The Discovery, Characterization, and Quantification of Bioactive Peptides Contained in Palbio Porcine Intestinal Mucosa Hydrolysate Products
Abstract
1. Introduction
2. Results
2.1. Peptide Identification, Quantification, and Biological Activity
2.2. Bioactivity Analysis of Selected Peptides Using BIOPEP ANALYSIS
2.2.1. TNVPRASVPDGFLS
2.2.2. TNVPRASVPDGFLSEL
2.2.3. DAVEDLESVGK
2.2.4. EGIPPDQQRLIFAGK
2.2.5. TITLEVEPSDTIENVK
2.2.6. VHVVPDQLMAF
2.3. Prediction of Antimicrobial, Antiviral, and Antioxidant Activities Using a Random Forest-Based Machine Learning Algorithm
3. Discussion
4. Materials and Methods
4.1. Sample Preparation and Peptide Extraction
4.2. Molecular-Weight-Based Fractionation
4.3. Enzymatic Digestion of Selected Fractions
4.4. LC-MS/MS Acquisition
4.5. Peptide Identification and Bioinformatic Annotation
4.6. Quantification of Bioactive Peptides
4.7. In Silico Functional Prediction Using BIOPEP-UWM
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bhat, Z.F.; Kumar, S.; Bhat, H.F. Bioactive peptides of animal origin: A review. J. Food Sci. Technol. 2015, 52, 5377–5392. [Google Scholar] [CrossRef]
- Sánchez, A.; Vázquez, A. Bioactive peptides: A review. Food Qual. Saf. 2017, 1, 29–46. [Google Scholar] [CrossRef]
- Zaky, A.A.; Simal-Gandara, J.; Eun, J.B.; Shim, J.H.; El-Aty, A.M.A. Bioactivities, applications, safety, and health benefits of bioactive peptides from food and by-products: A review. Front. Nutr. 2022, 8, 815640. [Google Scholar] [CrossRef] [PubMed]
- Akbarian, M.; Khani, A.; Eghbalpour, S.; Uversky, V.N. Bioactive peptides: Synthesis, sources, applications, and proposed mechanisms of action. Int. J. Mol. Sci. 2022, 23, 1445. [Google Scholar] [CrossRef] [PubMed]
- Pearman, N.A.; Ronander, E.; Smith, A.M.; Morris, G.A. The identification and characterisation of novel bioactive peptides derived from porcine liver. Curr. Res. Food Sci. 2020, 3, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Rezaharsamto, B.; Subroto, E. A review on bioactive peptides derived from various sources of meat and meat by-products. Artic. Int. J. Sci. Technol. Res. 2019, 8, 3151–3156. [Google Scholar]
- Hou, Y.; Wu, Z.; Dai, Z.; Wang, G.; Wu, G. Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. J. Anim. Sci. Biotechnol. 2017, 8, 24. [Google Scholar] [CrossRef]
- Alao, B.O.; Falowo, A.B.; Chulayo, A.; Muchenje, V. The potential of animal by-products in food systems: Production, prospects and challenges. Sustainability 2017, 9, 1089. [Google Scholar] [CrossRef]
- Benfield, A.H.; Henriques, S.T. Mode-of-action of antimicrobial peptides: Membrane disruption vs. Intracellular mechanisms. Front. Med. Technol. 2020, 2, 610997. [Google Scholar] [CrossRef]
- Panyayai, T.; Ngamphiw, C.; Tongsima, S.; Mhuantong, W.; Limsripraphan, W.; Choowongkomon, K.; Sawatdichaikul, O. Feptidedb: A web application for new bioactive peptides from food protein. Heliyon 2019, 5, e02076. [Google Scholar] [CrossRef]
- González-Solé, F.; Criado-Mesas, L.; Villodre, C.; García, W.C.; Farré, M.; Borda, E.; Pérez-Cano, F.J.; Folch, J.M.; Solà-Oriol, D.; Pérez, J.F. Porcine digestible peptides (pdp) in weanling diets regulates the expression of genes involved in gut barrier function, immune response and nutrient transport in nursery pigs. Animals 2020, 10, 2368. [Google Scholar] [CrossRef] [PubMed]
- Córdoba, X.; Borda, E.; Martínez-puig, D. Piglet health and porcine digestible peptides. Int. Pig Top. 2004, 19, 17–19. [Google Scholar]
- Frikha, M.; Mohiti-Asli, M.; Chetrit, C.; Mateos, G.G. Hydrolyzed porcine mucosa in broiler diets: Effects on growth performance, nutrient retention, and histomorphology of the small intestine. Poult. Sci. 2014, 93, 400–411. [Google Scholar] [CrossRef] [PubMed]
- Borda, E.; Martinez-Puig, D.; Perez, F. An hydrolyzed protein concentrate (palbio 62) increases feed intake and villus height in early weaning pigs. Presented at the Annual Meeting of the EAAP (European Association for Animal Production), Uppsala, Sweden, 5–8 June 2005. [Google Scholar]
- Martínez-Puig, D.; Anguita, M.; Baucells, F.; Borda, E.; Pérez, J.F.; Chetrit, C. Evidence of a preference in piglets for an animal protein hydrolysate. Presented at the 2007 Joint Annual Meeting, San Antonio, TX, USA, 8–12 July 2007; Volume 4. [Google Scholar]
- Solà-Oriol, D.; Agostini, P.S.; Figueroa, J.; Borda, E.; Chetrit, C.; Pérez, J.F. The effect of different animal and vegetable protein sources on the feed intake and weight gain of piglets. Presented at the ASAS Annual Meeting, Denver, CO, USA, 11–15 July 2010; p. 909. [Google Scholar]
- Solà-Oriol, D.; Roura, E.; Torrallardona, D. Feed preference in pigs: Effect of selected protein, fat, and fiber sources at different inclusion rates. J. Anim. Sci. 2011, 89, 3219–3227. [Google Scholar] [CrossRef]
- Figueroa, J.; Solà-Oriol, D.; Guzmán-Pino, S.A.; Chetrit, C.; Borda, E.; Pérez, J.F. The use of porcine digestible peptides and their continuity effect in nursery pigs1. J. Anim. Sci. 2016, 94, 1531–1540. [Google Scholar] [CrossRef] [PubMed]
- Middelkoop, A.; Segarra, S.; Molist, F. Porcine digestible peptides as alternative protein source in weaner diets: Effects on performance and systemic cytokine profile in pigs followed from weaning to slaughter. Animal 2023, 17, 100998. [Google Scholar] [CrossRef]
- Segarra, S.; Middelkoop, A.; Molist, F. Gut microbiota-metabolome response to dietary porcine intestinal mucosa hydrolysate in piglets. Presented at the EAAP Conference, Lyon, France, 26 August–1 September 2023. [Google Scholar]
- Solà-Oriol, D.; Muns, R.; Martínez-Puig, D.; Pérez, J.F. Apparent metabolizable energy of hydrolyzed swine intestinal mucosa (Palbio RD50®) for broiler chickens. Presented at the ASAS Annual Meeting, Montreal, QC, Canada, 12–16 July 2009. [Google Scholar]
- Garcés, C.; Soler, M.D.; Barragan Cos, J.I.; Chetrit Russi, C. Efecto del uso de un hidrolizado de proteínas (palbio 50 rd®) como sustitución parcial de soja en dietas de pollos de carne. Presented at the XLVII Symposium Científico de Avicultura, Barcelona, Spain, 19–21 May 2010. [Google Scholar]
- Mateos, G.G.; Mohiti-asli, M.; Borda, E.; Mirzaie, S.; Frikha, M. Effect of inclusion of porcine mucosa hydrolysate in diets varying in lysine content on growth performance and ileal histomorphology of broilers. Anim. Feed. Sci. Technol. 2014, 187, 53–60. [Google Scholar] [CrossRef]
- Salvador, E.; Lujan, L.; Segarra, S. Effects of including a porcine intestinal mucosa hydrolysate on first-week performance and profitability in broiler chickens. Presented at the Poultry Science Association Meeting, Online, 19–21 July 2021. [Google Scholar]
- Jones, M.K.; Hofacre, C.L.; Segarra, S. Inclusion of a porcine intestinal mucosa hydrolysate (Palbio 62 SP) in broiler chickens during a necrotic enteritis challenge. Presented at the Poultry Science Association Meeting, San Antonio, TX, USA, 11–14 July 2022. [Google Scholar]
- Salvador, E.; Lujan, L.; Segarra, S. Improved performance in broiler chickens at 21 days of age following inclusion of a porcine intestinal mucosa hydrolysate. Presented at the World Poultry Congress 2022, Paris, France, 7–11 August 2022. [Google Scholar]
- Terré, M.; Borda, E.; Boe, F.; Bach, A. Hydrolyzed proteins from animal origin can replace dried skim milk from milk replacer formula. Presented at the ASAS Annual Meeting, Montreal, QC, Canada, 12–16 July 2009. [Google Scholar]
- Segarra, S.; Dziedzic, B.; Dziedzic, M. Improved palatability and digestibility in dry dog food using a porcine intestinal mucosa hydrolysate. Presented at the ASAS Annual Meeting, Albuquerque, NM, USA, 16–20 July 2023. [Google Scholar]
- Segarra, S.; Acevedo, N.; Correa, C. Evaluation of atlantic salmon salmo salar performance following partial replacement of fish meal by porcine hydrolysed protein. Presented at the World Aquaculture 2020, Singapore, 29 November–2 December 2022. [Google Scholar]
- Borda, E.; Pérez, L.; Díaz-Ramos, À.; Gombau, L.; Segarra, S. Estudio in vitro para evaluar los efectos de varias fracciones de un hidrolizado proteico sobre la proliferación celular. Presented at the LII Congreso Nacional AMVEC, Mérida, Mexico, 17–20 July 2018. [Google Scholar]
- Segarra, S.; Cabañas, J.; Martínez-Puig, D. Suitability of a porcine hydrolysed intestinal mucosa protein source for aquaculture species based on amino acid profiles and feed requirements. Presented at the Aquaculture 2022, San Diego, CA, USA, 28 February–1 March 2022; p. 3. [Google Scholar]
- Kim, I.S.; Yang, W.S.; Kim, C.H. Beneficial effects of soybean-derived bioactive peptides. Int. J. Mol. Sci. 2021, 22, 8570. [Google Scholar] [CrossRef]
- BIOPEP-UWM Database. University of Warmia and Mazury in Olsztyn. 2025. Available online: https://biochemia.uwm.edu.pl/biopep-uwm/ (accessed on 23 May 2025).
- Minkiewicz, P.; Iwaniak, A.; Darewicz, M. Biopep-uwm database of bioactive peptides: Current opportunities. Int. J. Mol. Sci. 2019, 20, 5978. [Google Scholar] [CrossRef]
- Iwaniak, A.; Minkiewicz, P.; Darewicz, M. Biopep-uwm database—Present and future. Curr. Opin. Food Sci. 2024, 55, 101108. [Google Scholar] [CrossRef]
- Udenigwe, C.C.; Aluko, R.E. Food protein-derived bioactive peptides: Production, processing, and potential health benefits. J. Food Sci. 2012, 77, R11–R24. [Google Scholar] [CrossRef]
- Kiewiet, M.B.G.; Faas, M.M.; de Vos, P. Immunomodulatory protein hydrolysates and their application. Nutrients 2018, 10, 904. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Alvarez, O.; Chamorro, S.; Brenes, A. Protein hydrolysates from animal processing by-products as a source of bioactive molecules with interest in animal feeding: A review. Food Res. Int. 2015, 73, 204–212. [Google Scholar] [CrossRef]
- Tacias-Pascacio, V.G.; Morellon-Sterling, R.; Siar, E.H.; Tavano, O.; Berenguer-Murcia, Á.; Fernandez-Lafuente, R. Use of alcalase in the production of bioactive peptides: A review. Int. J. Biol. Macromol. 2020, 165, 2143–2196. [Google Scholar] [CrossRef] [PubMed]
- van der Meer, J.Y.; Kellenbach, E.; van den Bos, L.J. From farm to pharma: An overview of industrial heparin manufacturing methods. Molecules 2017, 22, 1025. [Google Scholar] [CrossRef]
- Hartmann, R.; Meisel, H. Food-derived peptides with biological activity: From research to food applications this review comes from a themed lssue on food biotechnology edited by christophe lacroix and beat mollet. Curr. Opin. Biotechnol. 2007, 18, 163–169. [Google Scholar] [CrossRef]
- Korhonen, H.; Pihlanto, A. Bioactive peptides: Production and functionality. Int. Dairy J. 2006, 16, 945–960. [Google Scholar] [CrossRef]
- Silveira, R.F.; Roque-Borda, C.A.; Vicente, E.F. Antimicrobial peptides as a feed additive alternative to animal production, food safety and public health implications: An overview. Anim. Nutr. 2021, 7, 896–904. [Google Scholar] [CrossRef]
- Gonzalez, R.M.; JC, A.H. Antibiotic and synthetic growth promoters in animal diets. Review of impact and analytical methods. Food Control 2017, 72, 255–267. [Google Scholar] [CrossRef]
- Al-Dobaib, S.N.; Mousa, H.M. Benefits and risks of growth promoters in animal production. J. Food Agric. Environ. 2009, 7, 202–208. [Google Scholar]
- Kiczorowska, B.; Samolińska, W.; Al-Yasiry, A.R.M.; Kiczorowski, P.; Winiarska-Mieczan, A. The natural feed additives as immunostimulants in monogastric animal nutrition—A review. Ann. Anim. Sci. 2017, 17, 605–625. [Google Scholar] [CrossRef]
- Xu, X.; Pacheco, B.D.; Leng, L.; Bucala, R.; Ren, J. Macrophage migration inhibitory factor plays a permissive role in the maintenance of cardiac contractile function under starvation through regulation of autophagy. Cardiovasc. Res. 2013, 99, 412–421. [Google Scholar] [CrossRef] [PubMed]
- Calandra, T.; Roger, T. Macrophage migration inhibitory factor: A regulator of innate immunity. Nat. Rev. Immunol. 2003, 3, 791–800. [Google Scholar] [CrossRef]
- Xiao, H.; Shao, F.; Wu, M.; Ren, W.; Xiong, X.; Tan, B.; Yin, Y. The application of antimicrobial peptides as growth and health promoters for swine. J. Anim. Sci. Biotechnol. 2015, 6, 19. [Google Scholar] [CrossRef]
- Sang, Y.; Blecha, F. Porcine host defense peptides: Expanding repertoire and functions. Dev. Comp. Immunol. 2009, 33, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.J.; Thottathil, S.E.; Newman, T.B. Antibiotics overuse in animal agriculture: A call to action for health care providers. Am. J. Public Health 2015, 105, 2409–2410. [Google Scholar] [CrossRef]
- Song, C.; Weichbrodt, C.; Salnikov, E.S.; Dynowski, M.; Forsberg, B.O.; Bechinger, B.; Steinem, C.; de Groot, B.L.; Zachariae, U.; Zeth, K. Crystal structure and functional mechanism of a human antimicrobial membrane channel. Proc. Natl. Acad. Sci. USA 2013, 110, 4586–4591. [Google Scholar] [CrossRef]
- Schittek, B.; Hipfel, R.; Sauer, B.; Bauer, J.; Kalbacher, H.; Stevanovic, S.; Schirle, M.; Schroeder, K.; Blin, N.; Meier, F.; et al. Dermcidin. A novel human antibiotic peptide secreted by sweat glands. Nat. Immunol. 2001, 2, 1133–1137. [Google Scholar] [CrossRef]
- Seo, J.-K.; Lee, M.J.; Go, H.-J.; Do, K.G.; Do, J.H.; Bo-Hye, N.; Nam, G.; Park, A.Y. Purification and antimicrobial function of ubiquitin isolated from the gill of pacific oyster, crassostrea gigas. Mol. Immunol. 2013, 53, 88–98. [Google Scholar] [CrossRef]
- Kieffer, A.E.; Goumon, Y.; Ruh, O.; Chasserot-Golaz, S.; Nullans, G.; Gasnier, C.; Aunis, D.; Metz-Boutigue, M.H. The n- and c-terminal fragments of ubiquitin are important for the antimicrobial activities. FASEB J. 2003, 17, 776–778. [Google Scholar] [CrossRef]
- Thakur, A.; Sharma, V.; Thakur, A. An overview of anti-nutritional factors in food. Int. J. Chem. Stud. 2019, 7, 2472–2479. [Google Scholar]
- Kong, X.; Li, Y.; Liu, X. A review of thermosensitive antinutritional factors in plant-based foods. J. Food Biochem. 2022, 46, e14199. [Google Scholar] [CrossRef] [PubMed]
- Bioiberica. Enzyneer: The Power of Enzymes, the Strength of Technology. 2023. Available online: https://www.bioiberica.com/en/productos/salud-animal/animal-nutrition/enzyneer-power-enzymes-strength-technology (accessed on 9 June 2025).
- Postma, M.; Vanderhaeghen, W.; Sarrazin, S.; Maes, D.; Dewulf, J. Reducing antimicrobial usage in pig production without jeopardizing production parameters. Zoonoses Public Health 2017, 64, 63–74. [Google Scholar] [CrossRef] [PubMed]
Animal Species | Main Effects | Reference |
---|---|---|
Piglets, Sus scrofa | Increased average daily feed intake and prevention of intestinal villus atrophy. | Borda et al., 2005 [14] |
Piglets, Sus scrofa | Improved palatability of postweaning diets, compared to spray-dried porcine plasma. | Martínez-Puig et al., 2007 [15] |
Piglets, Sus scrofa | Improved piglet post-weaning performance and profitability following partial replacement of spray-dried porcine plasma and soybean protein concentrate. | Solà-Oriol et al., 2010 [16] |
Piglets, Sus scrofa | Improved palatability in piglets. | Solà-Oriol et al., 2011 [17] |
Piglets, Sus scrofa | Alternative to sweet milk whey in post-weaning diets without affecting performance. | Figueroa et al., 2016 [18] |
Piglets, Sus scrofa | Improved intestinal health of pigs after partial replacement of soybean meal and spray-dried plasma. | González-Solé et al., 2020 [11] |
Piglets, Sus scrofa | Improved performance during post-weaning and grower-finisher phases after use as an alternative to milk and soy protein. | Middelkoop et al., 2023 [19] |
Piglets, Sus scrofa | Improved gut health in piglets through modulation of their gut microbiota and metabolome. | Segarra et al., 2023 [20] |
Broiler chickens, Gallus gallus domesticus | Determination of apparent metabolizable energy when used in diets for broilers. | Solà-Oriol et al., 2009 [21] |
Broiler chickens, Gallus gallus domesticus | Reduced nitrogen excretion and risk of developing enteritis after partial replacement of soybean meal. | Garcés et al., 2010 [22] |
Broiler chickens, Gallus gallus domesticus | Improved growth performance of broiler chicken, especially from 1 to 21 days of life. | Frikha et al., 2014 [13] |
Broiler chickens, Gallus gallus domesticus | Improved growth performance in broilers. | Mateos et al., 2014 [23] |
Broiler chickens, Gallus gallus domesticus | Enhanced performance and profitability after partial replacement of soybean meal. | Salvador et al., 2021 [24] |
Broiler chickens, Gallus gallus domesticus | Use in non-vegetable-based diets supports recovery from necrotic enteritis. | Jones et al., 2022 [25] |
Broiler chickens, Gallus gallus domesticus | Beneficial effects on the performance of partially replacing vegetable protein sources in broiler chicken. | Salvador et al., 2022 [26] |
Calves, Bos taurus | Use as a partial replacement for dried skimmed milk without impairing the performance of calves. | Terré et al., 2009 [27] |
Domestic dogs, Canis familiaris | Enhanced palatability and digestibility when used as a partial replacement for poultry meal. | Segarra et al., 2023 [28] |
Atlantic salmon, Salmo salar | Reduction in the diet cost and non-inferiority in terms of performance when used as a partial replacement of fish meal. | Segarra et al., 2022 [29] |
Bioactive Peptide | Biological Activity | Protein | Amount in PHP | Amount in P62 |
---|---|---|---|---|
TNVPRASVPDGFLS | Cytokine/growth factor (immunomodulation) | Macrophage migration inhibitory factor (UniProt ID: P14174) | 1.4596 | 0.1898 |
TNVPRASVPDGFLSEL | Cytokine/growth factor (immunomodulation) | Macrophage migration inhibitory factor (UniProt ID: P14174) | 8.0500 | 0.9224 |
VHVVPDQLMAF | Cytokine/growth factor (immunomodulation) | Macrophage migration inhibitory factor (UniProt ID: P14174) | 0.0310 | 0.0054 |
DAVEDLESVGK | Antimicrobial | Dermcidin (UniProt ID: P81605) | 0.1626 | 0.1939 |
EGIPPDQQRLIFAGK | Antimicrobial | Ubiquitin (UniProt ID: P0CG47) | 0.2637 | 0.1852 |
TITLEVEPSDTIENVK | Antimicrobial | Ubiquitin (UniProt ID: P0CG47) | 0.3594 | 0.4327 |
Peptides | Pmols on Column |
---|---|
TNVPRASVPDGFLS | 0.73 |
TNVPRASVPDGFLSEL | 1.20 |
DAVEDLESVGK | 0.55 |
EGIPPDQQRLIFAGK | 0.34 |
TITLEVEPSDTIENVK | 0.47 |
VHVVPDQLMAF | 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segarra, S.; de la Torre, C.; Bech-Serra, J.J.; Cucurull, B.; Marazuela-Duque, A.; Vaquero, A.; Martínez-Puig, D.; Velasco-Alvarez, J. The Discovery, Characterization, and Quantification of Bioactive Peptides Contained in Palbio Porcine Intestinal Mucosa Hydrolysate Products. Int. J. Mol. Sci. 2025, 26, 6656. https://doi.org/10.3390/ijms26146656
Segarra S, de la Torre C, Bech-Serra JJ, Cucurull B, Marazuela-Duque A, Vaquero A, Martínez-Puig D, Velasco-Alvarez J. The Discovery, Characterization, and Quantification of Bioactive Peptides Contained in Palbio Porcine Intestinal Mucosa Hydrolysate Products. International Journal of Molecular Sciences. 2025; 26(14):6656. https://doi.org/10.3390/ijms26146656
Chicago/Turabian StyleSegarra, Sergi, Carolina de la Torre, Joan Josep Bech-Serra, Bernat Cucurull, Anna Marazuela-Duque, Alejandro Vaquero, Daniel Martínez-Puig, and Javier Velasco-Alvarez. 2025. "The Discovery, Characterization, and Quantification of Bioactive Peptides Contained in Palbio Porcine Intestinal Mucosa Hydrolysate Products" International Journal of Molecular Sciences 26, no. 14: 6656. https://doi.org/10.3390/ijms26146656
APA StyleSegarra, S., de la Torre, C., Bech-Serra, J. J., Cucurull, B., Marazuela-Duque, A., Vaquero, A., Martínez-Puig, D., & Velasco-Alvarez, J. (2025). The Discovery, Characterization, and Quantification of Bioactive Peptides Contained in Palbio Porcine Intestinal Mucosa Hydrolysate Products. International Journal of Molecular Sciences, 26(14), 6656. https://doi.org/10.3390/ijms26146656