Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = HP-SPS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 743 KiB  
Article
The Discovery, Characterization, and Quantification of Bioactive Peptides Contained in Palbio Porcine Intestinal Mucosa Hydrolysate Products
by Sergi Segarra, Carolina de la Torre, Joan Josep Bech-Serra, Bernat Cucurull, Anna Marazuela-Duque, Alejandro Vaquero, Daniel Martínez-Puig and Javier Velasco-Alvarez
Int. J. Mol. Sci. 2025, 26(14), 6656; https://doi.org/10.3390/ijms26146656 - 11 Jul 2025
Viewed by 250
Abstract
Porcine intestinal mucosa hydrolysates (PIMHs) are by-products of heparin production obtained through a specific enzymatic hydrolysis process, which can theoretically generate bioactive peptides (BAPs). This study aimed to identify, characterize, and quantify BAPs in two Palbio products manufactured by Bioiberica S.A.U. (Palafolls, Spain), [...] Read more.
Porcine intestinal mucosa hydrolysates (PIMHs) are by-products of heparin production obtained through a specific enzymatic hydrolysis process, which can theoretically generate bioactive peptides (BAPs). This study aimed to identify, characterize, and quantify BAPs in two Palbio products manufactured by Bioiberica S.A.U. (Palafolls, Spain), which are PIMH protein sources used for animal feed: Palbio® HP (PHP) and Palbio® 62 SP® (P62). Using mass spectrometry (MS)-based peptidomics, we analyzed three samples from each product, fractionated based on molecular weight (<3 kDa, 3 to 10 kDa, and >10 kDa). The <3 kDa fraction was analyzed directly, while the other two fractions were enzymatically digested before MS analysis. The workflow identified 961 peptides in PHP and 1134 in P62. Subsequent bioinformatic analysis using public databases (APD2, StraPep, AHTPDB, and BIOPEP-UWM) led to the identification of six significant BAPs in both PHP and P62, with respective quantified amounts (pg peptide/μg sample): DAVEDLESVGK (0.1626, 0.1939), EGIPPDQQRLIFAGK (0.2637, 0.1852), TITLEVEPSDTIENVK (0.3594, 0.4327), TNVPRASVPDGFLS (1.4596, 0.1898), TNVPRASVPDGFLSEL (8.0500, 0.9224), and VHVVPDQLMAF (0.0310, 0.0054). The first three BAPs are related to antimicrobial activity, while the latter three are associated with cytokine/growth factor-like, antioxidant, and immunomodulatory activities. These bioactivities align with previously reported in vivo benefits observed in animal nutrition using Palbio products. Our findings demonstrate that PHP and P62 are valuable sources of BAPs, supporting their potential role in improving animal health and performance. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

19 pages, 1751 KiB  
Article
Purification of Flavonoids from an Aqueous Cocoa (Theobroma cocoa L.) Extract Using Macroporous Adsorption Resins
by Nicole Beeler, Tilo Hühn, Sascha Rohn and Renato Colombi
Molecules 2025, 30(11), 2336; https://doi.org/10.3390/molecules30112336 - 27 May 2025
Viewed by 461
Abstract
Cocoa is a rich source of health-promoting polyphenols such as flavanols. These compounds can be separated from other matrix constituents using various adsorbents or resins. Seven different macroporous resins (Amberlite® XAD-2, XAD-4, XAD-7, XAD-7HP, XAD-16, SepabeadsTM SP207, and Diaion® HP2-MG) [...] Read more.
Cocoa is a rich source of health-promoting polyphenols such as flavanols. These compounds can be separated from other matrix constituents using various adsorbents or resins. Seven different macroporous resins (Amberlite® XAD-2, XAD-4, XAD-7, XAD-7HP, XAD-16, SepabeadsTM SP207, and Diaion® HP2-MG) were evaluated for their adsorption and desorption properties for the enrichment of flavonoids from an aqueous cocoa (Theobroma cacao L.) extract. The influence of adsorption and desorption temperatures and the concentration of the desorption solvent (a hydroalcoholic solution) were investigated by static adsorption and desorption methods. The results of the resin comparison showed that the adsorbent XAD-7HP had the best adsorption characteristics, with an adsorption capacity of 39.8 mg ECE/g. XAD-7HP was found to be the most suitable adsorbent, and 70% ethanol was the best desorbing solvent, based on static experiments. In addition, the optimal conditions for the adsorption of flavonoids were obtained at a temperature of 30 °C, where equilibrium was reached after 80 min. The static adsorption process was well-described by a pseudo-second-order kinetics model, while the adsorption isotherm data were fitted well by the Freundlich isotherm model. Further dynamic adsorption and desorption characteristics were evaluated on a packed glass column, and it was shown that XAD-7HP could enrich the flavanol content by 5.03-fold, with a dry matter content of 456.05 mg/mL (as estimated by the degree of DP1–DP7 procyanidin polymers using ultra-pressure liquid chromatography). Full article
Show Figures

Graphical abstract

13 pages, 3032 KiB  
Article
The Antimicrobial Extract Derived from Pseudomonas sp. HP-1 for Inhibition of Aspergillus flavus Growth and Prolongation of Maize Seed Storage
by Marhaba Kader, Liping Xu, Longteng Fang, Reziyamu Wufuer, Minwei Zhang, Nan Wei, Dong Wang and Zhiwei Zhang
Foods 2025, 14(10), 1774; https://doi.org/10.3390/foods14101774 - 16 May 2025
Viewed by 421
Abstract
Maize, one of the most widely cultivated crops globally, is highly susceptible to mycotoxin contamination. In this study, an endophytic strain Pseudomonas sp. HP-1, isolated from Peganum harmala L., demonstrated significant biocontrol potential. The culture extract of Pseudomonas sp. HP-1 (PHE) exhibited strong [...] Read more.
Maize, one of the most widely cultivated crops globally, is highly susceptible to mycotoxin contamination. In this study, an endophytic strain Pseudomonas sp. HP-1, isolated from Peganum harmala L., demonstrated significant biocontrol potential. The culture extract of Pseudomonas sp. HP-1 (PHE) exhibited strong antifungal activity, with inhibition zones of 40.07 ± 0.21 mm against Penicillium italicum, 29.71 ± 0.25 mm against Aspergillus niger, and 23.10 ± 0.44 mm against A. flavus, along with notable antibacterial activity against Staphylococcus aureus (22.43 ± 0.55 mm). At a concentration of 16 mg/mL, PHE almost completely inhibited the mycelial growth of A. flavus. The antifungal mechanism of PHE was investigated through scanning electron microscopy (SEM) and propidium iodide (PI) staining analysis, which demonstrated that antifungal activity is primarily through the disruption of cellular membrane integrity. Furthermore, PHE significantly reduced the incidence of A. flavus contamination in agroecological maize seeds during storage, and treated PHE showed superior antifungal efficacy compared to non-treated PHE, highlighting its potential as an effective antifungal agent for seed protection. Through one- and two-dimensional NMR and MS analyses, the primary active compound of PHE was identified as 1-phenazinecarboxylic acid. These findings indicate that PHE can be utilized as a sustainable antifungal agent for protecting maize seeds against mycotoxin-producing fungi. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

21 pages, 2523 KiB  
Article
Macroporous Resin Recovery of Antioxidant Polyphenol Compounds from Red Onion (Allium cepa L.) Peel
by Khanafina Aliya, Ha-Seong Cho, Ibukunoluwa Fola Olawuyi, Ju-Hwi Park, Ju-Ock Nam and Won-Young Lee
Antioxidants 2025, 14(2), 145; https://doi.org/10.3390/antiox14020145 - 26 Jan 2025
Cited by 2 | Viewed by 1518
Abstract
In this study, polyphenols in the crude extract (CE) from red onion peel were recovered by macroporous resin, and their antioxidant and anti-inflammatory activities were evaluated. Among the four resins screened (SP850, XAD2, XAD7HP, and XAD16N), XAD7HP showed the highest desorption and recovery [...] Read more.
In this study, polyphenols in the crude extract (CE) from red onion peel were recovered by macroporous resin, and their antioxidant and anti-inflammatory activities were evaluated. Among the four resins screened (SP850, XAD2, XAD7HP, and XAD16N), XAD7HP showed the highest desorption and recovery ratios, and it was used to optimize polyphenol recovery through single-factor experiments. The optimal conditions were established as 1 g resin, pH 4, 25 °C, 7 h for adsorption, followed by desorption with 70% ethanol for 1 h at 25 °C. These conditions achieved 85.00% adsorption ratio, 87.10% desorption ratio, and 20.9% yield of the macroporous resin-recovered extract (MRE) from the CE. HPLC analysis revealed that rosmarinic acid, quercetin, and myricetin were major compounds in the MRE, with the content of these compounds higher (about 7-fold) compared to the CE, confirming enhanced recovery of polyphenols by macroporous resin. Moreover, FT-IR and ¹H-NMR analysis confirmed the successful recovery of these polyphenol compounds in the MRE. Furthermore, the MRE displayed significantly improved antioxidant activities (DPPH, ABTS, and FRAP) and anti-inflammatory activities (inhibition of nitric oxide synthesis and reactive oxygen species production) compared to the CE. In summary, our findings suggest that macroporous resin can effectively recover polyphenol compounds from red onion peel extract and enhance their biological activities. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

19 pages, 3742 KiB  
Article
Comparison of Secondary Metabolite Extraction Methods in Hamelia patens Jacq. and Their Inhibitory Effect on Fusarium oxysporum f. sp. radicis-lycopersici
by Daniel Jafet Valle Ortiz, Dolores Guadalupe Aguila Muñoz, María del Carmen Cruz López, Diana Verónica Cortés Espinosa, Martha Rosales Castro and Fabiola Eloísa Jiménez Montejo
Metabolites 2025, 15(1), 23; https://doi.org/10.3390/metabo15010023 - 6 Jan 2025
Viewed by 1818
Abstract
Background: Hamelia patens Jacq. (HP) is widely recognized in traditional medicine for its antimicrobial properties, which are attributed to secondary metabolites such as phenolic compounds, alkaloids, and terpenes. Fusarium oxysporum f. sp. radicis-lycopersici (Fo), a phytopathogenic fungus affecting economically important crops, is [...] Read more.
Background: Hamelia patens Jacq. (HP) is widely recognized in traditional medicine for its antimicrobial properties, which are attributed to secondary metabolites such as phenolic compounds, alkaloids, and terpenes. Fusarium oxysporum f. sp. radicis-lycopersici (Fo), a phytopathogenic fungus affecting economically important crops, is managed with fungicides like benzimidazoles and azoles. Excessive use of these compounds has led to resistance and environmental contamination, highlighting the need for sustainable alternatives. This study aimed to optimize the extraction of secondary metabolites from HP leaves and flowers, evaluate their antifungal activity, and assess the impact of extraction methods and plant parts on chemical composition and efficacy. Methods: Three extraction methods were employed: consecutive maceration (CM) using solvents of ascending polarity; total maceration (TM), which is a single-step methanol-based method; and ultrasound-assisted maceration (UAM) employing ultrasonic waves with methanol. Extracts were characterized by quantifying total phenols (TP), condensed tannins (TC), flavonoids (Fl), alkaloids (TA), sterols (TS), and saponins (S) using colorimetric assays and UPLC-MS. Multivariate analyses, including PCA, PLS-DA, OPLS-DA, and Pearson correlation, evaluated the relationships between the chemical profiles and antifungal activity. Results: Leaf extracts exhibited higher flavonoid and tannin contents than flower extracts. CMML showed the highest antifungal activity (IC50 3.7% w/v), which was associated with elevated levels of these compounds. Significant correlations linked antifungal activity with rutin (HP21) and kaempferol-3-O-β-rutinoside (HP29). Conclusions: Methanolic extracts of HP exhibited significant antifungal activity against Fo. These findings highlight the importance of optimizing extraction methods and selecting specific plant parts to enhance bioactive compound efficacy, offering a sustainable approach to pathogen management. Full article
Show Figures

Figure 1

20 pages, 8457 KiB  
Article
Prickly Ash Seeds Improve the Ruminal Epithelial Development and Growth Performance of Hu Sheep by Modulating the Rumen Microbiota and Metabolome
by Qiao Li, Yi Wu, Xingcai Qi, Zilong Liu, Chunhui Wang, Xueyi Ma and Youji Ma
Microorganisms 2024, 12(11), 2242; https://doi.org/10.3390/microorganisms12112242 - 6 Nov 2024
Cited by 3 | Viewed by 1086
Abstract
It is known that the addition of feed rich in bioactive components to animal diets will affect rumen fermentation parameters and flora structure. However, research on the regulatory effects of prickly ash seeds (PASs) during rumen development or on the rumen microbiome and [...] Read more.
It is known that the addition of feed rich in bioactive components to animal diets will affect rumen fermentation parameters and flora structure. However, research on the regulatory effects of prickly ash seeds (PASs) during rumen development or on the rumen microbiome and its metabolites in sheep is limited. The current study was designed to explore the effects of PASs on sheep rumen development and growth performance using metagenomics and metabolomics. Eighteen 3-month-old Hu lambs were randomly allotted to three different dietary treatment groups: 0% (basal diet, CK), 3% (CK with 3% PAS, low-dose PAS, LPS), and 6% (CK with 6% PAS, high-dose PAS, HPS) PASs. The lambs were slaughtered to evaluate production performance. Our results showed that dietary PAS addition improved the average daily gain and reduced the F/G ratio of the experimental animals. Additionally, the height and width of the rumen papilla in the treatment groups were significantly higher than those in the CK group. The fermentation parameters showed that the levels of acetate and butyrate were significantly higher in the LPS group than in the CK and HPS groups. The propionate levels in the HPS group were significantly higher than those in the CK and LPS groups. Metagenomics analysis revealed that PAS dietary supplementation improved the abundance of Clostridiales and Bacteroidales and reduced the abundance of Prevotella, Butyrivibrio, and Methanococcus. Metabolomic analyses revealed that increased metabolite levels, such as those of serotonin, L-isoleucine, and L-valine, were closely related to growth-related metabolic pathways. The correlations analyzed showed that papilla height and muscular thickness were positively and negatively correlated with serotonin and L-valine, respectively. Average daily gain (ADG) was positively and negatively correlated with L-valine and several Prevotella, respectively. In addition, muscular thickness was positively correlated with Sodaliphilus pleomorphus, four Prevotella strains, Sarcina_sp_DSM_11001, and Methanobrevibacter_thaueri. Overall, PAS addition improved sheep growth performance by regulating beneficial microorganism and metabolite abundances, facilitating bacterial and viral invasion resistance. Full article
(This article belongs to the Special Issue Dietary and Animal Gut Microbiota)
Show Figures

Figure 1

26 pages, 7271 KiB  
Article
Microstructural Evaluation and Linkage to the Engineering Properties of Metal-Ion-Contaminated Clay
by Yikun Chen, Ya Chu, Chao Yan, Wei Duan and Aimin Han
Materials 2024, 17(21), 5320; https://doi.org/10.3390/ma17215320 - 31 Oct 2024
Cited by 2 | Viewed by 801
Abstract
The rapid progress of urbanization and industrialization has led to the accumulation of large amounts of metal ions in the environment. These metal ions are adsorbed onto the negatively charged surfaces of clay particles, altering the total surface charge, double-layer thickness, and chemical [...] Read more.
The rapid progress of urbanization and industrialization has led to the accumulation of large amounts of metal ions in the environment. These metal ions are adsorbed onto the negatively charged surfaces of clay particles, altering the total surface charge, double-layer thickness, and chemical bonds between the particles, which in turn affects the interactions between them. This causes changes in the microstructure, such as particle rearrangement and pore morphology adjustments, ultimately altering the mechanical behavior of the soil and reducing its stability. This study explores the effects of four common metal ions, including monovalent alkali metal ions (Na+, K+) and divalent heavy metal ions (Pb2+, Zn2+), with a focus on how ion valence and concentration impact the soil’s microstructure and mechanical properties. Microstructural tests show that metal ion incorporation reduces particle size, increases clay content, and transforms the structure from layered to honeycomb-like. Small pores decrease while large pores dominate, reducing the specific surface area and pore volume, while the average pore size increases. Although cation exchange capacity decreases, cation adsorption density per unit surface area increases. Monovalent ions primarily disperse the soil structure, while divalent ions induce coagulation. Macro-mechanical tests reveal that metal ion contamination reduces porosity under loading, with compressibility rises as the ion concentration increases. Soils contaminated with alkali metal ions shows higher compression coefficients at all loads, while heavy metal ions cause higher compression under lower loads. Shear strength, the internal friction angle, and cohesion in metal-ion-contaminated clay decrease compared to uncontaminated field-state clay, with greater declines at higher ion concentrations. The Micropore Morphology Index and hydro-pore structural parameter effectively characterize both micro- and macrostructural properties, establishing a quantitative relationship between HPSP and the engineering properties of metal-ion-contaminated clay. Full article
(This article belongs to the Special Issue Alkali-Activated Binders: Properties and Applications in Construction)
Show Figures

Figure 1

14 pages, 14978 KiB  
Article
Serum-Free Media Formulation Using Marine Microalgae Extracts and Growth Factor Cocktails for Madin-Darby Canine Kidney and Vero Cell Cultures
by Areumi Park, Yeon-Ji Lee, Eunyoung Jo, Gun-Hoo Park, Seong-Yeong Heo, Eun-Jeong Koh, Seung-Hong Lee, Seon-Heui Cha and Soo-Jin Heo
Int. J. Mol. Sci. 2024, 25(18), 9881; https://doi.org/10.3390/ijms25189881 - 12 Sep 2024
Viewed by 1910
Abstract
The development of serum-free media (SFM) is critical to advance cell culture techniques used in viral vaccine production and address the ethical concerns and contamination risks associated with fetal bovine serum (FBS). This study evaluated the effects of marine microalgal extracts and growth [...] Read more.
The development of serum-free media (SFM) is critical to advance cell culture techniques used in viral vaccine production and address the ethical concerns and contamination risks associated with fetal bovine serum (FBS). This study evaluated the effects of marine microalgal extracts and growth factor cocktails on the activity of Madin-Darby canine kidney (MDCK) and Vero cells. Five marine microalgal species were used: Spirulina platensis (SP), Dunaliella salina (DS), Haematococcus pluvialis (HP), Nannochloropsis salina (NS), and Tetraselmis sp. (TS). DS and SP extracts significantly increased the proliferation rate of both MDCK and Vero cells. DS had a proliferation rate of 149.56% and 195.50% in MDCK and Vero cells, respectively, compared with that in serum-free medium (SFM). Notably, DS and SP extracts significantly increased superoxide dismutase (SOD) activity, which was 118.61% in MDCK cells and 130.08% in Vero cells for DS, and 108.72% in MDCK cells and 125.63% in Vero cells for SP, indicating a reduction in intracellular oxidative stress. Marine microalgal extracts, especially DS and SP, are feasible alternatives to FBS in cell culture as they promote cell proliferation, ensure safety, and supply essential nutrients while reducing oxidative stress. Full article
(This article belongs to the Special Issue Recent Research of Natural Products from Microalgae and Cyanobacteria)
Show Figures

Figure 1

19 pages, 2131 KiB  
Article
Antihyperglycemic, Antiaging, and L. brevis Growth-Promoting Activities of an Exopolysaccharide from Agrobacterium sp. FN01 (Galacan) Evaluated in a Zebrafish (Danio rerio) Model
by Xiaoqing Xu, Lingling Du, Meng Wang, Ran Zhang, Junjie Shan, Yu Qiao, Qing Peng and Bo Shi
Foods 2024, 13(17), 2729; https://doi.org/10.3390/foods13172729 - 28 Aug 2024
Cited by 1 | Viewed by 1623
Abstract
Agrobacterium sp. are notable for their ability to produce substantial amounts of exopolysaccharides. Our study identified an exopolysaccharide (Galacan, 4982.327 kDa) from Agrobacterium sp. FN01. Galacan is a heteropolysaccharide primarily composed of glucose and galactose at a molar ratio of 25:1. The FT-IR [...] Read more.
Agrobacterium sp. are notable for their ability to produce substantial amounts of exopolysaccharides. Our study identified an exopolysaccharide (Galacan, 4982.327 kDa) from Agrobacterium sp. FN01. Galacan is a heteropolysaccharide primarily composed of glucose and galactose at a molar ratio of 25:1. The FT-IR results suggested that Galacan had typical absorption peaks of polysaccharide. The results of periodate oxidation, Smith degradation, and NMR confirmed the presence of structural units, such as β-D-Galp(→, →3)β-D-Galp(1→, →2,3)β-D-Glcp(1→, β-D-Glcp(1→, and →2)β-D-Glcp(1→. Galacan demonstrated significant biological activities. In experiments conducted with zebrafish, it facilitated the proliferation of Lactobacillus brevis in the intestinal tract, suggesting potential prebiotic properties. Moreover, in vivo studies revealed its antihyperglycemic effects, as evidenced by significant reductions in blood glucose levels and enhanced fluorescence intensity of pancreatic β cells in a streptozotocin (STZ)-induced hyperglycemic zebrafish model. Additionally, antiaging assays demonstrated Galacan’s ability to inhibit β-galactosidase activity and enhance telomerase activity in a hydrogen peroxide (HP)-induced aging zebrafish model. These findings emphasized the potential of Galacan as a natural prebiotic with promising applications in diabetes prevention and antiaging interventions. Full article
(This article belongs to the Topic Microbes and Their Products for Sustainable Human Life)
Show Figures

Figure 1

26 pages, 4914 KiB  
Article
Capacity Optimization of Pumped–Hydro–Wind–Photovoltaic Hybrid System Based on Normal Boundary Intersection Method
by Hailun Wang, Yang Li, Feng Wu, Shengming He and Renshan Ding
Sustainability 2024, 16(17), 7244; https://doi.org/10.3390/su16177244 - 23 Aug 2024
Cited by 5 | Viewed by 1936
Abstract
Introducing pumped storage to retrofit existing cascade hydropower plants into hybrid pumped storage hydropower plants (HPSPs) could increase the regulating capacity of hydropower. From this perspective, a capacity configuration optimization method for a multi-energy complementary power generation system comprising hydro, wind, and photovoltaic [...] Read more.
Introducing pumped storage to retrofit existing cascade hydropower plants into hybrid pumped storage hydropower plants (HPSPs) could increase the regulating capacity of hydropower. From this perspective, a capacity configuration optimization method for a multi-energy complementary power generation system comprising hydro, wind, and photovoltaic power is developed. Firstly, to address the uncertainty of wind and photovoltaic power outputs, the K-means clustering algorithm is applied to deal with historical data on load and photovoltaic, wind, and water inflow within a specific region over the past year. This process helps reduce the number of scenarios, resulting in 12 representative scenarios and their corresponding probabilities. Secondly, with the aim of enhancing outbound transmission channel utilization and decreasing the peak–valley difference for the receiving-end power grid’s load curve, a multi-objective optimization model based on the normal boundary intersection (NBI) algorithm is developed for the capacity optimization of the multi-energy complementary power generation system. The result shows that retrofitting cascade hydropower plants with pumped storage units to construct HPSPs enhances their ability to accommodate wind and photovoltaic power. The optimal capacity of wind and photovoltaic power is increased, the utilization rate of the system’s transmission channel is improved, and the peak-to-valley difference for the residual load of the receiving-end power grid is reduced. Full article
Show Figures

Figure 1

14 pages, 3751 KiB  
Article
Study on Mechanical and Electrical Properties of High Content CNTs/Cu Composites
by Ziyang Xiu, Jinpeng Sun, Xiao Li, Yihao Chen, Yue Yan, Puzhen Shao, Haozhe Li, Boyu Ju, Wenshu Yang and Guoqin Chen
Materials 2024, 17(15), 3866; https://doi.org/10.3390/ma17153866 - 5 Aug 2024
Viewed by 1117
Abstract
It is expected that composites made of carbon nanotubes (CNT) and copper (Cu) display both mechanical and electrical properties, but the low damage dispersion and high-quality composite of high-content CNTs have always been research difficulties. In this paper, high-content CNTs/Cu composites were prepared. [...] Read more.
It is expected that composites made of carbon nanotubes (CNT) and copper (Cu) display both mechanical and electrical properties, but the low damage dispersion and high-quality composite of high-content CNTs have always been research difficulties. In this paper, high-content CNTs/Cu composites were prepared. The effects of the sintering method, sintering temperature, directional rolling and the CNTs’ content on the relative density, hardness and electrical conductivity of the composites were studied. The uniform dispersion of high-content CNTs in Cu matrix was achieved by ball milling, sintering and rolling, and the processes did not cause more damage to the CNTs. The properties of composites prepared by spark plasma sintering (SPS) and vacuum hot pressing sintering (HPS) were compared, and the optimum process parameters of SPS were determined. When the CNTs’ content is 2 wt.%, the hardness is 134.9 HBW, which is still 2.3 times that of pure Cu, and the conductivity is the highest, reaching 78.4%IACS. This study provides an important reference for the high-quality preparation and performance evaluation of high-content CNTs/Cu composites. Full article
Show Figures

Figure 1

11 pages, 270 KiB  
Article
Effects of Low and High Maternal Protein Intake on Fetal Skeletal Muscle miRNAome in Sheep
by Bilal Akyüz, Md Mahmodul Hasan Sohel, Yusuf Konca, Korhan Arslan, Kutlay Gürbulak, Murat Abay, Mahmut Kaliber, Stephen N. White and Mehmet Ulas Cinar
Animals 2024, 14(11), 1594; https://doi.org/10.3390/ani14111594 - 28 May 2024
Viewed by 2346
Abstract
Prenatal maternal feeding plays an important role in fetal development and has the potential to induce long-lasting epigenetic modifications. MicroRNAs (miRNAs) are non-coding, single-stranded RNAs that serve as one epigenetic mechanism. Though miRNAs have crucial roles in fetal programming, growth, and development, there [...] Read more.
Prenatal maternal feeding plays an important role in fetal development and has the potential to induce long-lasting epigenetic modifications. MicroRNAs (miRNAs) are non-coding, single-stranded RNAs that serve as one epigenetic mechanism. Though miRNAs have crucial roles in fetal programming, growth, and development, there is limited data regarding the maternal diet and miRNA expression in sheep. Therefore, we analyzed high and low maternal dietary protein for miRNA expression in fetal longissimus dorsi. Pregnant ewes were fed an isoenergetic high-protein (HP, 160–270 g/day), low-protein (LP, 73–112 g/day), or standard-protein diet (SP, 119–198 g/day) during pregnancy. miRNA expression profiles were evaluated using the Affymetrix GeneChip miRNA 4.0 Array. Twelve up-regulated, differentially expressed miRNAs (DE miRNAs) were identified which are targeting 65 genes. The oar-3957-5p miRNA was highly up-regulated in the LP and SP compared to the HP. Previous transcriptome analysis identified that integrin and non-receptor protein tyrosine phosphatase genes targeted by miRNAs were detected in the current experiment. A total of 28 GO terms and 10 pathway-based gene sets were significantly (padj < 0.05) enriched in the target genes. Most genes targeted by the identified miRNAs are involved in immune and muscle disease pathways. Our study demonstrated that dietary protein intake during pregnancy affected fetal skeletal muscle epigenetics via miRNA expression. Full article
16 pages, 2618 KiB  
Article
Molecular Profiling of Axial Spondyloarthritis Patients Reveals an Association between Innate and Adaptive Cell Populations and Therapeutic Response to Tumor Necrosis Factor Inhibitors
by Daniel Sobral, Ana Filipa Fernandes, Miguel Bernardes, Patrícia Pinto, Helena Santos, João Lagoas-Gomes, José Tavares-Costa, José A. P. Silva, João Madruga Dias, Alexandra Bernardo, Jean-Charles Gaillard, Jean Armengaud, Vladimir Benes, Lúcia Domingues, Sara Maia, Jaime C. Branco, Ana Varela Coelho and Fernando M. Pimentel-Santos
Biomolecules 2024, 14(3), 382; https://doi.org/10.3390/biom14030382 - 21 Mar 2024
Cited by 1 | Viewed by 2729
Abstract
This study aims at identifying molecular biomarkers differentiating responders and non-responders to treatment with Tumor Necrosis Factor inhibitors (TNFi) among patients with axial spondyloarthritis (axSpA). Whole blood mRNA and plasma proteins were measured in a cohort of biologic-naïve axSpA patients (n = [...] Read more.
This study aims at identifying molecular biomarkers differentiating responders and non-responders to treatment with Tumor Necrosis Factor inhibitors (TNFi) among patients with axial spondyloarthritis (axSpA). Whole blood mRNA and plasma proteins were measured in a cohort of biologic-naïve axSpA patients (n = 35), pre and post (14 weeks) TNFi treatment with adalimumab. Differential expression analysis was used to identify the most enriched pathways and in predictive models to distinguish responses to TNFi. A treatment-associated signature suggests a reduction in inflammatory activity. We found transcripts and proteins robustly differentially expressed between baseline and week 14 in responders. C-reactive protein (CRP) and Haptoglobin (HP) proteins showed strong and early decrease in the plasma of axSpA patients, while a cluster of apolipoproteins (APOD, APOA2, APOA1) showed increased expression at week 14. Responders to TNFi treatment present higher levels of markers of innate immunity at baseline, and lower levels of adaptive immunity markers, particularly B-cells. A logistic regression model incorporating ASDAS-CRP, gender, and AFF3, the top differentially expressed gene at baseline, enabled an accurate prediction of response to adalimumab in our cohort (AUC = 0.97). In conclusion, innate and adaptive immune cell type composition at baseline may be a major contributor to response to adalimumab in axSpA patients. A model including clinical and gene expression variables should also be considered. Full article
Show Figures

Figure 1

16 pages, 10919 KiB  
Article
Exploring Distributions of House Prices and House Price Indices
by Jiong Liu, Hamed Farahani and R. A. Serota
Economies 2024, 12(2), 47; https://doi.org/10.3390/economies12020047 - 14 Feb 2024
Viewed by 2388
Abstract
We use house prices (HP) and house price indices (HPI) as a proxy to income distribution. Specifically, we analyze distribution of sale prices in the 1970–2010 window of over 116,000 single-family homes in Hamilton County, Ohio, including Cincinnati metro area of about 2.2 [...] Read more.
We use house prices (HP) and house price indices (HPI) as a proxy to income distribution. Specifically, we analyze distribution of sale prices in the 1970–2010 window of over 116,000 single-family homes in Hamilton County, Ohio, including Cincinnati metro area of about 2.2 million people. We also analyze distributions of HPI, published by Federal Housing Finance Agency (FHFA), for nearly 18,000 US ZIP codes that cover a period of over 40 years starting in 1980’s. If HP can be viewed as a first derivative of income, HPI can be viewed as its second derivative. We use generalized beta (GB) family of functions to fit distributions of HP and HPI since GB naturally arises from the models of economic exchange described by stochastic differential equations. Our main finding is that HP and multi-year HPI exhibit a negative Dragon King (nDK) behavior, wherein power-law distribution tail gives way to an abrupt decay to a finite upper limit value, which is similar to our recent findings for realized volatility of S&P500 index in the US stock market. This type of tail behavior is best fitted by a modified GB (mGB) distribution. Tails of single-year HPI appear to show more consistency with power-law behavior, which is better described by a GB Prime (GB2) distribution. We supplement full distribution fits by mGB and GB2 with direct linear fits (LF) of the tails. Our numerical procedure relies on evaluation of confidence intervals (CI) of the fits, as well as of p-values that give the likelihood that data come from the fitted distributions. Full article
Show Figures

Figure 1

17 pages, 2610 KiB  
Article
Unveiling Novel Urease Inhibitors for Helicobacter pylori: A Multi-Methodological Approach from Virtual Screening and ADME to Molecular Dynamics Simulations
by Paulina Valenzuela-Hormazabal, Romina V. Sepúlveda, Melissa Alegría-Arcos, Elizabeth Valdés-Muñoz, Víctor Rojas-Pérez, Ileana González-Bonet, Reynier Suardíaz, Christian Galarza, Natalia Morales, Verónica Leddermann, Ricardo I. Castro, Bruna Benso, Gabriela Urra, Erix W. Hernández-Rodríguez and Daniel Bustos
Int. J. Mol. Sci. 2024, 25(4), 1968; https://doi.org/10.3390/ijms25041968 - 6 Feb 2024
Cited by 6 | Viewed by 3469
Abstract
Helicobacter pylori (Hp) infections pose a global health challenge demanding innovative therapeutic strategies by which to eradicate them. Urease, a key Hp virulence factor hydrolyzes urea, facilitating bacterial survival in the acidic gastric environment. In this study, a multi-methodological approach combining [...] Read more.
Helicobacter pylori (Hp) infections pose a global health challenge demanding innovative therapeutic strategies by which to eradicate them. Urease, a key Hp virulence factor hydrolyzes urea, facilitating bacterial survival in the acidic gastric environment. In this study, a multi-methodological approach combining pharmacophore- and structure-based virtual screening, molecular dynamics simulations, and MM-GBSA calculations was employed to identify novel inhibitors for Hp urease (HpU). A refined dataset of 8,271,505 small molecules from the ZINC15 database underwent pharmacokinetic and physicochemical filtering, resulting in 16% of compounds for pharmacophore-based virtual screening. Molecular docking simulations were performed in successive stages, utilizing HTVS, SP, and XP algorithms. Subsequent energetic re-scoring with MM-GBSA identified promising candidates interacting with distinct urease variants. Lys219, a residue critical for urea catalysis at the urease binding site, can manifest in two forms, neutral (LYN) or carbamylated (KCX). Notably, the evaluated molecules demonstrated different interaction and energetic patterns in both protein variants. Further evaluation through ADMET predictions highlighted compounds with favorable pharmacological profiles, leading to the identification of 15 candidates. Molecular dynamics simulations revealed comparable structural stability to the control DJM, with candidates 5, 8 and 12 (CA5, CA8, and CA12, respectively) exhibiting the lowest binding free energies. These inhibitors suggest a chelating capacity that is crucial for urease inhibition. The analysis underscores the potential of CA5, CA8, and CA12 as novel HpU inhibitors. Finally, we compare our candidates with the chemical space of urease inhibitors finding physicochemical similarities with potent agents such as thiourea. Full article
(This article belongs to the Special Issue Computational Medicine and Molecular Drug Design)
Show Figures

Figure 1

Back to TopTop