Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = HMB free acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1216 KiB  
Review
Physiological Benefits, Applications, and Future Directions of β-Hydroxy-β-Methylbutyrate (HMB) in Food and Health Industries
by Sijing Zhou, Guijun Liu, Zhong Wang, Ziteng Lei, Wei Chen and Chengtao Wang
Foods 2025, 14(8), 1294; https://doi.org/10.3390/foods14081294 - 8 Apr 2025
Viewed by 3994
Abstract
β-Hydroxy-β-methylbutyrate (HMB), a metabolite of the essential amino acid leucine, is acknowledged for its powerful role in facilitating muscle protein synthesis, reducing muscle catabolism, and promoting fat-free mass accumulation. With well-documented anticatabolic, anabolic, and lipolytic effects, HMB has been extensively studied in clinical [...] Read more.
β-Hydroxy-β-methylbutyrate (HMB), a metabolite of the essential amino acid leucine, is acknowledged for its powerful role in facilitating muscle protein synthesis, reducing muscle catabolism, and promoting fat-free mass accumulation. With well-documented anticatabolic, anabolic, and lipolytic effects, HMB has been extensively studied in clinical settings and has exhibited potential in mitigating muscle loss induced by aging, cancer cachexia, and sarcopenia. Moreover, HMB finds applications in specialized medical nutrition, sports nutrition, and animal husbandry, with recent research illustrating its benefits in enhancing animal growth and immunity. This review highlights the current understanding of HMB’s physiological mechanisms, its diverse applications, and recent advancements in detection methods such as High-Performance Liquid Chromatography (HPLC), Gas Chromatography (GC), and Liquid Chromatography–Mass Spectrometry (LC–MS). Additionally, it discusses the future prospects of HMB bio-manufacturing. The establishment of standardized guidelines for its safe use and testing is crucial for its broader adoption in the food industry. Future research should focus on further elucidating HMB’s muscle growth mechanisms and broadening its applications across the food, health, and agricultural sectors. In sum, future studies should prioritize mechanistic exploration, safety and synergy, along with standardization to fully harness HMB’s potential. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

18 pages, 6125 KiB  
Article
Revealing the Characteristics and Correlations Among Microbial Communities, Functional Genes, and Vital Metabolites Through Metagenomics in Henan Mung Bean Sour
by Xunda Wang, Yue Li, Lei Zuo, Pengna Li, Haiwei Lou and Renyong Zhao
Microorganisms 2025, 13(4), 845; https://doi.org/10.3390/microorganisms13040845 - 7 Apr 2025
Viewed by 502
Abstract
Henan mung bean sour (HMBS) is the raw material for mung bean sour noodles (MBSNs), a traditional fermented food. To investigate the characteristic flavor compounds, we have detected the content of free amino acids (FAAs) and key metabolites including organic acids, sugars, and [...] Read more.
Henan mung bean sour (HMBS) is the raw material for mung bean sour noodles (MBSNs), a traditional fermented food. To investigate the characteristic flavor compounds, we have detected the content of free amino acids (FAAs) and key metabolites including organic acids, sugars, and alcohols. The results revealed that the content associated with umami, sweetness, and bitterness (TVA > 1) showed significant differences. Metagenomic analysis indicated that Lactobacillus delbrueckii was the dominant and characteristic species in WJ and LY15, whereas Bifidobacterium mongoliense, Lactiplantibacillus plantarum, and Acetobacter indonesiensis were the dominant species in GY. The abundance of functional genes related to carbohydrate and amino acid metabolism was higher in WJ and LY15. There was a strong correlation between dominant genera and vital metabolites (r |>| 0.7). This study provides a theoretical foundation for the development of HMBS. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

17 pages, 1634 KiB  
Article
Alterations of the Muscular Fatty Acid Composition and Serum Metabolome in Bama Xiang Mini-Pigs Exposed to Dietary Beta-Hydroxy Beta-Methyl Butyrate
by Changbing Zheng, Bo Song, Qiuping Guo, Jie Zheng, Fengna Li, Yehui Duan and Can Peng
Animals 2021, 11(5), 1190; https://doi.org/10.3390/ani11051190 - 21 Apr 2021
Cited by 15 | Viewed by 3268
Abstract
This study aimed to investigate the effects of dietary beta-hydroxy beta-methyl butyrate (HMB) supplementation on muscular lipid metabolism in Bama Xiang mini-pigs. Thirty-two piglets (8.58 ± 0.40 kg, barrow) were selected and fed a basal diet supplemented either with 0 (control), 0.13%, 0.64%, [...] Read more.
This study aimed to investigate the effects of dietary beta-hydroxy beta-methyl butyrate (HMB) supplementation on muscular lipid metabolism in Bama Xiang mini-pigs. Thirty-two piglets (8.58 ± 0.40 kg, barrow) were selected and fed a basal diet supplemented either with 0 (control), 0.13%, 0.64%, or 1.28% HMB for 60 days. Throughout the experiments, they had free access to clean drinking water and diets. Data of this study were analyzed by one-way ANOVA using the SAS 8.2 software package, followed by a Tukey’s studentized range test to explore treatment effects. The results showed that compared to the control, 0.13% HMB decreased the intramuscular fat (IMF) content and increased polyunsaturated fatty acids (PUFAs) in Longissimus thoracis muscle (LTM), and increased the n3 PUFAs in soleus muscles (SM, p < 0.05). Moreover, HMB supplementation led to alterations in the mRNA expression of genes related to lipid metabolism. Serum metabolome profiling showed that in both LTM and SM of Bama Xiang mini-pigs, N-Methyl-l-glutamate was positively correlated with SFA and nummularine A was negatively correlated with C18:3n3 PUFA (p < 0.05). Therefore, N-Methyl-l-glutamate and nummularine A might be potential biomarkers of the HMB-supplemented group. These results suggested that dietary HMB supplementation could decrease the IMF content and increase n3 PUFAs as well as regulate the related metabolites (N-Methyl-l-glutamate and nummularine A) in the serum of pigs. Full article
Show Figures

Figure 1

11 pages, 832 KiB  
Article
Effect of a Food for Special Medical Purposes for Muscle Recovery, Consisting of Arginine, Glutamine and Beta-Hydroxy-Beta-Methylbutyrate on Body Composition and Skin Health in Overweight and Obese Class I Sedentary Postmenopausal Women
by Mariangela Rondanelli, Mara Nichetti, Gabriella Peroni, Maurizio Naso, Milena Anna Faliva, Giancarlo Iannello, Enrica Di Paolo and Simone Perna
Nutrients 2021, 13(3), 975; https://doi.org/10.3390/nu13030975 - 17 Mar 2021
Cited by 8 | Viewed by 5144
Abstract
The consumption of dietary amino acids has been evaluated for therapeutic and safety intervention in obesity. In particular, three molecules have been shown to be effective: arginine, glutamine and leucine (and its metabolite beta-hydroxy-beta-methylbutyrate, HMB). This randomized, double-blinded pilot study in obese postmenopausal [...] Read more.
The consumption of dietary amino acids has been evaluated for therapeutic and safety intervention in obesity. In particular, three molecules have been shown to be effective: arginine, glutamine and leucine (and its metabolite beta-hydroxy-beta-methylbutyrate, HMB). This randomized, double-blinded pilot study in obese postmenopausal patients aimed to evaluate the efficacy of the administration of a specific food for special medical purposes (FSMP) consisting of arginine, glutamine and HMB on body composition, in particular, visceral adipose tissue (VAT), assessed by dual-energy X-ray absorptiometry (DXA), as the primary endpoint. The secondary endpoint was to evaluate the effects on skin health through a validated self-reported questionnaire. A significant improvement on VAT of Δ = −153.600, p = 0.01 was recorded in the intervention group. Skin health showed a significant improvement in the treatment group for the following: bright Δ = 1.400 (0.758; 2.042), elasticity Δ = 0.900 (0.239; 1.561), wrinkles Δ = 0.800 (0.276; 1.324), and on total score, Δ = 3.000 (1.871; 4.129). In the intervention group, the improvement in VAT was associated with an improvement in the bright score (r = −0.58; p = 0.01). In conclusion, this study demonstrated that the intake for 4-weeks of arginine, glutamine and HMB effects a significant reduction in VAT and improves skin condition, while fat free mass (FFM) is maintained, thus achieving “high-quality” weight loss. Full article
(This article belongs to the Special Issue Dietary Supplements for Metabolic and Gastrointestinal Disorders)
Show Figures

Graphical abstract

12 pages, 2341 KiB  
Article
Butyrate Permeation across the Isolated Ovine Reticulum Epithelium
by Reiko Rackwitz, Franziska Dengler and Gotthold Gäbel
Animals 2020, 10(12), 2198; https://doi.org/10.3390/ani10122198 - 24 Nov 2020
Cited by 2 | Viewed by 2038
Abstract
We hypothesized that, due to the high pH of this compartment, the reticulum epithelium displays particular features in the transport of short-chain fatty acids (SCFA). Ovine reticulum epithelium was incubated in Ussing chambers using a bicarbonate-free buffer solution containing butyrate (20 mmol L [...] Read more.
We hypothesized that, due to the high pH of this compartment, the reticulum epithelium displays particular features in the transport of short-chain fatty acids (SCFA). Ovine reticulum epithelium was incubated in Ussing chambers using a bicarbonate-free buffer solution containing butyrate (20 mmol L−1). p-hydroxymercuribenzoic acid (pHMB), 5-(N-Ethyl-N-isopropyl)amiloride (EIPA), or ouabain were added to the buffer solution as inhibitors of monocarboxylate transporters, sodium-proton-exchangers, or the Na+/K+-ATPase, respectively. The short-circuit current (Isc) and transepithelial conductance (Gt) were monitored continuously while the flux rates of 14C-labelled butyrate were measured in the mucosal-to-serosal (Jmsbut) or serosal-to-mucosal direction (Jsmbut). Under control conditions, the mean values of Isc and Gt amounted to 2.54 ± 0.46 µEq cm−2 h−1 and 6.02 ± 3.3 mS cm−2, respectively. Jmsbut was 2.1 ± 1.01 µmol cm−2 h−1 on average and about twice as high as Jsmbut. Incubation with ouabain reduced Jmsbut, while Jsmbut was not affected. The serosal addition of EIPA did not affect Jmsbut but reduced Jsmbut by about 10%. The addition of pHMB to the mucosal or serosal solution reduced Jmsbut but had no effect on Jsmbut. Mucosally applied pHMB provoked a transient increase in the Isc. The serosal pHMB sharply reduced Isc. Our results demonstrate that butyrate can be effectively transported across the reticulum epithelium. The mechanisms involved in this absorption differ from those known from the rumen epithelium. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Graphical abstract

14 pages, 3174 KiB  
Article
Postprandial Glycemia, Insulinemia, and Antioxidant Status in Healthy Subjects after Ingestion of Bread made from Anthocyanin-Rich Riceberry Rice
by Charoonsri Chusak, Porntip Pasukamonset, Praew Chantarasinlapin and Sirichai Adisakwattana
Nutrients 2020, 12(3), 782; https://doi.org/10.3390/nu12030782 - 16 Mar 2020
Cited by 35 | Viewed by 7026
Abstract
Riceberry rice, a gluten-free grain, contains many nutrient components, including carbohydrates, proteins, certain fatty acids, and micronutrients, as well as bioactive non-nutrient compounds, such as polyphenolic compounds. This study aimed to evaluate the effect of bread made from anthocyanin-rich Riceberry rice on the [...] Read more.
Riceberry rice, a gluten-free grain, contains many nutrient components, including carbohydrates, proteins, certain fatty acids, and micronutrients, as well as bioactive non-nutrient compounds, such as polyphenolic compounds. This study aimed to evaluate the effect of bread made from anthocyanin-rich Riceberry rice on the postprandial glycemic response, glucagon-like peptide-1 (GLP-1), antioxidant status, and subjective ratings of appetite. In the crossover design, 16 healthy participants (six men and 10 women) completed four sessions involving blood collection in the fasting state and at 30, 60, 90, 120, 150, and 180 min after food consumption (50 g of available carbohydrate) in a randomized order: 1) glucose solution, 2) wheat bread (WB), 3) Riceberry rice bread (RRB), and 4) Hom Mali bread (HMB). Consumption of RRB resulted in significantly lower postprandial plasma glucose concentration at 30 and 60 min when compared to HMB. No difference in postprandial glucose concentration between RRB and WB was observed. In addition, postprandial plasma insulin showed a significant decrease in the group which received RRB at 15 and 60 min, as compared to HMB. In comparison with 50 g of glucose, as a reference, the glycemic index (GI) of RRB, WB, and HMB was 69.3 ± 4.4, 77.8 ± 4.6, and 130.6 ± 7.9, respectively. Interestingly, the ferric-reducing ability of plasma (FRAP) level was shown to significantly increase after consumption of RRB. In the meantime, a significant decrease in the postprandial FRAP level was also observed following an intake of WB and HMB. All breads caused increases in the postprandial plasma protein thiol group and had similar effects on hunger, fullness, desire to eat, and satiety ratings. However, consumption of RBB, WB, and HMB did not change plasma GLP-1 and malondialdehyde (MDA) levels when compared to the baseline. The findings suggest that anthocyanin-rich Riceberry rice can be a natural ingredient for gluten-free bread which reduced glycemic response together with improvement of antioxidant status in healthy subjects. Full article
(This article belongs to the Special Issue Dietary (Poly)Phenols and Health)
Show Figures

Figure 1

11 pages, 1502 KiB  
Communication
Regulation of Skeletal Muscle Function by Amino Acids
by Yasutomi Kamei, Yukino Hatazawa, Ran Uchitomi, Ryoji Yoshimura and Shinji Miura
Nutrients 2020, 12(1), 261; https://doi.org/10.3390/nu12010261 - 19 Jan 2020
Cited by 182 | Viewed by 30561
Abstract
Amino acids are components of proteins that also exist free-form in the body; their functions can be divided into (1) nutritional, (2) sensory, and (3) biological regulatory roles. The skeletal muscle, which is the largest organ in the human body, representing ~40% of [...] Read more.
Amino acids are components of proteins that also exist free-form in the body; their functions can be divided into (1) nutritional, (2) sensory, and (3) biological regulatory roles. The skeletal muscle, which is the largest organ in the human body, representing ~40% of the total body weight, plays important roles in exercise, energy expenditure, and glucose/amino acid usage—processes that are modulated by various amino acids and their metabolites. In this review, we address the metabolism and function of amino acids in the skeletal muscle. The expression of PGC1α, a transcriptional coactivator, is increased in the skeletal muscle during exercise. PGC1α activates branched-chain amino acid (BCAA) metabolism and is used for energy in the tricarboxylic acid (TCA) cycle. Leucine, a BCAA, and its metabolite, β-hydroxy-β-methylbutyrate (HMB), both activate mammalian target of rapamycin complex 1 (mTORC1) and increase protein synthesis, but the mechanisms of activation appear to be different. The metabolite of valine (another BCAA), β-aminoisobutyric acid (BAIBA), is increased by exercise, is secreted by the skeletal muscle, and acts on other tissues, such as white adipose tissue, to increase energy expenditure. In addition, several amino acid-related molecules reportedly activate skeletal muscle function. Oral 5-aminolevulinic acid (ALA) supplementation can protect against mild hyperglycemia and help prevent type 2 diabetes. β-alanine levels are decreased in the skeletal muscles of aged mice. β-alanine supplementation increased the physical performance and improved the executive function induced by endurance exercise in middle-aged individuals. Further studies focusing on the effects of amino acids and their metabolites on skeletal muscle function will provide data essential for the production of food supplements for older adults, athletes, and individuals with metabolic diseases. Full article
(This article belongs to the Special Issue Amino Acids and Health Effects)
Show Figures

Figure 1

10 pages, 789 KiB  
Article
The Effects of Beta-Hydroxy-Beta-Methylbutyrate-Free Acid Supplementation and Resistance Training on Oxidative Stress Markers: A Randomized, Double-Blind, Placebo-Controlled Study
by Hamid Arazi, Abbas Asadi and Katsuhiko Suzuki
Antioxidants 2018, 7(6), 76; https://doi.org/10.3390/antiox7060076 - 11 Jun 2018
Cited by 10 | Viewed by 6076
Abstract
The aim of this study was to investigate the effects of 6-week beta-hydroxy-beta methylbutyrate-free acid (HMB-FA) supplementation on oxidative stress and biochemical variables in responses to resistance training. Sixteen healthy young males participated in this study and were randomly assigned to a HMB-FA [...] Read more.
The aim of this study was to investigate the effects of 6-week beta-hydroxy-beta methylbutyrate-free acid (HMB-FA) supplementation on oxidative stress and biochemical variables in responses to resistance training. Sixteen healthy young males participated in this study and were randomly assigned to a HMB-FA supplementation group (n = 8) or a placebo supplementation group (n = 8). The resistance training program was applied for 6 weeks with two sessions per week. Blood samples were collected before and after training, and 8-hydroxy-2-deoxyguanosine (8-OHdG), malondialdehyde (MDA), protein carbonyl (PC), and biochemical variables, such as alanine transaminase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and the numbers of total white blood cells (WBC), neutrophils, lymphocytes, and monocytes were analyzed. Following intervention, both the HMB-FA and placebo supplementation groups showed significant decreases in MDA (effect size [ES]; −0.39, −0.33) and PC (ES; −1.37, −1.41), respectively. However, 8-OHdG did not change after 6 weeks of training in any of the groups. In addition, both groups showed similar training effects on biochemical variables after 6 weeks of intervention. It was concluded that HMB-FA supplementation during resistance training did not add further adaptive changes related to oxidative stress markers. Full article
(This article belongs to the Special Issue Exercise and Inflammation)
Show Figures

Figure 1

13 pages, 647 KiB  
Article
Effects of β-Hydroxy-β-methylbutyrate-free Acid Supplementation on Strength, Power and Hormonal Adaptations Following Resistance Training
by Abbas Asadi, Hamid Arazi and Katsuhiko Suzuki
Nutrients 2017, 9(12), 1316; https://doi.org/10.3390/nu9121316 - 2 Dec 2017
Cited by 34 | Viewed by 11693
Abstract
Background: β-Hydroxy-β-methylbutyrate-free acid (HMB-FA) has been ingested prior to exercise to reduce muscle damage, however the effects of HMB-FA supplementation on hormonal, strength and power adaptation are unclear. Methods: Sixteen healthy men were matched and randomized into two groups and performed six-week resistance [...] Read more.
Background: β-Hydroxy-β-methylbutyrate-free acid (HMB-FA) has been ingested prior to exercise to reduce muscle damage, however the effects of HMB-FA supplementation on hormonal, strength and power adaptation are unclear. Methods: Sixteen healthy men were matched and randomized into two groups and performed six-week resistance training while supplementing with either HMB-FA or placebo (3 g per day). The subjects were evaluated for 1 repetition maximum (1RM) bench press and leg press and vertical jump (VJ) prior to and after training intervention. In addition, blood samples were obtained before and after resistance training to evaluate resting growth hormone (GH), insulin like growth factor 1 (IGF-1), testosterone (TEST), cortisol (CORT), and adrenocorticotropic hormone (ACTH) responses. The HMB-FA supplementation group showed greater gains compared with the placebo group in peak power (effect size ES = 0.26 vs. 0.01) and 1RM leg press (ES = 1.52 vs. 0.96). In addition, the HMB-FA supplementation group indicated greater decrements in ACTH and CORT responses to training in comparison to the placebo group (p < 0.05). Likewise, in GH (ES = 1.41 vs. 0.12) and IGF-1 (ES = 0.83 vs. 0.41), the HMB-FA indicated greater training effects when compared with the placebo group. Conclusions: These findings provide further support for the potential anabolic benefits associated with HMB-FA supplementation. Full article
(This article belongs to the Special Issue Immunology: Nutrition, Exercise and Adiposity Relationships)
Show Figures

Figure 1

Back to TopTop