Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = HIST1H3G

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 4906 KiB  
Article
Transcriptomic and miRNA Signatures of ChAdOx1 nCoV-19 Vaccine Response Using Machine Learning
by Jinting Lin, Qinglan Ma, Lei Chen, Wei Guo, Kaiyan Feng, Tao Huang and Yu-Dong Cai
Life 2025, 15(6), 981; https://doi.org/10.3390/life15060981 - 18 Jun 2025
Viewed by 561
Abstract
Vaccination with ChAdOx1 nCoV-19 is an important countermeasure to fight the COVID-19 pandemic. This vaccine enhances human immunoprotection against SARS-CoV-2 by inducing an immune response against the SARS-CoV-2 S protein. However, the immune-related genes induced by vaccination remain to be identified. This study [...] Read more.
Vaccination with ChAdOx1 nCoV-19 is an important countermeasure to fight the COVID-19 pandemic. This vaccine enhances human immunoprotection against SARS-CoV-2 by inducing an immune response against the SARS-CoV-2 S protein. However, the immune-related genes induced by vaccination remain to be identified. This study employs feature ranking algorithms, an incremental feature selection method, and classification algorithms to analyze transcriptomic data from an experimental group vaccinated with the ChAdOx1 nCoV-19 vaccine and a control group vaccinated with the MenACWY meningococcal vaccine. According to different time points, vaccination status, and SARS-CoV-2 infection status, the transcriptomic data was divided into five groups, including a pre-vaccination group, ChAdOx1-onset group, MenACWY-onset group, ChAdOx1-7D group, and MenACWY-7D group. Each group contained samples with 13,383 RNA features and 1662 small RNA features. The results identified key genes that could indicate the efficacy of the ChAdOx1 nCoV-19 vaccine, and a classifier was developed to classify samples into the above groups. Additionally, effective classification rules were established to distinguish between different vaccination statuses. It was found that subjects vaccinated with ChAdOx1 nCoV-19 vaccine and infected with SARS-CoV-2 were characterized by up-regulation of HIST1H3G expression and down-regulation of CASP10 expression. In addition, IGHG1, FOXM1, and CASP10 genes were strongly associated with ChAdOx1 nCoV-19 vaccine efficacy. Compared with previous omics-driven studies, the machine learning algorithms used in this study were able to analyze transcriptome data faster and more comprehensively to identify potential markers associated with vaccine effect and investigate ChAdOx1 nCoV-19 vaccine-induced gene expression changes. These observations contribute to an understanding of the immune protection and inflammatory responses induced by the ChAdOx1 nCoV-19 vaccine during symptomatic episodes and provide a rationale for improving vaccine efficacy. Full article
(This article belongs to the Section Biochemistry, Biophysics and Computational Biology)
Show Figures

Figure 1

16 pages, 1653 KiB  
Review
H3K27me3 Loss in Central Nervous System Tumors: Diagnostic, Prognostic, and Therapeutic Implications
by Giuseppe Angelico, Manuel Mazzucchelli, Giulio Attanasio, Giordana Tinnirello, Jessica Farina, Magda Zanelli, Andrea Palicelli, Alessandra Bisagni, Giuseppe Maria Vincenzo Barbagallo, Francesco Certo, Maurizio Zizzo, Nektarios Koufopoulos, Gaetano Magro, Rosario Caltabiano and Giuseppe Broggi
Cancers 2024, 16(20), 3451; https://doi.org/10.3390/cancers16203451 - 11 Oct 2024
Cited by 3 | Viewed by 3316
Abstract
Central nervous system (CNS) tumors represent a formidable clinical challenge due to their molecular complexity and varied prognostic outcomes. This review delves into the pivotal role of the epigenetic marker H3K27me3 in the development and treatment of CNS tumors. H3K27me3, specifically the trimethylation [...] Read more.
Central nervous system (CNS) tumors represent a formidable clinical challenge due to their molecular complexity and varied prognostic outcomes. This review delves into the pivotal role of the epigenetic marker H3K27me3 in the development and treatment of CNS tumors. H3K27me3, specifically the trimethylation of lysine 27 on the histone H3 protein, plays a crucial role in regulating gene expression and maintaining chromatin architecture (e.g., in X-chromosome inactivation). Notably, a reduction in H3K27me3 levels, frequently tied to mutations in the H3 gene family such as H3F3A and HIST1H3B, is evident in diverse brain tumor variants, including the diffuse midline glioma characterized by the H3K27M mutation and certain pediatric high-grade gliomas. The loss of H3K27me3 has been linked to more aggressive behavior in meningiomas, with the trimethylation loss associated with significantly shorter recurrence-free survival (RFS) among grade 2 meningiomas, albeit not within grade 1 tumors. Pediatric posterior fossa ependymomas characterized by a lowered H3K27me3 and DNA hypomethylation exhibit poor prognosis, underscoring the prognostic significance of these epigenetic alterations in CNS tumors. Comprehending the role of H3K27me3 in CNS tumors is vital for advancing diagnostic tools and therapeutic interventions, with the goal of enhancing patient outcomes and quality of life. This review underscores the importance of ongoing investigations into H3K27me to refine and optimize management strategies for CNS tumors, paving the way for improved personalized medicine practices in oncology. Full article
Show Figures

Figure 1

12 pages, 1464 KiB  
Article
From Pediatric to Adult Brain Cancer: Exploring Histone H3 Mutations in Australian Brain Cancer Patients
by Benedicte Grebstad Tune, Heena Sareen, Branka Powter, Smadar Kahana-Edwin, Adam Cooper, Eng-Siew Koh, Cheok S. Lee, Joseph W. Po, Geoff McCowage, Mark Dexter, Lucy Cain, Geraldine O’Neill, Victoria Prior, Jonathan Karpelowsky, Maria Tsoli, Lars O. Baumbusch, David Ziegler, Tara L. Roberts, Paul DeSouza, Therese M. Becker and Yafeng Maadd Show full author list remove Hide full author list
Biomedicines 2023, 11(11), 2907; https://doi.org/10.3390/biomedicines11112907 - 27 Oct 2023
Cited by 2 | Viewed by 2712
Abstract
Genetic histone variants have been implicated in cancer development and progression. Mutations affecting the histone 3 (H3) family, H3.1 (encoded by HIST1H3B and HIST1H3C) and H3.3 (encoded by H3F3A), are mainly associated with pediatric brain cancers. While considered poor prognostic brain [...] Read more.
Genetic histone variants have been implicated in cancer development and progression. Mutations affecting the histone 3 (H3) family, H3.1 (encoded by HIST1H3B and HIST1H3C) and H3.3 (encoded by H3F3A), are mainly associated with pediatric brain cancers. While considered poor prognostic brain cancer biomarkers in children, more recent studies have reported H3 alterations in adult brain cancer as well. Here, we established reliable droplet digital PCR based assays to detect three histone mutations (H3.3-K27M, H3.3-G34R, and H3.1-K27M) primarily linked to childhood brain cancer. We demonstrate the utility of our assays for sensitively detecting these mutations in cell-free DNA released from cultured diffuse intrinsic pontine glioma (DIPG) cells and in the cerebral spinal fluid of a pediatric patient with DIPG. We further screened tumor tissue DNA from 89 adult patients with glioma and 1 with diffuse hemispheric glioma from Southwestern Sydney, Australia, an ethnically diverse region, for these three mutations. No histone mutations were detected in adult glioma tissue, while H3.3-G34R presence was confirmed in the diffuse hemispheric glioma patient. Full article
Show Figures

Figure 1

17 pages, 2472 KiB  
Article
The KDET Motif in the Intracellular Domain of the Cell Adhesion Molecule L1 Interacts with Several Nuclear, Cytoplasmic, and Mitochondrial Proteins Essential for Neuronal Functions
by Ralf Kleene, Gabriele Loers and Melitta Schachner
Int. J. Mol. Sci. 2023, 24(2), 932; https://doi.org/10.3390/ijms24020932 - 4 Jan 2023
Cited by 6 | Viewed by 2451
Abstract
Abnormal functions of the cell adhesion molecule L1 are linked to several neural diseases. Proteolytic L1 fragments were reported to interact with nuclear and mitochondrial proteins to regulate events in the developing and the adult nervous system. Recently, we identified a 55 kDa [...] Read more.
Abnormal functions of the cell adhesion molecule L1 are linked to several neural diseases. Proteolytic L1 fragments were reported to interact with nuclear and mitochondrial proteins to regulate events in the developing and the adult nervous system. Recently, we identified a 55 kDa L1 fragment (L1-55) that interacts with methyl CpG binding protein 2 (MeCP2) and heterochromatin protein 1 (HP1) via the KDET motif. We now show that L1-55 also interacts with histone H1.4 (HistH1e) via this motif. Moreover, we show that this motif binds to NADH dehydrogenase ubiquinone flavoprotein 2 (NDUFV2), splicing factor proline/glutamine-rich (SFPQ), the non-POU domain containing octamer-binding protein (NonO), paraspeckle component 1 (PSPC1), WD-repeat protein 5 (WDR5), heat shock cognate protein 71 kDa (Hsc70), and synaptotagmin 1 (SYT1). Furthermore, applications of HistH1e, NDUFV2, SFPQ, NonO, PSPC1, WDR5, Hsc70, or SYT1 siRNAs or a cell-penetrating KDET-carrying peptide decrease L1-dependent neurite outgrowth and the survival of cultured neurons. These findings indicate that L1’s KDET motif binds to an unexpectedly large number of molecules that are essential for nervous system-related functions, such as neurite outgrowth and neuronal survival. In summary, L1 interacts with cytoplasmic, nuclear and mitochondrial proteins to regulate development and, in adults, the formation, maintenance, and flexibility of neural functions. Full article
Show Figures

Figure 1

19 pages, 3917 KiB  
Article
HMGA1 Regulates the Expression of Replication-Dependent Histone Genes and Cell-Cycle in Breast Cancer Cells
by Sara Petrosino, Sabrina Pacor, Silvia Pegoraro, Virginia Anna Gazziero, Giulia Canarutto, Silvano Piazza, Guidalberto Manfioletti and Riccardo Sgarra
Int. J. Mol. Sci. 2023, 24(1), 594; https://doi.org/10.3390/ijms24010594 - 29 Dec 2022
Cited by 5 | Viewed by 2767
Abstract
Breast cancer (BC) is the primary cause of cancer mortality in women and the triple-negative breast cancer (TNBC) is the most aggressive subtype characterized by poor differentiation and high proliferative properties. High mobility group A1 (HMGA1) is an oncogenic factor involved in the [...] Read more.
Breast cancer (BC) is the primary cause of cancer mortality in women and the triple-negative breast cancer (TNBC) is the most aggressive subtype characterized by poor differentiation and high proliferative properties. High mobility group A1 (HMGA1) is an oncogenic factor involved in the onset and progression of the neoplastic transformation in BC. Here, we unraveled that the replication-dependent-histone (RD-HIST) gene expression is enriched in BC tissues and correlates with HMGA1 expression. We explored the role of HMGA1 in modulating the RD-HIST genes expression in TNBC cells and show that MDA-MB-231 cells, depleted of HMGA1, express low levels of core histones. We show that HMGA1 participates in the activation of the HIST1H4H promoter and that it interacts with the nuclear protein of the ataxia-telangiectasia mutated locus (NPAT), the coordinator of the transcription of the RD-HIST genes. Moreover, we demonstrate that HMGA1 silencing increases the percentage of cells in G0/G1 phase both in TNBC and epirubicin resistant TNBC cells. Moreover, HMGA1 silencing causes an increase in epirubicin IC50 both in parental and epirubicin resistant cells thus suggesting that targeting HMGA1 could affect the efficacy of epirubicin treatment. Full article
(This article belongs to the Special Issue Epigenetics and Molecular Genetics of Cancer)
Show Figures

Figure 1

17 pages, 4312 KiB  
Article
Potential Diagnostic Value of the Differential Expression of Histone H3 Variants between Low- and High-Grade Gliomas
by Irati Hervás-Corpión, Andrea Gallardo-Orihuela, Inmaculada Catalina-Fernández, Irene Iglesias-Lozano, Olga Soto-Torres, Noelia Geribaldi-Doldán, Samuel Domínguez-García, Nuria Luna-García, Raquel Romero-García, Francisco Mora-López, Marianela Iriarte-Gahete, Jorge C. Morales, Antonio Campos-Caro, Carmen Castro, José L. Gil-Salú and Luis M. Valor
Cancers 2021, 13(21), 5261; https://doi.org/10.3390/cancers13215261 - 20 Oct 2021
Cited by 8 | Viewed by 3088
Abstract
Glioblastoma (GB) is the most aggressive form of glioma and is characterized by poor prognosis and high recurrence despite intensive clinical interventions. To retrieve the key factors underlying the high malignancy of GB with potential diagnosis utility, we combined the analysis of The [...] Read more.
Glioblastoma (GB) is the most aggressive form of glioma and is characterized by poor prognosis and high recurrence despite intensive clinical interventions. To retrieve the key factors underlying the high malignancy of GB with potential diagnosis utility, we combined the analysis of The Cancer Gene Atlas and the REMBRANDT datasets plus a molecular examination of our own collection of surgical tumor resections. We determined a net reduction in the levels of the non-canonical histone H3 variant H3.3 in GB compared to lower-grade astrocytomas and oligodendrogliomas with a concomitant increase in the levels of the canonical histone H3 variants H3.1/H3.2. This increase can be potentially useful in the clinical diagnosis of high-grade gliomas, as evidenced by an immunohistochemistry screening of our cohort and can be at least partially explained by the induction of multiple histone genes encoding these canonical forms. Moreover, GBs showing low bulk levels of the H3.1/H3.2 proteins were more transcriptionally similar to low-grade gliomas than GBs showing high levels of H3.1/H3.2. In conclusion, this study identifies an imbalanced ratio between the H3 variants associated with glioma malignancy and molecular patterns relevant to the biology of gliomas, and proposes the examination of the H3.3 and H3.1/H3.2 levels to further refine diagnosis of low- and high-grade gliomas in future studies. Full article
Show Figures

Figure 1

18 pages, 1889 KiB  
Article
Bioinformatic Analysis of Gene Variants from Gastroschisis Recurrence Identifies Multiple Novel Pathogenetic Pathways: Implication for the Closure of the Ventral Body Wall
by Víctor M. Salinas-Torres, Hugo L. Gallardo-Blanco, Rafael A. Salinas-Torres, Ricardo M. Cerda-Flores, José J. Lugo-Trampe, Daniel Z. Villarreal-Martínez and Laura E. Martínez de Villarreal
Int. J. Mol. Sci. 2019, 20(9), 2295; https://doi.org/10.3390/ijms20092295 - 9 May 2019
Cited by 13 | Viewed by 4876
Abstract
We investigated whether likely pathogenic variants co-segregating with gastroschisis through a family-based approach using bioinformatic analyses were implicated in body wall closure. Gene Ontology (GO)/Panther functional enrichment and protein-protein interaction analysis by String identified several biological networks of highly connected genes in UGT1A3, [...] Read more.
We investigated whether likely pathogenic variants co-segregating with gastroschisis through a family-based approach using bioinformatic analyses were implicated in body wall closure. Gene Ontology (GO)/Panther functional enrichment and protein-protein interaction analysis by String identified several biological networks of highly connected genes in UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, AOX1, NOTCH1, HIST1H2BB, RPS3, THBS1, ADCY9, and FGFR4. SVS–PhoRank identified a dominant model in OR10G4 (also as heterozygous de novo), ITIH3, PLEKHG4B, SLC9A3, ITGA2, AOX1, and ALPP, including a recessive model in UGT1A7, UGT1A6, PER2, PTPRD, and UGT1A3. A heterozygous compound model was observed in CDYL, KDM5A, RASGRP1, MYBPC2, PDE4DIP, F5, OBSCN, and UGT1A. These genes were implicated in pathogenetic pathways involving the following GO related categories: xenobiotic, regulation of metabolic process, regulation of cell adhesion, regulation of gene expression, inflammatory response, regulation of vascular development, keratinization, left-right symmetry, epigenetic, ubiquitination, and regulation of protein synthesis. Multiple background modifiers interacting with disease-relevant pathways may regulate gastroschisis susceptibility. Based in our findings and considering the plausibility of the biological pattern of mechanisms and gene network modeling, we suggest that the gastroschisis developmental process may be the consequence of several well-orchestrated biological and molecular mechanisms which could be interacting with gastroschisis predispositions within the first ten weeks of development. Full article
(This article belongs to the Special Issue Cell and Molecular Interactions in Blood Vessels)
Show Figures

Figure 1

12 pages, 1174 KiB  
Article
Preferential Localization of MUC1 Glycoprotein in Exosomes Secreted by Non-Small Cell Lung Carcinoma Cells
by Deng Pan, Jiaxi Chen, Chunchao Feng, Weibo Wu, Yanjin Wang, Jiao Tong and Dapeng Zhou
Int. J. Mol. Sci. 2019, 20(2), 323; https://doi.org/10.3390/ijms20020323 - 14 Jan 2019
Cited by 78 | Viewed by 7258
Abstract
Lung cancer remains to be the leading cause of cancer-related mortality worldwide. Finding new noninvasive biomarkers for lung cancer is still a significant clinical challenge. Exosomes are membrane-bound, nano-sized vesicles that are released by various living cells. Studies on exosomal proteomics may provide [...] Read more.
Lung cancer remains to be the leading cause of cancer-related mortality worldwide. Finding new noninvasive biomarkers for lung cancer is still a significant clinical challenge. Exosomes are membrane-bound, nano-sized vesicles that are released by various living cells. Studies on exosomal proteomics may provide clues for developing clinical assays. In this study, we performed semi-quantitative proteomic analysis of proteins that were purified from exosomes of NCI-H838 non-small cell lung cancer cell line, with total cellular membrane proteins as control. In the exosomes, LC-MS/MS by data-independent analysis mode identified 3235 proteins. THBS1, ANXA6, HIST1H4A, COL18A1, MDK, SRGN, ENO1, TUBA4A, SLC3A2, GPI, MIF, MUC1, TALDO1, SLC7A5, ICAM1, HSP90AA1, G6PD, and LRP1 were found to be expressed in exosomes at more than 5-fold higher level as compared to total cellular membrane proteins. A well-known cancer biomarker, MUC1, is expressed at 8.98-fold higher in exosomes than total cellular membrane proteins. Subsequent analysis of plasma exosomes from non-small cell lung cancer (NSCLC) patients by a commercial electrochemiluminescence immunoassay showed that exosomal MUC1 level is 1.5-fold higher than healthy individuals (mean value 1.55 ± 0.16 versus mean value 1.05 ± 0.06, p = 0.0213). In contrast, no significant difference of MUC1 level was found between NSCLC patients and healthy individuals′ plasma (mean value 5.48 ± 0.65 versus mean value 4.16 ± 0.49). These results suggest that certain proteins, such as MUC1, are selectively enriched in the exosome compartment. The mechanisms for their preferential localization and their biological roles remain to be studied. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

Back to TopTop