Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (124)

Search Parameters:
Keywords = HIV-1 capsid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1691 KB  
Perspective
Use of the Split Luciferase Complementation Assay to Identify Novel Small Molecules That Disrupt Essential Protein–Protein Interactions of Viruses
by Tisa Biswas and Richard E. Sutton
Biomolecules 2025, 15(12), 1712; https://doi.org/10.3390/biom15121712 - 9 Dec 2025
Viewed by 557
Abstract
Protein–protein interactions (PPIs) are fundamental to viral replication, regulating transcription, assembly, and genome packaging. Despite their biological importance, few FDA-approved therapeutics directly target these complexes. The split luciferase complementation assay (SLCA) is a quantitative bioluminescence system to measure protein–protein interactions in vitro after [...] Read more.
Protein–protein interactions (PPIs) are fundamental to viral replication, regulating transcription, assembly, and genome packaging. Despite their biological importance, few FDA-approved therapeutics directly target these complexes. The split luciferase complementation assay (SLCA) is a quantitative bioluminescence system to measure protein–protein interactions in vitro after the proteins in question have been fused in-frame to N and C luciferase fragments. The SLCA can be performed both in vitro using purified protein components and in live cells, as the luciferase substrate luciferin is cell-permeable, allowing detection of protein interactions in intact cells. Assay performance, however, depends on the expression level and stability of the fusion proteins used. SLCA has been successfully applied to target Rev–Rev interactions in human immunodeficiency virus type 1 (HIV-1) for high-throughput small-molecule screening, establishing a proof-of-concept to target other parts of the viral life cycle. The system can be extended to other pathogens that currently do not have specific antiviral therapies such as HIV-1 Tat–cyclin T1, Capsid dimerization in Dengue virus, capsid interactions in equine encephalitis viruses, capsid assembly in Epstein–Barr virus, and nucleoprotein oligomerization in rabies virus. These applications demonstrate how the assay’s ability to quantify multimeric structural interactions is essential to viral replication, providing an avenue to identify small-molecule inhibitors that prevent viral replication and spread. Although there are challenges to protein stability and assay optimization, the sensitivity and adaptability of the SLCA has broader implications in virology to accelerate antiviral drug development. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

11 pages, 604 KB  
Review
HIV Therapy: The Latest Developments in Antiviral Drugs—A Scoping Review
by Francisco Fanjul, Meritxell Gavalda, Antoni Campins, Adria Ferré, Luisa Martín, María Peñaranda, Mari Ángeles Ribas, Elena Pastor-Ramon, Sophia Pinecki and Melchor Riera
Biomedicines 2025, 13(11), 2629; https://doi.org/10.3390/biomedicines13112629 - 27 Oct 2025
Viewed by 3366
Abstract
Background: Major advances in antiretroviral therapy (ART) have transformed HIV into a chronic condition, yet drug resistance, long-term toxicities, adherence challenges, and persistent viral reservoirs continue to drive innovation. Objectives: To map and synthesize recent developments in anti-HIV drugs and delivery platforms with [...] Read more.
Background: Major advances in antiretroviral therapy (ART) have transformed HIV into a chronic condition, yet drug resistance, long-term toxicities, adherence challenges, and persistent viral reservoirs continue to drive innovation. Objectives: To map and synthesize recent developments in anti-HIV drugs and delivery platforms with a focus on (i) new molecules in clinical development and (ii) novel mechanisms of action, following a scoping review framework aligned with PRISMA-ScR. Sources: We interrogated PubMed, Embase.com, Web of Science, and Scopus (January 2020–September 2025) and screened abstracts from CROI, IAS/AIDS, IDWeek, and HIV Glasgow (2023–2025). Content: The evidence base underscores capsid inhibition (lenacapavir) for multidrug-resistant HIV and its expansion into prevention, long-acting intramuscular maintenance with cabotegravir/rilpivirine, maturation inhibitors (zabofiravir), and attachment inhibition with fostemsavir. Broadly neutralizing antibodies (bNAbs) can sustain ART-free suppression in selected individuals. Ultra-long-acting delivery systems are advancing toward translational evaluation. Summary: The pipeline is diversifying toward less frequent dosing, new targets, and combination strategies. Successful and ethical implementation will require resistance-informed selection, equitable access, and reimagined healthcare delivery models that accommodate long-acting technologies. Full article
(This article belongs to the Special Issue HIV Therapy: The Latest Developments in Antiviral Drugs)
Show Figures

Figure 1

22 pages, 6879 KB  
Article
Dissecting the Unique Self-Assembly Landscape of the HIV-2 Capsid Protein
by Matthew Cook, Pushpanjali Bhardwaj, Faith Lozano, Christian Freniere, Ryan J. Malonis and Yong Xiong
Viruses 2025, 17(10), 1384; https://doi.org/10.3390/v17101384 - 17 Oct 2025
Viewed by 784
Abstract
Human immunodeficiency virus type 2 (HIV-2) is a lentivirus closely related to HIV-1 but exhibits distinct molecular and clinical features that influence viral infectivity and efficacy of antiretroviral therapy. The HIV capsid is a critical structural component with multifaceted roles during infection and [...] Read more.
Human immunodeficiency virus type 2 (HIV-2) is a lentivirus closely related to HIV-1 but exhibits distinct molecular and clinical features that influence viral infectivity and efficacy of antiretroviral therapy. The HIV capsid is a critical structural component with multifaceted roles during infection and mediates some of the observed divergence between HIV-1 and HIV-2. Unlike HIV-1, study of the HIV-2 capsid is limited and standard protocols for the in vitro assembly of HIV-1 capsid protein (CA) lattice structures have not been successfully translated to the HIV-2 context. This work identifies effective approaches for the assembly of the HIV-2 CA lattice and leverages this to biochemically characterize HIV-2 CA assemblies and mutant phenotypes. Our findings elaborate on the sensitivity of HIV-2 CA to chemical conditions and reveal that it assembles into a more varied spectrum of particle morphologies compared to HIV-1. Utilizing these assemblies, we tested the hypothesis that HIV-1 and HIV-2 employ divergent mechanisms to stabilize CA oligomer forms and investigate the effects of non-conserved substitutions at the CA inter-protomer interfaces. This work advances our understanding of the key biochemical determinants of HIV-2 CA assembly that are distinct from HIV-1 and may contribute to their divergent virological properties. Full article
(This article belongs to the Special Issue Structural and Mechanistic Advances in Retroviral Biology)
Show Figures

Figure 1

28 pages, 8441 KB  
Review
Recombinant Chimeric Virus-like Particles of Human Papillomavirus Produced by Distinct Cell Lineages: Potential as Prophylactic Nanovaccine and Therapeutic Drug Nanocarriers
by Cyntia Silva Oliveira, Dirce Sakauchi, Érica Akemi Kavati Sasaki and Aurora Marques Cianciarullo
Viruses 2025, 17(9), 1209; https://doi.org/10.3390/v17091209 - 4 Sep 2025
Viewed by 2394
Abstract
Antigenicity and immunogenicity define a potent immunogen in vaccinology. Nowadays, there are simplified platforms to produce nanocarriers for small-peptide antigen delivery, derived from various infectious agents for the treatment of a variety of diseases, based on virus-like particles (VLPs). They have good cell-penetrating [...] Read more.
Antigenicity and immunogenicity define a potent immunogen in vaccinology. Nowadays, there are simplified platforms to produce nanocarriers for small-peptide antigen delivery, derived from various infectious agents for the treatment of a variety of diseases, based on virus-like particles (VLPs). They have good cell-penetrating properties and protective action for target molecules from degradation. Human papillomavirus (HPV) causes anogenital warts and six types of cancer in infected women, men, or children, posing a challenge to global public health. The HPV capsid is composed of viral type-specific L1 and evolutionarily conserved L2 proteins. Produced in heterologous systems, the L1 protein can self-assemble into VLPs, nanoparticles sized around 50–60 nm, used as prophylactic vaccines. Devoid of the viral genome, they are safe for users, offering no risk of infection because VLPs do not replicate. The immune response induced by HPV VLPs is promoted by conformational viral epitopes, generating effective T- and B-cell responses. Produced in different cell systems, HPV16 L1 VLPs can be obtained on a large scale for use in mass immunization programs, which are well established nowadays. The expression of heterologous proteins was evaluated at various transfection times by transfecting cells with vectors encoding codon-optimized HPV16L1 and HPV16L2 genes. Immunological response induced by chimeric HPV16 L1/L2 VLP was evaluated through preclinical assays by antibody production, suggesting the potential of broad-spectrum protection against HPV as a prophylactic nanovaccine. These platforms can also offer promising therapeutic strategies, covering the various possibilities for complementary studies to develop potential preventive and therapeutic vaccines with broad-spectrum protection, using in silico new epitope selection and innovative nanotechnologies to obtain more effective immunobiologicals in combating HPV-associated cancers, influenza, hepatitis B and C, tuberculosis, human immunodeficiency virus (HIV), and many other illnesses. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

17 pages, 1571 KB  
Review
Super-Resolution Microscopy in the Structural Analysis and Assembly Dynamics of HIV
by Aiden Jurcenko, Olesia Gololobova and Kenneth W. Witwer
Appl. Nano 2025, 6(3), 13; https://doi.org/10.3390/applnano6030013 - 31 Jul 2025
Viewed by 1939
Abstract
Super-resolution microscopy (SRM) has revolutionized our understanding of subcellular structures, including cell organelles and viruses. For human immunodeficiency virus (HIV), SRM has significantly advanced knowledge of viral structural biology and assembly dynamics. This review analyzes how SRM techniques (particularly PALM, STORM, STED, and [...] Read more.
Super-resolution microscopy (SRM) has revolutionized our understanding of subcellular structures, including cell organelles and viruses. For human immunodeficiency virus (HIV), SRM has significantly advanced knowledge of viral structural biology and assembly dynamics. This review analyzes how SRM techniques (particularly PALM, STORM, STED, and SIM) have been applied over the past decade to study HIV structural components and assembly. By categorizing and comparing studies based on SRM methods, HIV components, and labeling strategies, we assess the strengths and limitations of each approach. Our analysis shows that PALM is most commonly used for live-cell imaging of HIV Gag, while STED is primarily used to study the viral envelope (Env). STORM and SIM have been applied to visualize various components, including Env, capsid, and matrix. Antibody labeling is prevalent in PALM and STORM studies, targeting Env and capsid, whereas fluorescent protein labeling is mainly associated with PALM and focused on Gag. A recent emphasis on Gag and Env points to deeper investigation into HIV assembly and viral membrane dynamics. Insights from SRM studies of HIV not only enhance virological understanding but also inform future research in therapeutic strategies and delivery systems, including extracellular vesicles. Full article
(This article belongs to the Collection Review Papers for Applied Nano Science and Technology)
Show Figures

Figure 1

9 pages, 520 KB  
Review
Trichomonas vaginalis Virus: Current Insights and Emerging Perspectives
by Keonte J. Graves, Jan Novak and Christina A. Muzny
Viruses 2025, 17(7), 898; https://doi.org/10.3390/v17070898 - 26 Jun 2025
Viewed by 3288
Abstract
Trichomonas vaginalis, a prevalent sexually transmitted protozoan parasite, is associated with adverse birth outcomes, increased risk of HIV and other sexually transmitted infections, infertility, and cervical cancer. Despite its widespread impact, trichomoniasis remains underdiagnosed and underreported globally. Trichomonas vaginalis virus (TVV), a [...] Read more.
Trichomonas vaginalis, a prevalent sexually transmitted protozoan parasite, is associated with adverse birth outcomes, increased risk of HIV and other sexually transmitted infections, infertility, and cervical cancer. Despite its widespread impact, trichomoniasis remains underdiagnosed and underreported globally. Trichomonas vaginalis virus (TVV), a double-stranded RNA (dsRNA) virus infecting T. vaginalis, could impact T. vaginalis pathogenicity. We provide an overview of TVV, including its genomic structure, transmission, impact on protein expression, role in 5-nitroimidazole drug susceptibility, and clinical significance. TVV is a ~5 kbp dsRNA virus enclosed within a viral capsid closely associated with the Golgi complex and plasma membrane of infected parasites. Hypothetical mechanisms of TVV transmission have been proposed. TVV affects protein expression in T. vaginalis, including cysteine proteases and surface antigens, thus impacting its virulence and ability to evade the immune system. Additionally, TVV may influence the sensitivity of T. vaginalis to treatment; clinical isolates of T. vaginalis not harboring TVV are more likely to be resistant to metronidazole. Clinically, TVV-positive T. vaginalis infections have been associated with a range in severity of genital signs and symptoms. Further research into interactions between T. vaginalis and TVV is essential in improving diagnosis, treatment, and the development of targeted interventions. Full article
(This article belongs to the Special Issue 15-Year Anniversary of Viruses)
Show Figures

Figure 1

16 pages, 2125 KB  
Review
New Advances in Anti-HIV-1 Strategies Targeting the Assembly and Stability of Capsid Protein
by Chengfeng Zhang, Benteng Li, Jiamei Li, Haihong Zhang and Yuqing Wu
Int. J. Mol. Sci. 2025, 26(12), 5819; https://doi.org/10.3390/ijms26125819 - 17 Jun 2025
Cited by 1 | Viewed by 2896
Abstract
The HIV-1 capsid has emerged as a highly attractive drug target due to its highly conserved sequence and critical role in the viral life cycle. By disrupting interactions between capsid proteins and impairing the proper assembly or disassembly of the capsid, the inhibitors [...] Read more.
The HIV-1 capsid has emerged as a highly attractive drug target due to its highly conserved sequence and critical role in the viral life cycle. By disrupting interactions between capsid proteins and impairing the proper assembly or disassembly of the capsid, the inhibitors can effectively suppress HIV-1 replication and infection. Based on this mechanism, numerous small-molecule agents targeting the HIV-1 capsid protein have been developed to date. In this review, we report the latest advances in such inhibitors and delve into their molecular mechanisms of action. We find a focus on small molecules modulating capsid stability and their assembly/disassembly. Hopefully this study will further enhance the understanding of HIV-1 inhibition mechanisms, facilitating the future exploration of novel capsid inhibitors. Full article
Show Figures

Figure 1

14 pages, 1502 KB  
Article
Genetic Diversity in the Capsid Protein-Coding Region of HIV-1 Circulating in Benguela, Angola: Implications for Primary Resistance to the Novel Capsid Inhibitor Lenacapavir
by Gonçalo Queirós, Lesya Yefimenko, Filomena M. Pereira and João Piedade
Viruses 2025, 17(5), 711; https://doi.org/10.3390/v17050711 - 16 May 2025
Cited by 1 | Viewed by 1261
Abstract
In 2023, the HIV-1 pandemic claimed around 630,000 lives worldwide due to AIDS-related complications. Its burden is significantly heavier in Sub-Saharan Africa, where an increased HIV-1 genetic diversity is common, which increases the risk of resistance to antiretroviral (ARV) drugs. This study aims [...] Read more.
In 2023, the HIV-1 pandemic claimed around 630,000 lives worldwide due to AIDS-related complications. Its burden is significantly heavier in Sub-Saharan Africa, where an increased HIV-1 genetic diversity is common, which increases the risk of resistance to antiretroviral (ARV) drugs. This study aims to update the molecular epidemiology of HIV-1 in Angola, focusing specifically on the gag gene, which is often overlooked, and to assess the potential viability of lenacapavir (LEN)-based ARV therapy in the region. A total of 243 blood samples were collected from ARV-naïve, HIV-infected patients at the General Hospital of Benguela, city of Benguela, Angola. The capsid-encoding region of HIV-1 proviral DNA was amplified by PCR and sequenced. Phylogenetic analysis was performed using the maximum likelihood method, and genome recombinant forms were characterised through bootscanning analysis. Primary resistance mutations to LEN were identified using Stanford University’s HIVdb algorithm. Among the 80 successfully sequenced samples, 13 different genetic forms/subtypes were identified, with unique recombinant forms (URFs) (37.5%, 30/80) and subtype C (31.25%, 25/80) being the most prevalent. Regarding resistance mutations, none were detected, apart from four polymorphic mutations. These findings reinforce Angola’s position as a transitional HIV-1 hotspot between the genetically highly diverse Central Africa and the subtype C-dominated Southern Africa, while also supporting the potential effectiveness of LEN-based regimens for treatment and prevention of HIV-1 infections in the future. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

20 pages, 986 KB  
Review
Past, Present, and Future of Viral Vector Vaccine Platforms: A Comprehensive Review
by Justin Tang, Md Al Amin and Jian L. Campian
Vaccines 2025, 13(5), 524; https://doi.org/10.3390/vaccines13050524 - 15 May 2025
Cited by 10 | Viewed by 8656
Abstract
Over the past several decades, viral vector-based vaccines have emerged as some of the most versatile and potent platforms in modern vaccinology. Their capacity to deliver genetic material encoding target antigens directly into host cells enables strong cellular and humoral immune responses, often [...] Read more.
Over the past several decades, viral vector-based vaccines have emerged as some of the most versatile and potent platforms in modern vaccinology. Their capacity to deliver genetic material encoding target antigens directly into host cells enables strong cellular and humoral immune responses, often superior to what traditional inactivated or subunit vaccines can achieve. This has accelerated their application to a wide array of pathogens and disease targets, from well-established threats like HIV and malaria to emerging infections such as Ebola, Zika, and SARS-CoV-2. The COVID-19 pandemic further highlighted the agility of viral vector platforms, with several adenovirus-based vaccines quickly authorized and deployed on a global scale. Despite these advances, significant challenges remain. One major hurdle is pre-existing immunity against commonly used vector backbones, which can blunt vaccine immunogenicity. Rare but serious adverse events, including vector-associated inflammatory responses and conditions like vaccine-induced immune thrombotic thrombocytopenia (VITT), have raised important safety considerations. Additionally, scaling up manufacturing, ensuring consistency in large-scale production, meeting rigorous regulatory standards, and maintaining equitable global access to these vaccines present profound logistical and ethical dilemmas. In response to these challenges, the field is evolving rapidly. Sophisticated engineering strategies, such as integrase-defective lentiviral vectors, insect-specific flaviviruses, chimeric capsids to evade neutralizing antibodies, and plug-and-play self-amplifying RNA approaches, seek to bolster safety, enhance immunogenicity, circumvent pre-existing immunity, and streamline production. Lessons learned from the COVID-19 pandemic and prior outbreaks are guiding the development of platform-based approaches designed for rapid deployment during future public health emergencies. This review provides an exhaustive, in-depth examination of the historical evolution, immunobiological principles, current platforms, manufacturing complexities, regulatory frameworks, known safety issues, and future directions for viral vector-based vaccines. Full article
(This article belongs to the Special Issue Strategies of Viral Vectors for Vaccine Development)
Show Figures

Figure 1

11 pages, 2084 KB  
Review
How HIV-1 Uses the Metabolite Inositol Hexakisphosphate to Build Its Capsid
by Leo C. James
Viruses 2025, 17(5), 689; https://doi.org/10.3390/v17050689 - 9 May 2025
Cited by 1 | Viewed by 1079
Abstract
The HIV-1 capsid is one of virology’s most iconic structures, yet how it assembles has long remained elusive. Remarkably, the capsid is made from just a single protein, CA, which forms a lattice of ~250 hexamers and exactly 12 pentamers. Conical capsids form [...] Read more.
The HIV-1 capsid is one of virology’s most iconic structures, yet how it assembles has long remained elusive. Remarkably, the capsid is made from just a single protein, CA, which forms a lattice of ~250 hexamers and exactly 12 pentamers. Conical capsids form inside budded virions during maturation, but early efforts to reproduce this in vitro resulted instead in open-ended tubes with a purely hexameric lattice. The missing component in capsid assembly was finally identified as the metabolite inositol hexakisphosphate (IP6). Simply mixing soluble CA protein with IP6 is sufficient to drive the spontaneous assembly of conical capsids with a similar size and shape to those inside of infectious virions. Equally important, IP6 stabilises capsids once formed, increasing their stability from minutes to hours. Indeed, such is the dependence of HIV-1 on IP6 that the virus actively packages it into virions during production. These discoveries have stimulated work from multiple labs into the role and importance of IP6 in HIV-1 replication, and is the subject of this review. Full article
(This article belongs to the Special Issue 15-Year Anniversary of Viruses)
Show Figures

Figure 1

7 pages, 2305 KB  
Brief Report
Investigation of Natural Resistance to Fostemsavir and Lenacapavir in Naïve Primary Infections by Ultra-Deep Sequencing of near Full-Length HIV-1 Genomes
by Elisabetta Lazzari, Gabriella Rozera, Roberta Gagliardini, Valentina Mazzotta, Lavinia Fabeni, Federica Forbici, Giulia Berno, Cristian Cosentino, Enrico Girardi, Andrea Antinori, Fabrizio Maggi and Isabella Abbate
Viruses 2025, 17(5), 636; https://doi.org/10.3390/v17050636 - 28 Apr 2025
Viewed by 914
Abstract
Next-generation sequencing (NGS) of near full-length HIV genomes was performed to investigate natural resistance to Fostemsavir (FTR) and Lenacapavir (LEN) at the quasispecies level in nine naïve primary HIV infections harboring different HIV subtypes and recombinant forms. Reconstructed genomes provided a median (IQR) [...] Read more.
Next-generation sequencing (NGS) of near full-length HIV genomes was performed to investigate natural resistance to Fostemsavir (FTR) and Lenacapavir (LEN) at the quasispecies level in nine naïve primary HIV infections harboring different HIV subtypes and recombinant forms. Reconstructed genomes provided a median (IQR) coverage for gag and env of 1710 (750–6063) and 1768 (871–5270), respectively. In the gp120 encoding region, the M426R variant was found with a frequency of 100% in two HIV subtypes B: one of these also showed the A204T variant at 100%. In the more conserved capsid coding region no mutations possibly related to LEN natural resistance were observed. Full article
Show Figures

Figure 1

30 pages, 930 KB  
Review
The Complex Interactions Between HIV-1 and Human Host Cell Genome: From Molecular Mechanisms to Clinical Practice
by Manlio Tolomeo, Francesco Tolomeo and Antonio Cascio
Int. J. Mol. Sci. 2025, 26(7), 3184; https://doi.org/10.3390/ijms26073184 - 29 Mar 2025
Cited by 3 | Viewed by 6711
Abstract
Antiretroviral therapy (ART) has significantly improved the prognosis of human immunodeficiency virus type 1 (HIV-1) infection. Although ART can suppress plasma viremia below detectable levels, it cannot eradicate the HIV-1 DNA (provirus) integrated into the host cell genome. This integration often results in [...] Read more.
Antiretroviral therapy (ART) has significantly improved the prognosis of human immunodeficiency virus type 1 (HIV-1) infection. Although ART can suppress plasma viremia below detectable levels, it cannot eradicate the HIV-1 DNA (provirus) integrated into the host cell genome. This integration often results in unrepaired DNA damage due to the HIV-1-induced inhibition of DNA repair pathways. Furthermore, HIV-1 infection causes telomere attrition in host chromosomes, a critical factor contributing to CD4+ T cell senescence and apoptosis. HIV-1 proteins can induce DNA damage, block DNA replication, and activate DNA damage responses across various organs. In this review, we explore multiple aspects of the intricate interactions between HIV-1 and the host genome involved in CD4+ T cell depletion, inflammaging, the clonal expansion of infected cells in long-term-treated patients, and viral latency. We discuss the molecular mechanisms of DNA damage that contribute to comorbidities in HIV-1-infected individuals and highlight emerging therapeutic strategies targeting the integrated HIV-1 provirus. Full article
(This article belongs to the Special Issue Molecular Insights into Zoonotic Diseases)
Show Figures

Figure 1

45 pages, 4640 KB  
Review
Structural Virology: The Key Determinants in Development of Antiviral Therapeutics
by Tanuj Handa, Ankita Saha, Aarthi Narayanan, Elsa Ronzier, Pravindra Kumar, Jitin Singla and Shailly Tomar
Viruses 2025, 17(3), 417; https://doi.org/10.3390/v17030417 - 14 Mar 2025
Cited by 3 | Viewed by 6038
Abstract
Structural virology has emerged as the foundation for the development of effective antiviral therapeutics. It is pivotal in providing crucial insights into the three-dimensional frame of viruses and viral proteins at atomic-level or near-atomic-level resolution. Structure-based assessment of viral components, including capsids, envelope [...] Read more.
Structural virology has emerged as the foundation for the development of effective antiviral therapeutics. It is pivotal in providing crucial insights into the three-dimensional frame of viruses and viral proteins at atomic-level or near-atomic-level resolution. Structure-based assessment of viral components, including capsids, envelope proteins, replication machinery, and host interaction interfaces, is instrumental in unraveling the multiplex mechanisms of viral infection, replication, and pathogenesis. The structural elucidation of viral enzymes, including proteases, polymerases, and integrases, has been essential in combating viruses like HIV-1 and HIV-2, SARS-CoV-2, and influenza. Techniques including X-ray crystallography, Nuclear Magnetic Resonance spectroscopy, Cryo-electron Microscopy, and Cryo-electron Tomography have revolutionized the field of virology and significantly aided in the discovery of antiviral therapeutics. The ubiquity of chronic viral infections, along with the emergence and reemergence of new viral threats necessitate the development of novel antiviral strategies and agents, while the extensive structural diversity of viruses and their high mutation rates further underscore the critical need for structural analysis of viral proteins to aid antiviral development. This review highlights the significance of structure-based investigations for bridging the gap between structure and function, thus facilitating the development of effective antiviral therapeutics, vaccines, and antibodies for tackling emerging viral threats. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

16 pages, 6966 KB  
Article
An Immunocytochemistry Method to Investigate the Translationally Active HIV Reservoir
by Guoxin Wu, Samuel H. Keller, Ryan T. Walters, Yuan Li, Jan Kristoff, Brian C. Magliaro, Paul Zuck, Tracy L. Diamond, Jill W. Maxwell, Carol Cheney, Qian Huang, Carl J. Balibar, Thomas Rush, Bonnie J. Howell and Luca Sardo
Int. J. Mol. Sci. 2025, 26(2), 682; https://doi.org/10.3390/ijms26020682 - 15 Jan 2025
Cited by 2 | Viewed by 2519
Abstract
Despite the success of combination antiretroviral therapy (cART) to suppress HIV replication, HIV persists in a long-lived reservoir that can give rise to rebounding viremia upon cART cessation. The translationally active reservoir consists of HIV-infected cells that continue to produce viral proteins even [...] Read more.
Despite the success of combination antiretroviral therapy (cART) to suppress HIV replication, HIV persists in a long-lived reservoir that can give rise to rebounding viremia upon cART cessation. The translationally active reservoir consists of HIV-infected cells that continue to produce viral proteins even in the presence of cART. These active reservoir cells are implicated in the resultant viremia upon cART cessation and likely contribute to chronic immune activation in people living with HIV (PLWH) on cART. Methodologies to quantify the active reservoir are needed. Here, an automated immunocytochemistry (ICC) assay coupled with computational image analysis to detect and quantify intracellular Gag capsid protein (CA) is described (CA-ICC). For this purpose, fixed cells were deposited on microscopy slides by the cytospin technique and stained with antibodies against CA by an automated stainer, followed by slide digitization. Nuclear staining was used to count the number of cells in the specimen, and the chromogenic signal was quantified to determine the percentage of CA-positive cells. In comparative analyses, digital ELISA, qPCR, and flow cytometry were used to validate CA-ICC. The specificity and sensitivity of CA-ICC were assessed by staining a cell line that expresses CA (MOLT IIIB) alongside a control cell line (Jurkat) devoid of this marker, as well as peripheral blood mononuclear cells (PBMCs) from HIV seronegative donors before or after ex vivo infection with an HIV laboratory strain. The sensitivity of CA-ICC was further assayed by spiking MOLT IIIB cells into uninfected Jurkat cells in limiting dilutions. In those analyses, CA-ICC could detect down to 10 CA-positive cells per million with a sensitivity superior to flow cytometry. To demonstrate the application of CA-ICC in pre-clinical research, bulk PBMCs obtained from mouse and non-human primate animal models were stained to detect HIV CA and SIV p27, respectively. The level of intracellular CA quantified by CA-ICC in PBMCs obtained from animal models was associated with plasma viral loads and cell-associated CA measured by qPCR and ELISA, respectively. The application of CA-ICC to evaluate the activity of small-molecule targeted activator of cell-kill (TACK) in clinical specimens is presented. Overall, CA-ICC offers a simple imaging method for specific and sensitive detection of CA-positive cells in bulk cell preparations. Full article
Show Figures

Figure 1

28 pages, 5112 KB  
Review
Cyclophilin A Regulates Tripartite Motif 5 Alpha Restriction of HIV-1
by Tingting Wang, Daniel Becker, Augustin Penda Twizerimana, Tom Luedde, Holger Gohlke and Carsten Münk
Int. J. Mol. Sci. 2025, 26(2), 495; https://doi.org/10.3390/ijms26020495 - 9 Jan 2025
Cited by 3 | Viewed by 3533
Abstract
The peptidyl-prolyl isomerase A (PPIA), also known as cyclophilin A (CYPA), is involved in multiple steps of the HIV-1 replication cycle. CYPA regulates the restriction of many host factors by interacting with the CYPA-binding loop on the HIV-1 capsid (CA) surface. TRIM5 (tripartite [...] Read more.
The peptidyl-prolyl isomerase A (PPIA), also known as cyclophilin A (CYPA), is involved in multiple steps of the HIV-1 replication cycle. CYPA regulates the restriction of many host factors by interacting with the CYPA-binding loop on the HIV-1 capsid (CA) surface. TRIM5 (tripartite motif protein 5) in primates is a key species-specific restriction factor defining the HIV-1 pandemic. The incomplete adaptation of HIV-1 to humans is due to the different utilization of CYPA by pandemic and non-pandemic HIV-1. The enzymatic activity of CYPA on the viral core is likely an important reason for regulating the TRIM5 restriction activity. Thus, the HIV-1 capsid and its CYPA interaction may serve as new targets for future anti-AIDS therapeutic agents. This article will describe the species-specificity of the restriction factor TRIM5, understand the role of CYPA in regulating restriction factors in retroviral infection, and discuss important future research issues. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Treatment of Infectious Diseases)
Show Figures

Figure 1

Back to TopTop