Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (785)

Search Parameters:
Keywords = HIV resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1585 KiB  
Systematic Review
The Magnitude and Patterns of Acquired Drug Resistance Mutations and Circulating HIV-1 Subtypes in HIV Patients in Tanzania, a Systematic Review and Meta-Analysis
by Shimba Henerico, Christa Kasang, Benson R. Kidenya, Deodatus Sabas, Violet D. Kajogoo, Gert Van Zyl, Wolfgang Preiser, Stephen E. Mshana and Samuel E. Kalluvya
Viruses 2025, 17(8), 1087; https://doi.org/10.3390/v17081087 - 6 Aug 2025
Abstract
The emergence and spread of HIV drug resistance mutations (DRMs) pose a threat to current and future treatment options. To inform policy, this review aimed to determine the magnitude and patterns of DRMs in patients on ART in Tanzania. A systematic literature search [...] Read more.
The emergence and spread of HIV drug resistance mutations (DRMs) pose a threat to current and future treatment options. To inform policy, this review aimed to determine the magnitude and patterns of DRMs in patients on ART in Tanzania. A systematic literature search was conducted in MEDLINE through PubMed, Embase, and CINAHL up to December 2024. A total of 9685 HIV patients from 23 eligible studies were analyzed. The prevalence of virological failure in studies that used a threshold of >1000 and >400 copies/mL was 24.83% (95% CI: 17.85–32.53%) and 36.94% (95% CI: 24.79–50.00%), respectively. Major DRMs were observed at 87.61% (95% CI: 76.25–95.91%). A decrease in prevalence was observed in studies conducted from 2019, with a pooled prevalence of 62.15% (95% CI: 31.57–88.33%). The most frequently observed HIV-1 subtypes were subtype C at 36.20% (95% CI: 30.71–41.85%), A1 at 33.13% (95% CI: 28.23–38.20%), and subtype D at 16.00% (95% CI: 11.41–21.12%), while recombinant forms of the virus were observed at 13.29% (95% CI: 9.79–17.17%). The prevalence of DRMs against NRTIs and NNRTIs was significantly high, while that against INSTIs and PIs was low, supporting the continued use of PI- and INSTI-based regimens in Tanzania and the need for continued surveillance of DRMs. Full article
(This article belongs to the Special Issue Antiviral Resistance Mutations)
Show Figures

Figure 1

68 pages, 2838 KiB  
Review
Unravelling the Viral Hypothesis of Schizophrenia: A Comprehensive Review of Mechanisms and Evidence
by Mădălina Georgeta Sighencea and Simona Corina Trifu
Int. J. Mol. Sci. 2025, 26(15), 7429; https://doi.org/10.3390/ijms26157429 - 1 Aug 2025
Viewed by 374
Abstract
Schizophrenia is a challenging multifactorial neuropsychiatric disease that involves interactions between genetic susceptibility and environmental insults. Increasing evidence implicates viral infections as significant environmental contributors, particularly during sensitive neurodevelopmental periods. This review synthesises current findings on the viral hypothesis of schizophrenia, encompassing a [...] Read more.
Schizophrenia is a challenging multifactorial neuropsychiatric disease that involves interactions between genetic susceptibility and environmental insults. Increasing evidence implicates viral infections as significant environmental contributors, particularly during sensitive neurodevelopmental periods. This review synthesises current findings on the viral hypothesis of schizophrenia, encompassing a wide array of neurotropic viruses, including influenza viruses, herpesviruses (HSV-1 and 2, CMV, VZV, EBV, HHV-6 and 8), hepatitis B and C viruses, HIV, HERVs, HTLV, Zika virus, BoDV, coronaviruses (including SARS-CoV-2), and others. These pathogens can contribute to schizophrenia through mechanisms such as direct microinvasion, persistent central nervous system infection, immune-mediated neuroinflammation, molecular mimicry, and the disturbance of the blood–brain barrier. Prenatal exposure to viral infections can trigger maternal immune activation, resulting in cytokine-mediated alterations in the neurological development of the foetus that persist into adulthood. Genetic studies highlight the role of immune-related loci, including major histocompatibility complex polymorphisms, in modulating susceptibility to infection and neurodevelopmental outcomes. Clinical data also support the “mild encephalitis” hypothesis, suggesting that a subset of schizophrenia cases involve low-grade chronic neuroinflammation. Although antipsychotics have some immunomodulatory effects, adjunctive anti-inflammatory therapies show promise, particularly in treatment-resistant cases. Despite compelling associations, pathogen-specific links remain inconsistent, emphasising the need for longitudinal studies and integrative approaches such as viromics to unravel causal relationships. This review supports a “multi-hit” model in which viral infections interfere with hereditary and immunological susceptibilities, enhancing schizophrenia risk. Elucidating these virus–immune–brain interactions may facilitate the discovery of biomarkers, targeted prevention, and novel therapeutic strategies for schizophrenia. Full article
(This article belongs to the Special Issue Schizophrenia: From Molecular Mechanism to Therapy)
Show Figures

Figure 1

14 pages, 290 KiB  
Article
Patterns of Reverse Transcriptase Inhibitor Resistance Mutations in People Living with Human Immunodeficiency Virus in Libreville, Gabon
by Guy Francis Nzengui-Nzengui, Gaël Mourembou, Euloge Ibinga, Ayawa Claudine Kombila-Koumavor, Hervé M’boyis-Kamdem, Edmery Muriel Mpouho-Ntsougha, Alain Mombo-Mombo and Angélique Ndjoyi-Mbiguino
Trop. Med. Infect. Dis. 2025, 10(8), 216; https://doi.org/10.3390/tropicalmed10080216 - 30 Jul 2025
Viewed by 269
Abstract
Objective: To characterize the profiles of resistance mutations to HIV reverse transcriptase inhibitors in Gabon. Design: Cross-sectional study conducted over 37 months, from October 2019 to October 2022, at the IST/HIV/AIDS Reference Laboratory, a reference center for the biological monitoring of people living [...] Read more.
Objective: To characterize the profiles of resistance mutations to HIV reverse transcriptase inhibitors in Gabon. Design: Cross-sectional study conducted over 37 months, from October 2019 to October 2022, at the IST/HIV/AIDS Reference Laboratory, a reference center for the biological monitoring of people living with the human immunodeficiency virus (PWHIV) in Gabon. Methods: Plasma from 666 PWHIV receiving antiretroviral treatment was collected, followed by RNA extraction, amplification, and reverse transcriptase gene sequencing. Statistical analyses were performed using Stata® 14.0 software (USA). Results: Six hundred and sixty-six (666) PWHIV plasma collected from 252 male and 414 female patients were analyzed and 1654 mutations were detected in 388 patients, including 849 (51.3%) associated with nucleoside reverse transcriptase inhibitors (NRTIs) and 805 (48.7%) with non-nucleoside reverse transcriptase inhibitors (NNRTIs). Three of the most prescribed treatment regimens were associated to the appearance of both NRTIs and NNRTIs resistance mutations: TDF + 3TC + EFV (24.02%; 160/666); TDF + FTC + EFV) (17.2%; 114/666) and AZT + 3TC + EFV (14.6%; 97/666). Additionally, stage 3 of CD4 T-lymphocyte deficiency, the higher viral load, and treatment duration are risk factors influencing the appearance of virus mutations. Also, treatment containing TDF-3TC + DTG is more protective against mutations. Conclusions: Drug resistance mutations are common in Gabon and compromise the efficacy of ART. Further study must search for other causes of therapeutic failure in Gabon in PWHIV. Full article
(This article belongs to the Special Issue HIV Testing, Prevention and Care Interventions, 2nd Edition)
21 pages, 3935 KiB  
Article
The HIV Protease Inhibitor Ritonavir Reverts the Mesenchymal Phenotype Induced by Inflammatory Cytokines in Normal and Tumor Oral Keratinocytes to an Epithelial One, Increasing the Radiosensitivity of Tumor Oral Keratinocytes
by Silvia Pomella, Lucrezia D’Archivio, Matteo Cassandri, Francesca Antonella Aiello, Ombretta Melaiu, Francesco Marampon, Rossella Rota and Giovanni Barillari
Cancers 2025, 17(15), 2519; https://doi.org/10.3390/cancers17152519 - 30 Jul 2025
Viewed by 169
Abstract
Background/Objectives: During the repair of a wounded epithelium, keratinocytes become invasive via the epithelial-to-mesenchymal transition (EMT) process. Usually temporary and controlled, EMT persists in a chronically inflamed epithelium and is exacerbated in epithelial dysplasia and dysregulated in invasive carcinomas. Here we investigated the [...] Read more.
Background/Objectives: During the repair of a wounded epithelium, keratinocytes become invasive via the epithelial-to-mesenchymal transition (EMT) process. Usually temporary and controlled, EMT persists in a chronically inflamed epithelium and is exacerbated in epithelial dysplasia and dysregulated in invasive carcinomas. Here we investigated the effects that IL-1 beta, IL-6, and IL-8, inflammatory cytokines expressed in specimens from OPMDs and OSCCs, have on NOKs and OSCC cells. Methods: AKT activation and EMT induction were assessed along with cellular invasiveness. Results: IL-1 beta, IL-6, and IL-8 induced EMT in NOKs, ex novo conferring them invasive capacity. The same cytokines exacerbated the constitutive EMT and invasiveness of OSCC cells. Since these phenomena were accompanied by AKT activation, we tested whether they could be influenced by RTV, a long-used anti-HIV drug that was previously found to block the activation of human AKT and exert antitumor effects. We observed that therapeutic amounts of RTV counteract all the above-mentioned tumorigenic activities of ILs. Finally, consistent with the key role that AKT and EMT play in OSCC radio-resistance, RTV increased OSCC cells’ sensitivity to therapeutic doses of ionizing radiation. Conclusions: These preliminary in vitro findings encourage the use of RTV to prevent the malignant evolution of OPMDs, reduce the risk of OSCC metastasis, and improve the outcomes of anti-OSCC radiotherapy. Full article
Show Figures

Figure 1

20 pages, 732 KiB  
Review
AI Methods Tailored to Influenza, RSV, HIV, and SARS-CoV-2: A Focused Review
by Achilleas Livieratos, George C. Kagadis, Charalambos Gogos and Karolina Akinosoglou
Pathogens 2025, 14(8), 748; https://doi.org/10.3390/pathogens14080748 - 30 Jul 2025
Viewed by 430
Abstract
Artificial intelligence (AI) techniques—ranging from hybrid mechanistic–machine learning (ML) ensembles to gradient-boosted decision trees, support-vector machines, and deep neural networks—are transforming the management of seasonal influenza, respiratory syncytial virus (RSV), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Symptom-based [...] Read more.
Artificial intelligence (AI) techniques—ranging from hybrid mechanistic–machine learning (ML) ensembles to gradient-boosted decision trees, support-vector machines, and deep neural networks—are transforming the management of seasonal influenza, respiratory syncytial virus (RSV), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Symptom-based triage models using eXtreme Gradient Boosting (XGBoost) and Random Forests, as well as imaging classifiers built on convolutional neural networks (CNNs), have improved diagnostic accuracy across respiratory infections. Transformer-based architectures and social media surveillance pipelines have enabled real-time monitoring of COVID-19. In HIV research, support-vector machines (SVMs), logistic regression, and deep neural network (DNN) frameworks advance viral-protein classification and drug-resistance mapping, accelerating antiviral and vaccine discovery. Despite these successes, persistent challenges remain—data heterogeneity, limited model interpretability, hallucinations in large language models (LLMs), and infrastructure gaps in low-resource settings. We recommend standardized open-access data pipelines and integration of explainable-AI methodologies to ensure safe, equitable deployment of AI-driven interventions in future viral-outbreak responses. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

12 pages, 199 KiB  
Correction
Correction: Biba et al. A Comparison of Sanger Sequencing and Amplicon-Based Next Generation Sequencing Approaches for the Detection of HIV-1 Drug Resistance Mutations. Viruses 2024, 16, 1465
by Camilla Biba, Lia Fiaschi, Ilenia Varasi, Chiara Paletti, Niccolò Bartolini, Maurizio Zazzi, Ilaria Vicenti and Francesco Saladini
Viruses 2025, 17(8), 1059; https://doi.org/10.3390/v17081059 - 29 Jul 2025
Viewed by 219
Abstract
The authors wish to make the following corrections to this original publication [...] Full article
(This article belongs to the Special Issue Antiviral Resistance Mutations)
27 pages, 4307 KiB  
Review
Subtype-Specific HIV-1 Protease and the Role of Hinge and Flap Dynamics in Drug Resistance: A Subtype C Narrative
by Dean Sherry, Zaahida Sheik Ismail, Tshele Mokhantso and Yasien Sayed
Viruses 2025, 17(8), 1044; https://doi.org/10.3390/v17081044 - 26 Jul 2025
Viewed by 607
Abstract
The HIV-1 aspartic protease is an effective target for the treatment of HIV/AIDS. Current therapy utilizes a selection of nine protease inhibitors (PIs) in combination with other classes of antiretroviral drugs. Although PIs were originally developed based on the knowledge of the HIV-1 [...] Read more.
The HIV-1 aspartic protease is an effective target for the treatment of HIV/AIDS. Current therapy utilizes a selection of nine protease inhibitors (PIs) in combination with other classes of antiretroviral drugs. Although PIs were originally developed based on the knowledge of the HIV-1 subtype B protease, the existence of other HIV-1 subtypes and the effects of drug resistance on currently available PIs have become a major challenge in the treatment of HIV/AIDS. Specifically, the HIV-1 subtype C accounts for more than half of the global HIV infections. Considering the importance and relevance of the subtype C virus, in this timely review we discuss the effect of polymorphisms in the HIV-1 subtype C protease on drug resistance, flap flexibility, and hinge region dynamics. We discuss novel paradigms of protease inhibition that attempt to overcome the limitations of currently available inhibitors which fall short considering genetic diversity and resistance mutations. Full article
(This article belongs to the Special Issue HIV Protease)
Show Figures

Figure 1

30 pages, 874 KiB  
Review
Liposome-Encapsulated Antibiotics for the Therapy of Mycobacterial Infections
by Metin Yıldırım and Nejat Düzgüneş
Antibiotics 2025, 14(7), 728; https://doi.org/10.3390/antibiotics14070728 - 20 Jul 2025
Viewed by 528
Abstract
About a quarter of the world’s population is infected with Mycobacterium tuberculosis. Growing antibiotic resistance by this microorganism is a major problem in the therapy of the disease. M. avium-M. intracellulare that emerged as a major opportunistic infection of HIV/AIDS continues to [...] Read more.
About a quarter of the world’s population is infected with Mycobacterium tuberculosis. Growing antibiotic resistance by this microorganism is a major problem in the therapy of the disease. M. avium-M. intracellulare that emerged as a major opportunistic infection of HIV/AIDS continues to afflict immunocompromised individuals. We describe the use of liposome-encapsulated antibiotics in the experimental and clinical therapy of mycobacterial infections, as well as recent experimental liposomal vaccines against tuberculosis. Liposome-mediated intravenous or inhalational delivery of antibiotics enhances the antibacterial effects of the drugs, particularly for infections of resident macrophages, where the liposomes are passively targeted. Despite experimental successes of liposomal antibiotics in the treatment of mycobacterial and other bacterial infections, applications of this method to the clinic have been lagging. This review underscores the significance of liposomes in the treatment of mycobacterial infections, encompassing their synthesis methods, limitations, and both preclinical and clinical studies, providing guidance for the development of future therapeutic approaches and innovative antimicrobial strategies. Full article
Show Figures

Figure 1

14 pages, 3187 KiB  
Commentary
The Meandrous Route of Rilpivirine in the Search for the Miraculous Drug to Treat HIV Infections
by Erik De Clercq
Viruses 2025, 17(7), 959; https://doi.org/10.3390/v17070959 - 8 Jul 2025
Viewed by 526
Abstract
Rilpivirine (RPV, R278474) was highlighted in 2005, two years after the death of Dr. Paul Janssen, as the ideal non-nucleoside reverse transcriptase inhibitor (NNRTI) to treat HIV infections. For this purpose, it was subsequently combined with tenofovir disoproxil fumarate (TDF), tenofovir alafenamide (TAF), [...] Read more.
Rilpivirine (RPV, R278474) was highlighted in 2005, two years after the death of Dr. Paul Janssen, as the ideal non-nucleoside reverse transcriptase inhibitor (NNRTI) to treat HIV infections. For this purpose, it was subsequently combined with tenofovir disoproxil fumarate (TDF), tenofovir alafenamide (TAF), darunavir (boosted with ritonavir or cobicistat) or dolutegravir. Its wide-spread use is thanks to its combination with cabotegravir (CAB) in the form of a long-acting intramuscular injection once per month (QM), later twice per month (Q2M), for the treatment of adults, later extended to adolescents and pregnant women, with HIV infections. The long-acting CAB plus RPV should not be administered in patients treated with rifampicin or rifabutin, patients with virological failure or patients with resistance to CAB or RPV, or patients with hepatitis B virus (HBV) infection. Long-acting CAB+RPV may lead to pain at the site of injection which would diminish over time. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

15 pages, 936 KiB  
Review
Lipodystrophy in HIV: Evolving Challenges and Unresolved Questions
by Marta Giralt, Pere Domingo, Tania Quesada-López, Rubén Cereijo and Francesc Villarroya
Int. J. Mol. Sci. 2025, 26(14), 6546; https://doi.org/10.3390/ijms26146546 - 8 Jul 2025
Viewed by 523
Abstract
The advent of effective antiretroviral therapy in the mid-1990s, which successfully prevented the progression to AIDS in people living with HIV (PLWH), was associated with the appearance of the so-called HIV-associated lipodystrophy. This condition involved subcutaneous fat atrophy; abdominal fat hypertrophy; and, in [...] Read more.
The advent of effective antiretroviral therapy in the mid-1990s, which successfully prevented the progression to AIDS in people living with HIV (PLWH), was associated with the appearance of the so-called HIV-associated lipodystrophy. This condition involved subcutaneous fat atrophy; abdominal fat hypertrophy; and, in some cases, lipomatosis. It was also associated with systemic metabolic disturbances, primarily insulin resistance and dyslipidemia. Following the replacement of certain antiretroviral drugs, particularly the thymidine-analog reverse transcriptase inhibitors stavudine and zidovudine, with less toxic alternatives, the incidences of lipoatrophy and lipomatosis significantly declined. However, lipodystrophy resulting from first-generation antiretroviral therapy does not always resolve after switching to newer agents. Although the widespread use of modern antiretroviral drugs—especially integrase strand transfer inhibitors and non-lipoatrophic reverse transcriptase inhibitors such as tenofovir alafenamide—has reduced the incidences of severe forms of lipodystrophy, these regimens are not entirely free of adipose tissue-related effects. Notably, they are associated with weight gain that resembles common obesity and can have adverse cardiometabolic consequences. Recent evidence also suggests the hypertrophy of specific fat depots, such as epicardial and perivascular adipose tissue, in PLWH on last-generation treatments, potentially contributing to increased cardiovascular risk. This evolving landscape underscores the persistent vulnerability of PLWH to adipose tissue alterations. While these morphological changes may not be as pronounced as those seen in classic HIV-associated lipodystrophy, they can still pose significant health risks. The continued optimization of treatment regimens and the vigilant monitoring of adipose tissue alterations and metabolic status remain essential strategies to improve the health of PLWH. Full article
(This article belongs to the Special Issue Molecular Insights into Lipodystrophy)
Show Figures

Figure 1

15 pages, 762 KiB  
Article
Evaluating the Linkage Between Resistin and Viral Seropositivity in Psoriasis: Evidence from a Tertiary Centre
by Habeeb Ali Baig, Waseema Sultana, Mohamed Soliman, Dhaifallah Alenizi, Awwad Alenezy, Srinath Mote, Ahmed M. S. Hegazy, Bader Khalid Alanazi, Mansour Srhan Alanazi, Yousef Albedaiwi and Nawal Salama Gouda
Life 2025, 15(7), 1054; https://doi.org/10.3390/life15071054 - 30 Jun 2025
Viewed by 491
Abstract
Psoriasis, a chronic immune-mediated inflammatory skin disorder, presents complex pathogenetic mechanisms potentially influenced by viral infections. This comprehensive study explored the possible interplay of resistance and viral infections among psoriasis patients using serological screening techniques. The investigation involved 90 patients aged 23–45 years, [...] Read more.
Psoriasis, a chronic immune-mediated inflammatory skin disorder, presents complex pathogenetic mechanisms potentially influenced by viral infections. This comprehensive study explored the possible interplay of resistance and viral infections among psoriasis patients using serological screening techniques. The investigation involved 90 patients aged 23–45 years, systematically examining viral seropositivity for HSV (herpes simplex virus), HZ (herpes zoster), HBV (hepatitis B virus), HIV (human immunodeficiency virus), and HCV (hepatitis C virus) through ELISA testing. The findings revealed notable active or recent viral infection rates: 8.9% HSV positivity, 2.2% HZ antibody detection, 4.4% HCV positivity, and 4.4% HIV positivity. The research can contribute to current knowledge gaps, broaden the knowledge regarding the relationship between psoriasis and viral infection, and assess resistance, as it can mediate the interaction. The results can lead to improved diagnosis, treatment, and patient care options. This study emphasizes the importance of thorough viral testing for psoriasis patients, as well as focused therapeutic regimens that take into account viral co-infections. It elucidates the complex networks of biological relationships between immune factors, contributes information that is critical to our understanding of the multifactorial etiology of psoriasis, and concludes with a strong argument for investigating the mechanisms of viral involvement in this chronic-relapsing inflammatory disease. Full article
(This article belongs to the Special Issue Innovative Approaches in Dermatological Therapies and Diagnostics)
Show Figures

Figure 1

17 pages, 483 KiB  
Article
Determinants of Tuberculosis Treatment Outcomes in Patients with TB/HIV Co-Infection During Tuberculosis Treatment at Selected Level One Hospitals in Lusaka, Zambia
by Theresa Musa Hassab, Audrey Hamachila, Aubrey Chichonyi Kalungia, Norman Nyazema, Moses Mukosha, Chikafuna Banda and Derick Munkombwe
Antibiotics 2025, 14(7), 664; https://doi.org/10.3390/antibiotics14070664 - 30 Jun 2025
Viewed by 498
Abstract
Background/Objectives: Tuberculosis (TB) and HIV co-infection pose significant challenges in resource-limited settings, contributing to multi-drug-resistant TB when treatment fails. This study aimed to identify determinants of TB treatment outcomes among HIV/TB co-infected patients in Lusaka, Zambia. Methods: A retrospective cohort study was conducted [...] Read more.
Background/Objectives: Tuberculosis (TB) and HIV co-infection pose significant challenges in resource-limited settings, contributing to multi-drug-resistant TB when treatment fails. This study aimed to identify determinants of TB treatment outcomes among HIV/TB co-infected patients in Lusaka, Zambia. Methods: A retrospective cohort study was conducted at Chilenje, Chipata, and Chawama level one hospitals, using systematic sampling to select 586 patient files. Data were analyzed with SPSS version 23, employing descriptive statistics, chi-square tests, and hierarchical logistic regression. Results: Among the study population (n = 586), consisting predominantly of working-age adults (25–44 years: 61.6%) and males (56.5%), treatment success was 81.3%, with a 12.5% mortality rate across treatment phases. Baseline smear-negative TB, viral load (100,000–199,999 copies/mL), diabetes without hypertension, and negative smear at follow-up independently predicted treatment outcomes. Higher treatment failure odds were linked to smear-negative TB, high viral load, and hypertension–diabetes comorbidity, while CD4 count and HIV treatment status showed no independent effects. Conclusions: These findings underscore the influence of viral load, TB type, comorbidities, and sputum conversion on treatment success, emphasizing the need for targeted monitoring and integrated care, particularly in the continuation phase, to enhance outcomes in this vulnerable population. Full article
Show Figures

Figure 1

9 pages, 520 KiB  
Review
Trichomonas vaginalis Virus: Current Insights and Emerging Perspectives
by Keonte J. Graves, Jan Novak and Christina A. Muzny
Viruses 2025, 17(7), 898; https://doi.org/10.3390/v17070898 - 26 Jun 2025
Viewed by 552
Abstract
Trichomonas vaginalis, a prevalent sexually transmitted protozoan parasite, is associated with adverse birth outcomes, increased risk of HIV and other sexually transmitted infections, infertility, and cervical cancer. Despite its widespread impact, trichomoniasis remains underdiagnosed and underreported globally. Trichomonas vaginalis virus (TVV), a [...] Read more.
Trichomonas vaginalis, a prevalent sexually transmitted protozoan parasite, is associated with adverse birth outcomes, increased risk of HIV and other sexually transmitted infections, infertility, and cervical cancer. Despite its widespread impact, trichomoniasis remains underdiagnosed and underreported globally. Trichomonas vaginalis virus (TVV), a double-stranded RNA (dsRNA) virus infecting T. vaginalis, could impact T. vaginalis pathogenicity. We provide an overview of TVV, including its genomic structure, transmission, impact on protein expression, role in 5-nitroimidazole drug susceptibility, and clinical significance. TVV is a ~5 kbp dsRNA virus enclosed within a viral capsid closely associated with the Golgi complex and plasma membrane of infected parasites. Hypothetical mechanisms of TVV transmission have been proposed. TVV affects protein expression in T. vaginalis, including cysteine proteases and surface antigens, thus impacting its virulence and ability to evade the immune system. Additionally, TVV may influence the sensitivity of T. vaginalis to treatment; clinical isolates of T. vaginalis not harboring TVV are more likely to be resistant to metronidazole. Clinically, TVV-positive T. vaginalis infections have been associated with a range in severity of genital signs and symptoms. Further research into interactions between T. vaginalis and TVV is essential in improving diagnosis, treatment, and the development of targeted interventions. Full article
(This article belongs to the Special Issue 15-Year Anniversary of Viruses)
Show Figures

Figure 1

15 pages, 758 KiB  
Article
Novel Micro-LC-MS/MS Method for the Quantification of Tenofovir and Its Active Metabolite Tenofovir-Diphosphate in Biological Matrices for Therapeutic Drug Monitoring
by Isabela Tarcomnicu, Simona Iacob, Valentina Anuta, Emil Neaga and Dan Otelea
Pharmaceuticals 2025, 18(6), 899; https://doi.org/10.3390/ph18060899 - 16 Jun 2025
Viewed by 638
Abstract
Background/Objectives: Sustained drug exposure is a key factor in the treatment of patients infected with human immunodeficiency virus (HIV) or hepatitis B virus (HBV) in order to achieve the intended virological response. Although influenced also by other parameters, adherence to the treatment [...] Read more.
Background/Objectives: Sustained drug exposure is a key factor in the treatment of patients infected with human immunodeficiency virus (HIV) or hepatitis B virus (HBV) in order to achieve the intended virological response. Although influenced also by other parameters, adherence to the treatment scheme is the most important for adequate drug exposure. This can be assessed by therapeutic drug monitoring (TDM). Tenofovir (TFV) is a nucleotide analogue used in the treatment of both HIV and HBV. Although various analytical methods for the quantification of tenofovir prodrugs have been published, there is limited literature on methods for simultaneous TFV and its active metabolite, tenofovir diphosphate (TFVDP) direct determination. Methods: In this study, we describe a novel micro-liquid-chromatography-mass spectrometry (micro-LC-MS/MS) method for TDM of TFV and TFVDP in biological matrices (whole blood, plasma). The challenging separation of the high-polarity analytes was resolved on an amino stationary phase, eluted in HILIC (hydrophilic interaction liquid chromatography) mode. The sample preparation included a clean-up step with hexane for the removal of lipophilic compounds and then protein precipitation with organic solvent. Results: The achieved low limits of quantification in blood were 0.25 ng/mL for TFV, and 0.5 ng/mL for TFVDP. Linearity, accuracy (91.63–109.18%), precision (2.48–14.08), and stability were validated for whole blood matrix, meeting the guidelines performance criteria. Samples collected from treated patients were analyzed, with results being in accordance with the reported pharmacokinetics. Conclusions: The new method is adequate for analyzing samples in a clinical set-up. The measurement of both TFV and TFVDP improves clinical decision by an in-depth evaluation of long-term adherence, and together with viral load and resistance data helps guiding the treatment towards the intended virological suppression. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

18 pages, 2588 KiB  
Review
Integrative Computational Approaches for Understanding Drug Resistance in HIV-1 Protease Subtype C
by Sankaran Venkatachalam, Nisha Muralidharan, Ramesh Pandian, Yasien Sayed and M. Michael Gromiha
Viruses 2025, 17(6), 850; https://doi.org/10.3390/v17060850 - 16 Jun 2025
Viewed by 656
Abstract
Acquired immunodeficiency syndrome (AIDS) is a chronic disease condition caused by the human immunodeficiency virus (HIV). The widespread availability of highly active antiretroviral therapies has helped to control HIV. There are ten FDA-approved protease inhibitors (PIs) that are used as part of antiretroviral [...] Read more.
Acquired immunodeficiency syndrome (AIDS) is a chronic disease condition caused by the human immunodeficiency virus (HIV). The widespread availability of highly active antiretroviral therapies has helped to control HIV. There are ten FDA-approved protease inhibitors (PIs) that are used as part of antiretroviral therapies in HIV treatment. Importantly, all these drugs are designed and developed against the protease (PR) from HIV subtype B. On the other hand, HIV-1 PR subtype C, which is the most dominant strain in countries including South Africa and India, has shown resistance to PIs due to its genetic diversity and varied mutations. The emergence of resistance is concerning because the virus continues to replicate despite treatment; hence, it is necessary to develop drugs specifically against subtype C. This review focuses on the origin, genetic diversity, and mutations associated with HIV-1 PR subtype C. Furthermore, computational studies performed on HIV-1 PR subtype C and mutations associated with its resistance to PIs are highlighted. Moreover, potential research gaps and future directions in the study of HIV-1 PR subtype C are discussed. Full article
(This article belongs to the Special Issue HIV Protease)
Show Figures

Figure 1

Back to TopTop