant concern. The liver is considered an immune-privileged organ due to its unique microenvironment and complex interactions among various cell types. Alloimmune responses [...] Read more.
Liver transplantation is the most effective treatment for end-stage liver disease. Despite improvements in surgical techniques, transplant rejection remains a significant concern. The liver is considered an immune-privileged organ due to its unique microenvironment and complex interactions among various cell types. Alloimmune responses mediated by T cells and antigen-presenting cells (APCs) play crucial roles in transplant rejection. The liver’s dual blood supply and unique composition of its sinusoidal endothelial cells (LSECs), Kupffer cells (KCs), hepatocytes, and hepatic stellate cells (HSCs) contribute to its immune privilege. Alloantigen recognition by T cells occurs through direct, indirect, and semidirect pathways, leading to acute cellular rejection (ACR) and chronic rejection. ACR is a T cell-mediated process that typically occurs within the first few weeks to months after transplantation. Chronic rejection, on the other hand, is a gradual process characterized by progressive fibrosis and graft dysfunction, often leading to graft loss. Acute antibody-mediated rejection (AMR) is less common following surgery compared to other solid organ transplants due to the liver’s unique anatomy and immune privilege. However, when it does occur, AMR can be aggressive and lead to rapid graft dysfunction. Despite improvements in immunosuppression, rejection remains a challenge, particularly chronic rejection. Understanding the mechanisms of rejection and immune tolerance, including the roles of regulatory T cells (Tregs) and hepatic dendritic cells (DCs), is crucial for improving transplant outcomes. Strategies to induce immune tolerance, such as modulating DC function or promoting Treg activity, hold promise for reducing rejection and improving long-term graft survival. This review focuses on the liver’s unique predisposition to rejection and tolerance, highlighting the roles of individual cell types in these processes. Continued research into the mechanisms of alloimmune responses and immune tolerance in liver transplantation is essential for developing more effective therapies and improving long-term outcomes for patients with end-stage liver disease. Full article
(This article belongs to the Special Issue The Liver as the Center of the Internal Defence System of the Body)
Show Figures

Figure 1

17 pages, 2443 KiB  
Review
Regulatory Assessment of Casgevy for the Treatment of Transfusion-Dependent β-Thalassemia and Sickle Cell Disease with Recurrent Vaso-Occlusive Crises
by Essam Kerwash, Marija Sajic, Khadija Rerhou Rantell, James W. McBlane, John D. Johnston, Alison Niewiarowska, Andrew S. Butler and Susan Cole
Curr. Issues Mol. Biol. 2024, 46(8), 8209-8225; https://doi.org/10.3390/cimb46080485 - 30 Jul 2024
Cited by 4 | Viewed by 6263
Abstract
Sickle cell disease (SCD) and transfusion-dependent β-thalassemia (TDT) are hereditary haemoglobinopathies characterized by a reduction in functional β-globin chains. Both conditions cause tiredness and increase susceptibility to infection, which can lead organ failure, significantly reducing life expectancy and typically requiring those affected to [...] Read more.
Sickle cell disease (SCD) and transfusion-dependent β-thalassemia (TDT) are hereditary haemoglobinopathies characterized by a reduction in functional β-globin chains. Both conditions cause tiredness and increase susceptibility to infection, which can lead organ failure, significantly reducing life expectancy and typically requiring those affected to undergo regular erythrocyte transfusion. Recently, a novel therapeutic treatment for SCD and TDT was approved by the UK regulatory body (Medicines and Healthcare products Regulatory Agency; MHRA). Exagamglogene autotemcel (Casgevy) is the first licensed therapy globally to utilize CRIPSR/Cas9 technology and induces an increase in expression of γ-globin chains to compensate for the reduction in functional β-globin. Casgevy represents a first-in-class therapeutic, and numerous considerations were made by the MHRA throughout its assessment of the medicine. These include, but are not limited to, the risk of tumorigenicity and off-target editing, a limited cohort size, the validity of proposed dosing and the conduction of only single-arm studies. The MHRA’s analyses of the data to support the proposed indications are presented and discussed throughout this manuscript. Overall, the sponsors claims were considered well supported by their data, and Casgevy was licensed for the treatment of TDT or SCD in patients 12 years of age and older for whom hematopoietic stem cell (HSC) transplantation is appropriate, but a human leukocyte antigen-matched related HSC donor is not available. Full article
(This article belongs to the Collection Feature Papers in Molecular Medicine)
Show Figures

Figure 1

12 pages, 4021 KiB  
Case Report
Acute Erythroid Leukemia Post-Chemo-Radiotherapy and Autologous Stem Cell Transplantation Due to Multiple Myeloma: Tracing the Paths to Leukemic Transformation
by Gábor Méhes, Attila Mokánszki, Anikó Ujfalusi, Zsuzsa Hevessy, Zsófia Miltényi, Lajos Gergely and Judit Bedekovics
Int. J. Mol. Sci. 2024, 25(14), 8003; https://doi.org/10.3390/ijms25148003 - 22 Jul 2024
Viewed by 1719
Abstract
The clinical impact of therapy-related acute leukemias is increasing with the extension of cancer-related survival; however, the origins remain largely unknown. Acute erythroleukemia (AEL), a rare unfavorable type of myeloid neoplasia, may also develop secondary to cytotoxic therapy. The disorder is featured by [...] Read more.
The clinical impact of therapy-related acute leukemias is increasing with the extension of cancer-related survival; however, the origins remain largely unknown. Acute erythroleukemia (AEL), a rare unfavorable type of myeloid neoplasia, may also develop secondary to cytotoxic therapy. The disorder is featured by specific genetic alterations, most importantly multi-allelic mutations of the TP53 gene. While AEL might appear as a part of the therapy-related MDS/AML, spectrum information regarding the genetic complexity and progression is largely missing. We present two AEL cases arising after cytotoxic therapy and melphalan-based myeloablation/autologous peripheral stem cell transplantation due to multiple myeloma (MM). As stated, multiple pathogenic TP53 variants were present unrelated to preexisting MM, in parallel with uninvolved/wild-type hemopoiesis. Potential mechanisms of leukemic transformation are discussed, which include (1) preexisting preneoplastic hemopoietic stem cells (HSC) serving as the common origin for both MM and AEL, (2) the generation and intramedullary survival of p53-deficient post-chemotherapy HSCs, (3) reinoculation of mobilized autologous TP53 mutated HSCs, and (4) melphalan treatment-related late-onset myelodysplasia/leukemia with newly acquired TP53 mutations. Full article
Show Figures

Figure 1

14 pages, 973 KiB  
Review
From Marrow to Bone and Fat: Exploring the Multifaceted Roles of Leptin Receptor Positive Bone Marrow Mesenchymal Stromal Cells
by Parash Prasad and Jose A. Cancelas
Cells 2024, 13(11), 910; https://doi.org/10.3390/cells13110910 - 24 May 2024
Cited by 5 | Viewed by 3080
Abstract
The bone marrow (BM) stromal cell microenvironment contains non-hematopoietic stromal cells called mesenchymal stromal cells (MSCs). MSCs are plastic adherent, form CFU-Fs, and give rise to osteogenic, adipogenic, chondrogenic progenitors, and most importantly provide HSC niche factor chemokine C-X-C motif ligand 12 (CXCL12) [...] Read more.
The bone marrow (BM) stromal cell microenvironment contains non-hematopoietic stromal cells called mesenchymal stromal cells (MSCs). MSCs are plastic adherent, form CFU-Fs, and give rise to osteogenic, adipogenic, chondrogenic progenitors, and most importantly provide HSC niche factor chemokine C-X-C motif ligand 12 (CXCL12) and stem cell factor (SCF). Different authors have defined different markers for mouse MSC identification like PDGFR+Sca-1+ subsets, Nestin+, or LepR+ cells. Of these, the LepR+ cells are the major source of SCF and CXCL12 in the BM microenvironment and play a major role in HSC maintenance and hematopoiesis. LepR+ cells give rise to most of the bones and BM adipocytes, further regulating the microenvironment. In adult BM, LepR+ cells are quiescent but after fracture or irradiation, they proliferate and differentiate into mesenchymal lineage osteogenic, adipogenic and/or chondrogenic cells. They also play a crucial role in the steady-state hematopoiesis process, as well as hematopoietic regeneration and the homing of hematopoietic stem cells (HSCs) after myeloablative injury and/or HSC transplantation. They line the sinusoidal cavities, maintain the trabeculae formation, and provide the space for HSC homing and retention. However, the LepR+ cell subset is heterogeneous; some subsets have higher adipogenic potential, while others express osteollineage-biased genes. Different transcription factors like Early B cell factor 3 (EBF3) or RunX2 help maintain this balance between the self-renewing and committed states, whether osteogenic or adipogenic. The study of LepR+ MSCs holds immense promise for advancing our understanding of HSC biology, tissue regeneration, metabolic disorders, and immune responses. In this review, we will discuss the origin of the BM resident LepR+ cells, different subtypes, and the role of LepR+ cells in maintaining hematopoiesis, osteogenesis, and BM adipogenesis following their multifaceted impact. Full article
Show Figures

Figure 1

10 pages, 235 KiB  
Review
Immuno-Hematologic Complexity of ABO-Incompatible Allogeneic HSC Transplantation
by Antonella Matteocci and Luca Pierelli
Cells 2024, 13(10), 814; https://doi.org/10.3390/cells13100814 - 10 May 2024
Cited by 1 | Viewed by 3196
Abstract
ABO incompatibility is not considered a contraindication for hematopoietic stem cell transplantation (HSCT). Approximately 30% of transplants from related donors and up to 50% of transplants from unrelated donors are ABO incompatible. Immuno-hematologic investigations allow to estimate donor/recipient ABO mismatch and anti-A/B isohemagglutinin [...] Read more.
ABO incompatibility is not considered a contraindication for hematopoietic stem cell transplantation (HSCT). Approximately 30% of transplants from related donors and up to 50% of transplants from unrelated donors are ABO incompatible. Immuno-hematologic investigations allow to estimate donor/recipient ABO mismatch and anti-A/B isohemagglutinin (IHA) titration in the pre-HSCT phase. Immediate hemolysis or delayed complications (passenger lymphocyte syndrome and pure red cell aplasia) can occur post HSCT. Some preventive measures take into consideration either decision-making algorithms based on the recipient’s IHA titration or clinical protocols for the removal/reduction of IHAs through plasma exchange or immunoadsorption procedures. Product manipulation through red blood cell (RBC) and/or plasma depletion can also be taken into account. Currently, the best approach in the management of ABO-incompatible transplant is not defined in expert consensus documents or with solid evidence. In addition, the methods for IHA titration are not standardized. A transfusion strategy must consider both the donor’s and recipient’s blood group systems until the RBC engraftment catches on and ABO conversion (forward and reverse typing) is confirmed on two consecutive and independent samples. Therefore, ABO incompatibility in HSCT represents a demanding immuno-hematologic challenge and requires all necessary preventive measures, including the appropriate selection of ABO blood components for transfusion. Full article
19 pages, 2125 KiB  
Review
From Hematopoietic Stem Cells to Platelets: Unifying Differentiation Pathways Identified by Lineage Tracing Mouse Models
by Bryce A. Manso, Alessandra Rodriguez y Baena and E. Camilla Forsberg
Cells 2024, 13(8), 704; https://doi.org/10.3390/cells13080704 - 19 Apr 2024
Cited by 2 | Viewed by 3812
Abstract
Platelets are the terminal progeny of megakaryocytes, primarily produced in the bone marrow, and play critical roles in blood homeostasis, clotting, and wound healing. Traditionally, megakaryocytes and platelets are thought to arise from multipotent hematopoietic stem cells (HSCs) via multiple discrete progenitor populations [...] Read more.
Platelets are the terminal progeny of megakaryocytes, primarily produced in the bone marrow, and play critical roles in blood homeostasis, clotting, and wound healing. Traditionally, megakaryocytes and platelets are thought to arise from multipotent hematopoietic stem cells (HSCs) via multiple discrete progenitor populations with successive, lineage-restricting differentiation steps. However, this view has recently been challenged by studies suggesting that (1) some HSC clones are biased and/or restricted to the platelet lineage, (2) not all platelet generation follows the “canonical” megakaryocytic differentiation path of hematopoiesis, and (3) platelet output is the default program of steady-state hematopoiesis. Here, we specifically investigate the evidence that in vivo lineage tracing studies provide for the route(s) of platelet generation and investigate the involvement of various intermediate progenitor cell populations. We further identify the challenges that need to be overcome that are required to determine the presence, role, and kinetics of these possible alternate pathways. Full article
(This article belongs to the Section Stem Cells)
Show Figures

Graphical abstract

12 pages, 2584 KiB  
Article
Exercise Suppresses Head and Neck Squamous Cell Carcinoma Growth via Oncostatin M
by Takuya Yoshimura, Yuka Hirano, Taiji Hamada, Seiya Yokoyama, Hajime Suzuki, Hirotaka Takayama, Hirono Migita, Takayuki Ishida, Yasunori Nakamura, Masahiro Ohsawa, Akihiro Asakawa, Kiyohide Ishihata and Akihide Tanimoto
Cancers 2024, 16(6), 1187; https://doi.org/10.3390/cancers16061187 - 18 Mar 2024
Viewed by 2177
Abstract
Major advances have been made in cancer treatment, but the prognosis for elderly cancer patients with sarcopenia and frailty remains poor. Myokines, which are thought to exert preventive effects against sarcopenia, have been reported to be associated with the prognosis of various cancers, [...] Read more.
Major advances have been made in cancer treatment, but the prognosis for elderly cancer patients with sarcopenia and frailty remains poor. Myokines, which are thought to exert preventive effects against sarcopenia, have been reported to be associated with the prognosis of various cancers, but their effect on head and neck squamous cell carcinoma (HNSCC) is unknown. The aim of this study was to clarify the influence of exercise on the control of HNSCC and to examine the underlying mechanism involved. Mice were injected with HSC-3-M3 cells, a human cell line of highly metastatic and poorly differentiated tongue cancer, at the beginning of the study. Just prior to transplantation, blood was collected from the mice, and the levels of myokines were measured by ELISA. Oncostatin M (OSM), a selected myokine, was added to HSC-3-M3 cells, after which the cell proliferation ability, cell cycle, and protein expression were analyzed in vitro. Tumor cell viability was lower (control: 100%, exercise: 75%), tumors were smaller (control: 26.2 mm3, exercise: 6.4 mm3), and survival was longer in the exercise group than in the control group in vivo. OSM inhibited HSC-3-M3 cell proliferation in a concentration-dependent manner in vitro. The addition of OSM increased the proportion of cells in the G0/G1 phase, decreased the proportion of cells in the G2/M phase, and increased the expression of the CDK inhibitors p21 and p27. These results indicate that exercise may directly inhibit the proliferation of HNSCC cell lines via OSM. Full article
(This article belongs to the Section Cancer Pathophysiology)
Show Figures

Figure 1

18 pages, 1638 KiB  
Article
Perspectives for the Use of Umbilical Cord Blood in Transplantation and Beyond: Initiatives for an Advanced and Sustainable Public Banking Program in Greece
by Patra Pateraki, Helen Latsoudis, Anastasia Papadopoulou, Ioanna Gontika, Irene Fragiadaki, Irene Mavroudi, Nikoleta Bizymi, Aristea Batsali, Michail E. Klontzas, Angeliki Xagorari, Efstathios Michalopoulos, Damianos Sotiropoulos, Evangelia Yannaki, Catherine Stavropoulos-Giokas and Helen A. Papadaki
J. Clin. Med. 2024, 13(4), 1152; https://doi.org/10.3390/jcm13041152 - 18 Feb 2024
Cited by 1 | Viewed by 4428
Abstract
The umbilical cord blood (UCB) donated in public UCB banks is a source of hematopoietic stem cells (HSC) alternative to bone marrow for allogeneic HSC transplantation (HSCT). However, the high rejection rate of the donated units due to the strict acceptance criteria and [...] Read more.
The umbilical cord blood (UCB) donated in public UCB banks is a source of hematopoietic stem cells (HSC) alternative to bone marrow for allogeneic HSC transplantation (HSCT). However, the high rejection rate of the donated units due to the strict acceptance criteria and the wide application of the haploidentical HSCT have resulted in significant limitation of the use of UCB and difficulties in the economic sustainability of the public UCB banks. There is an ongoing effort within the UCB community to optimize the use of UCB in the field of HSCT and a parallel interest in exploring the use of UCB for applications beyond HSCT i.e., in the fields of cell therapy, regenerative medicine and specialized transfusion medicine. In this report, we describe the mode of operation of the three public UCB banks in Greece as an example of an orchestrated effort to develop a viable UCB banking system by (a) prioritizing the enrichment of the national inventory by high-quality UCB units from populations with rare human leukocyte antigens (HLA), and (b) deploying novel sustainable applications of UCB beyond HSCT, through national and international collaborations. The Greek paradigm of the public UCB network may become an example for countries, particularly with high HLA heterogeneity, with public UCB banks facing sustainability difficulties and adds value to the international efforts aiming to sustainably expand the public UCB banking system. Full article
(This article belongs to the Section Hematology)
Show Figures

Graphical abstract

14 pages, 770 KiB  
Review
Homing and Engraftment of Hematopoietic Stem Cells Following Transplantation: A Pre-Clinical Perspective
by Tanvir Hasan, Ajay Ratan Pasala, Dhuha Hassan, Justine Hanotaux, David S. Allan and Harinad B. Maganti
Curr. Oncol. 2024, 31(2), 603-616; https://doi.org/10.3390/curroncol31020044 - 23 Jan 2024
Cited by 2 | Viewed by 5535
Abstract
Hematopoietic stem-cell (HSC) transplantation (HSCT) is used to treat various hematologic disorders. Use of genetically modified mouse models of hematopoietic cell transplantation has been critical in our fundamental understanding of HSC biology and in developing approaches for human patients. Pre-clinical studies in animal [...] Read more.
Hematopoietic stem-cell (HSC) transplantation (HSCT) is used to treat various hematologic disorders. Use of genetically modified mouse models of hematopoietic cell transplantation has been critical in our fundamental understanding of HSC biology and in developing approaches for human patients. Pre-clinical studies in animal models provide insight into the journey of transplanted HSCs from infusion to engraftment in bone-marrow (BM) niches. Various signaling molecules and growth factors secreted by HSCs and the niche microenvironment play critical roles in homing and engraftment of the transplanted cells. The sustained equilibrium of these chemical and biologic factors ensures that engrafted HSCs generate healthy and durable hematopoiesis. Transplanted healthy HSCs compete with residual host cells to repopulate stem-cell niches in the marrow. Stem-cell niches, in particular, can be altered by the effects of previous treatments, aging, and the paracrine effects of leukemic cells, which create inhospitable bone-marrow niches that are unfavorable for healthy hematopoiesis. More work to understand how stem-cell niches can be restored to favor normal hematopoiesis may be key to reducing leukemic relapses following transplant. Full article
(This article belongs to the Section Cell Therapy)
Show Figures

Graphical abstract

22 pages, 3249 KiB  
Article
Wnt/β-Catenin-Signaling Modulates Megakaryopoiesis at the Megakaryocyte-Erythrocyte Progenitor Stage in the Hematopoietic System
by Burak H. Yalcin, Jadranka Macas, Eliza Wiercinska, Patrick N. Harter, Malak Fawaz, Tessa Schmachtel, Ilaria Ghiro, Ewa Bieniek, Djuro Kosanovic, Sonja Thom, Marcus Fruttiger, Makoto M. Taketo, Ralph T. Schermuly, Michael A. Rieger, Karl H. Plate, Halvard Bonig and Stefan Liebner
Cells 2023, 12(23), 2765; https://doi.org/10.3390/cells12232765 - 4 Dec 2023
Cited by 2 | Viewed by 3099
Abstract
The bone marrow (BM) hematopoietic system (HS) gives rise to blood cells originating from hematopoietic stem cells (HSCs), including megakaryocytes (MKs) and red blood cells (erythrocytes; RBCs). Many steps of the cell-fate decision remain to be elucidated, being important for cancer treatment. To [...] Read more.
The bone marrow (BM) hematopoietic system (HS) gives rise to blood cells originating from hematopoietic stem cells (HSCs), including megakaryocytes (MKs) and red blood cells (erythrocytes; RBCs). Many steps of the cell-fate decision remain to be elucidated, being important for cancer treatment. To explore the role of Wnt/β-catenin for MK and RBC differentiation, we activated β-catenin signaling in platelet-derived growth factor b (Pdgfb)-expressing cells of the HS using a Cre-lox approach (Ctnnb1BM-GOF). FACS analysis revealed that Pdgfb is mainly expressed by megakaryocytic progenitors (MKPs), MKs and platelets. Recombination resulted in a lethal phenotype in mutants (Ctnnb1BM-GOFwt/fl, Ctnnb1BM-GOFfl/fl) 3 weeks after tamoxifen injection, showing an increase in MKs in the BM and spleen, but no pronounced anemia despite reduced erythrocyte counts. BM transplantation (BMT) of Ctnnb1BM-GOF BM into lethally irradiated wildtype recipients (BMT-Ctnnb1BM-GOF) confirmed the megakaryocytic, but not the lethal phenotype. CFU-MK assays in vitro with BM cells of Ctnnb1BM-GOF mice supported MK skewing at the expense of erythroid colonies. Molecularly, the runt-related transcription factor 1 (RUNX1) mRNA, known to suppress erythropoiesis, was upregulated in Ctnnb1BM-GOF BM cells. In conclusion, β-catenin activation plays a key role in cell-fate decision favoring MK development at the expense of erythroid production. Full article
Show Figures

Graphical abstract

Back to TopTop