Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = HEV zoonosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1763 KiB  
Review
Rocahepevirus ratti as an Emerging Cause of Acute Hepatitis Worldwide
by Sara Benavent, Silvia Carlos and Gabriel Reina
Microorganisms 2023, 11(12), 2996; https://doi.org/10.3390/microorganisms11122996 - 16 Dec 2023
Cited by 15 | Viewed by 3131
Abstract
The hepatitis E virus (HEV) is a widespread human infection that causes mainly acute infection and can evolve to a chronic manifestation in immunocompromised individuals. In addition to the common strains of hepatitis E virus (HEV-A), known as Paslahepevirus balayani, pathogenic to [...] Read more.
The hepatitis E virus (HEV) is a widespread human infection that causes mainly acute infection and can evolve to a chronic manifestation in immunocompromised individuals. In addition to the common strains of hepatitis E virus (HEV-A), known as Paslahepevirus balayani, pathogenic to humans, a genetically highly divergent rat origin hepevirus (RHEV) can cause hepatitis possessing a potential risk of cross-species infection and zoonotic transmission. Rocahepevirus ratti, formerly known as Orthohepevirus C, is a single-stranded RNA virus, recently reassigned to Rocahepevirus genus in the Hepeviridae family, including genotypes C1 and C2. RHEV primarily infects rats but has been identified as a rodent zoonotic virus capable of infecting humans through the consumption of contaminated food or water, causing both acute and chronic hepatitis cases in both animals and humans. This review compiles data concluding that 60% (295/489) of RHEV infections are found in Asia, being the continent with the highest zoonotic and transmission potential. Asia not only has the most animal cases but also 16 out of 21 human infections worldwide. Europe follows with 26% (128/489) of RHEV infections in animals, resulting in four human cases out of twenty-one globally. Phylogenetic analysis and genomic sequencing will be employed to gather global data, determine epidemiology, and assess geographical distribution. This information will enhance diagnostic accuracy, pathogenesis understanding, and help prevent cross-species transmission, particularly to humans. Full article
(This article belongs to the Special Issue Emerging Pathogens Causing Acute Hepatitis)
Show Figures

Figure 1

13 pages, 753 KiB  
Article
Serological Evidence of Hepatitis E Virus Infection in Brazilian Equines
by Caroline Roberta Soares Salgado, Aldaleia do Nascimento e Silva, Igor Falco Arruda, Patrícia Riddell Millar, Maria Regina Reis Amendoeira, Luciane Almeida Amado Leon, Raffaella Bertoni Cavalcanti Teixeira, Jorge Tiburcio Barbosa de Lima, Flávia Löwen Levy Chalhoub, Ana Maria Bispo de Filippis, Ana Beatriz Monteiro Fonseca, Jaqueline Mendes de Oliveira, Marcelo Alves Pinto and Andreza Soriano Figueiredo
Microorganisms 2023, 11(11), 2743; https://doi.org/10.3390/microorganisms11112743 - 10 Nov 2023
Viewed by 2097
Abstract
Hepatitis E virus (HEV) infection has been demonstrated in various animal species; those recognized as potential zoonotic reservoirs pose a considerable risk to public health. In Brazil, HEV-3 is the only genotype identified in humans and swine nationwide, in a colony-breeding cynomolgus monkey [...] Read more.
Hepatitis E virus (HEV) infection has been demonstrated in various animal species; those recognized as potential zoonotic reservoirs pose a considerable risk to public health. In Brazil, HEV-3 is the only genotype identified in humans and swine nationwide, in a colony-breeding cynomolgus monkey and, recently, in bovines and capybara. There is no information regarding HEV exposure in the equine population in Brazil. This study aimed to investigate anti-HEV antibodies and viral RNA in serum samples from horses slaughtered for meat export and those bred for sport/reproduction purposes. We used a commercially available ELISA kit modified to detect species-specific anti-HEV, using an anti-horse IgG-peroxidase conjugate and evaluating different cutoff formulas and assay precision. Serum samples (n = 257) were tested for anti-HEV IgG and HEV RNA by nested RT-PCR and RT-qPCR. The overall anti-HEV seroprevalence was 26.5% (68/257) without the detection of HEV RNA. Most municipalities (53.3%) and farms (58.8%) had positive horses. Animals slaughtered for human consumption had higher risk of HEV exposure (45.5%) than those bred for sports or reproduction (6.4%) (p < 0.0001). The statistical analysis revealed sex and breeding system as possible risk-associated factors. The first serological evidence of HEV circulation in Brazilian equines reinforces the need for the surveillance of HEV host expansion in a one-health approach. Full article
(This article belongs to the Special Issue Hepatitis E Virus (HEV) and Other Hepeviridae)
Show Figures

Figure 1

16 pages, 4050 KiB  
Review
Tracing the History of Hepatitis E Virus Infection in Mexico: From the Enigmatic Genotype 2 to the Current Disease Situation
by Oliver Viera-Segura, Arturo Calderón-Flores, Julio A. Batún-Alfaro and Nora A. Fierro
Viruses 2023, 15(9), 1911; https://doi.org/10.3390/v15091911 - 12 Sep 2023
Cited by 5 | Viewed by 2801
Abstract
Hepatitis E virus (HEV) is the major cause of acute viral hepatitis worldwide. This virus is responsible for waterborne outbreaks in low-income countries and zoonosis transmission in industrialized regions. Initially, considered self-limiting, HEV may also lead to chronic disease, and evidence supports that [...] Read more.
Hepatitis E virus (HEV) is the major cause of acute viral hepatitis worldwide. This virus is responsible for waterborne outbreaks in low-income countries and zoonosis transmission in industrialized regions. Initially, considered self-limiting, HEV may also lead to chronic disease, and evidence supports that infection can be considered a systemic disease. In the late 1980s, Mexico became a hot spot in the study of HEV due to one of the first virus outbreaks in Latin America related to enterically transmitted viral non-A, non-B hepatitis. Viral stool particles recovered from Mexican viral hepatitis outbreaks represented the first identification of HEV genotype (Gt) 2 (Gt2) in the world. No new findings of HEV-Gt2 have been reported in the country, whereas this genotype has been found in countries on the African continent. Recent investigations in Mexico have identified other strains (HEV-Gt1 and -Gt3) and a high frequency of anti-HEV antibodies in animal and human populations. Herein, the potential reasons for the disappearance of HEV-Gt2 in Mexico and the advances in the study of HEV in the country are discussed along with challenges in studying this neglected pathogen. These pieces of information are expected to contribute to disease control in the entire Latin American region. Full article
(This article belongs to the Special Issue Viral Hepatitis in Latin America and the Caribbean)
Show Figures

Figure 1

11 pages, 1192 KiB  
Article
Hepatitis E Virus in the Wild Boar Population: What Is the Real Zoonotic Risk in Portugal?
by Ana Carolina Abrantes, Sérgio Santos-Silva, João Mesquita and Madalena Vieira-Pinto
Trop. Med. Infect. Dis. 2023, 8(9), 433; https://doi.org/10.3390/tropicalmed8090433 - 31 Aug 2023
Cited by 1 | Viewed by 2609
Abstract
Hepatitis E virus (HEV) is an important zoonosis in wild boar. Reported zoonotic cases are mainly associated with the consumption of raw/undercooked meat and/or liver. This study aims to determine the occurrence of HEV in the Portuguese wild boar population. During the hunting [...] Read more.
Hepatitis E virus (HEV) is an important zoonosis in wild boar. Reported zoonotic cases are mainly associated with the consumption of raw/undercooked meat and/or liver. This study aims to determine the occurrence of HEV in the Portuguese wild boar population. During the hunting season 2021/2022, 123-matched samples (liver, faeces, and blood) were collected from hunted wild boars throughout Portugal. An RT-PCR assay tested liver and faeces samples to detect HEV-RNA. From blood samples, an ELISA test was performed. Only one liver sample was positive for HEV (0,8%) and one other from faeces. A total of 34 sera were seropositive (26.7%). At the same time, in a survey of 106 hunters, 21 consumed/ate the liver of wild boars (19.8%). Only three recognised the possibility of consuming it undercooked. Contrary to previous studies in Portugal, the prevalence of HEV in liver and faeces is low, but the seropositivity is higher. But, when analyzing in detail, it could be observed that an HEV hotspot exists in the southeast of central Portugal and that it is a zoonotic risk for hunters of this region. The data of this study reinforce the importance of including HEV in surveillance programs for wildlife diseases to expand the potential zoonotic information. Full article
(This article belongs to the Special Issue Viral Hepatitis: Current Status and Future Perspective)
Show Figures

Figure 1

31 pages, 1665 KiB  
Review
The Re-Emergence of Hepatitis E Virus in Europe and Vaccine Development
by Gergana Zahmanova, Katerina Takova, Valeria Tonova, Tsvetoslav Koynarski, Laura L. Lukov, Ivan Minkov, Maria Pishmisheva, Stanislav Kotsev, Ilia Tsachev, Magdalena Baymakova and Anton P. Andonov
Viruses 2023, 15(7), 1558; https://doi.org/10.3390/v15071558 - 16 Jul 2023
Cited by 26 | Viewed by 9655
Abstract
Hepatitis E virus (HEV) is one of the leading causes of acute viral hepatitis. Transmission of HEV mainly occurs via the fecal-oral route (ingesting contaminated water or food) or by contact with infected animals and their raw meat products. Some animals, such as [...] Read more.
Hepatitis E virus (HEV) is one of the leading causes of acute viral hepatitis. Transmission of HEV mainly occurs via the fecal-oral route (ingesting contaminated water or food) or by contact with infected animals and their raw meat products. Some animals, such as pigs, wild boars, sheep, goats, rabbits, camels, rats, etc., are natural reservoirs of HEV, which places people in close contact with them at increased risk of HEV disease. Although hepatitis E is a self-limiting infection, it could also lead to severe illness, particularly among pregnant women, or chronic infection in immunocompromised people. A growing number of studies point out that HEV can be classified as a re-emerging virus in developed countries. Preventative efforts are needed to reduce the incidence of acute and chronic hepatitis E in non-endemic and endemic countries. There is a recombinant HEV vaccine, but it is approved for use and commercially available only in China and Pakistan. However, further studies are needed to demonstrate the necessity of applying a preventive vaccine and to create conditions for reducing the spread of HEV. This review emphasizes the hepatitis E virus and its importance for public health in Europe, the methods of virus transmission and treatment, and summarizes the latest studies on HEV vaccine development. Full article
(This article belongs to the Special Issue Hepatitis E Virus (HEV) 2.0)
Show Figures

Graphical abstract

22 pages, 2328 KiB  
Review
Hepatitis E Virus Infections: Epidemiology, Genetic Diversity, and Clinical Considerations
by Busara Songtanin, Adebayo J. Molehin, Kevin Brittan, Wuttiporn Manatsathit and Kenneth Nugent
Viruses 2023, 15(6), 1389; https://doi.org/10.3390/v15061389 - 17 Jun 2023
Cited by 35 | Viewed by 6619
Abstract
According to the World Health Organization, approximately 20 million people worldwide are infected annually with the hepatitis E virus (HEV). There are four main genotypes of HEV. Genotype 1 and genotype 2 are common in developing countries and are transmitted by contaminated water [...] Read more.
According to the World Health Organization, approximately 20 million people worldwide are infected annually with the hepatitis E virus (HEV). There are four main genotypes of HEV. Genotype 1 and genotype 2 are common in developing countries and are transmitted by contaminated water from a fecal–oral route. Genotype 3 and genotype 4 are common in developed countries and can lead to occasional transmission to humans via undercooked meat. Hepatitis E virus 1 and HEV3 can lead to fulminant hepatitis, and HEV3 can lead to chronic hepatitis and cirrhosis in immunocompromised patients. The majority of patients with HEV infection are asymptomatic and usually have spontaneous viral clearance without treatment. However, infection in immunocompromised individuals can lead to chronic HEV infection. Both acute and chronic HEV infections can have extrahepatic manifestations. No specific treatment is required for acute HEV infection, no treatment has been approved in chronic infection, and no HEV vaccine has been approved by the (United States) Food and Drug Administration. This review focuses on the molecular virology (HEV life cycle, genotypes, model systems, zoonosis), pathogenesis, clinical manifestation, and treatment of chronic HEV infection, especially in immunocompromised patients, to provide clinicians a better understanding of the global distribution of these infections and the significant effect they can have on immunocompromised patients. Full article
(This article belongs to the Special Issue Hepatitis E: Molecular Virology, Pathogenesis, and Treatment)
Show Figures

Graphical abstract

14 pages, 1299 KiB  
Review
The Diagnosis, Pathophysiology, and Treatment of Chronic Hepatitis E Virus Infection—A Condition Affecting Immunocompromised Patients
by Satoshi Takakusagi, Satoru Kakizaki and Hitoshi Takagi
Microorganisms 2023, 11(5), 1303; https://doi.org/10.3390/microorganisms11051303 - 16 May 2023
Cited by 9 | Viewed by 6445
Abstract
Hepatitis E is a zoonosis caused by hepatitis E virus (HEV), which was first discovered 40 years ago. Twenty million HEV infections worldwide are estimated each year. Most hepatitis E cases are self-limiting acute hepatitis, but the virus has been recognized to cause [...] Read more.
Hepatitis E is a zoonosis caused by hepatitis E virus (HEV), which was first discovered 40 years ago. Twenty million HEV infections worldwide are estimated each year. Most hepatitis E cases are self-limiting acute hepatitis, but the virus has been recognized to cause chronic hepatitis. Following the first case report of chronic hepatitis E (CHE) in a transplant recipient, CHE has recently been identified as associated with chronic liver damage induced by HEV genotypes 3, 4, and 7—usually in immunocompromised patients such as transplant recipients. In addition, patients infected with HIV and those receiving chemotherapy for malignancy, along with patients with rheumatic disease and COVID-19, have recently been reported as having CHE. CHE can be easily misdiagnosed by usual diagnostic methods of antibody response, such as anti-HEV IgM or IgA, because of the low antibody response in the immunosuppressive condition. HEV RNA should be evaluated in these patients, and appropriate treatments—such as ribavirin—should be given to prevent progression to liver cirrhosis or liver failure. While still rare, cases of CHE in immunocompetent patients have been reported, and care must be taken not to overlook these instances. Herein, we conduct an overview of hepatitis E, including recent research developments and management of CHE, in order to improve our understanding of such cases. The early diagnosis and treatment of CHE should be performed to decrease instances of hepatitis-virus-related deaths around the world. Full article
(This article belongs to the Special Issue Hepatitis E Virus (HEV) and Other Hepeviridae)
Show Figures

Figure 1

10 pages, 909 KiB  
Systematic Review
Communication Interventions and Assessment of Drivers for Hendra Virus Vaccination Uptake
by Jessica N. Kropich-Grant, Kerrie E. Wiley, Jennifer Manyweathers, Kirrilly R. Thompson and Victoria J. Brookes
Vaccines 2023, 11(5), 936; https://doi.org/10.3390/vaccines11050936 - 4 May 2023
Cited by 2 | Viewed by 5870
Abstract
Hendra virus disease (HeVD) is an emerging zoonosis in Australia, resulting from the transmission of Hendra virus (HeV) to horses from Pteropus bats. Vaccine uptake for horses is low despite the high case fatality rate of HeVD in both horses and people. We [...] Read more.
Hendra virus disease (HeVD) is an emerging zoonosis in Australia, resulting from the transmission of Hendra virus (HeV) to horses from Pteropus bats. Vaccine uptake for horses is low despite the high case fatality rate of HeVD in both horses and people. We reviewed evidence-based communication interventions to promote and improve HeV vaccine uptake for horses by horse owners and conducted a preliminary evaluation of potential drivers for HeV vaccine uptake using the Behavioural and Social Drivers of Vaccination (BeSD) framework developed by the World Health Organization. Six records were eligible for review following a comprehensive search and review strategy of peer-reviewed literature, but evidence-based communication interventions to promote and improve HeV vaccine uptake for horses were lacking. An evaluation of potential drivers for HeV vaccine uptake using the BeSD framework indicated that horse owners’ perceptions, beliefs, social processes, and practical issues are similar to those experienced by parents making decisions about childhood vaccines, although the overall motivation to vaccinate is lower amongst horse owners. Some aspects of HeV vaccine uptake are not accounted for in the BeSD framework (for example, alternative mitigation strategies such as covered feeding stations or the zoonotic risk of HeV). Overall, problems associated with HeV vaccine uptake appear well-documented. We, therefore, propose to move from a problems-focused to a solutions-focused approach to reduce the risk of HeV for humans and horses. Following our findings, we suggest that the BeSD framework could be modified and used to develop and evaluate communication interventions to promote and improve HeV vaccine uptake by horse owners, which could have a global application to promote vaccine uptake for other zoonotic diseases in animals, such as rabies. Full article
Show Figures

Figure 1

9 pages, 583 KiB  
Article
Absence of Hepatitis E Virus (HEV) in Italian Lagomorph Species Sampled between 2019 and 2021
by Luca De Sabato, Giovanni Ianiro, Virginia Filipello, Sara Arnaboldi, Francesco Righi, Fabio Ostanello, Monica Giammarioli, Antonio Lavazza and Ilaria Di Bartolo
Animals 2023, 13(3), 545; https://doi.org/10.3390/ani13030545 - 3 Feb 2023
Cited by 2 | Viewed by 2198
Abstract
The zoonotic hepatitis E virus genotype 3 (HEV-3) causes most autochthonous human hepatitis E cases in Europe, which are due to the consumption of raw or undercooked food products of animal origin. Pigs and wild boars are considered the main reservoirs of this [...] Read more.
The zoonotic hepatitis E virus genotype 3 (HEV-3) causes most autochthonous human hepatitis E cases in Europe, which are due to the consumption of raw or undercooked food products of animal origin. Pigs and wild boars are considered the main reservoirs of this genotype, while rabbits are the reservoir of a distinct phylogenetic group named HEV-3ra, which is classified within the HEV-3 genotype but in a separate clade. Evidence for the zoonotic potential of HEV-3ra was suggested by its detection in immunocompromised patients in several European countries. HEV-3ra infection was found in farmed and feral rabbit populations worldwide and its circulation was reported in a few European countries, including Italy. Furthermore, Italy is one of the major rabbit meat producers and consumers across Europe, but only a few studies investigated the presence of HEV in this reservoir. The aim of this study was to assess the presence of HEV in 328 Italian hares and 59 farmed rabbits collected in 3 Italian macro-areas (North, North-Central, and South-Central), between 2019 and 2021. For this purpose, liver samples were used to detect HEV RNA using broad-range real-time RT-PCR and nested RT-PCR. Using 28 liver transudates from hares, the ELISA test for anti-HEV IgG detection was also performed. Neither HEV RNA nor anti-HEV antibodies were detected. Further studies will be conducted to assess the HEV presence in Italian lagomorphs to establish the role of this host and the possible risk of transmission for workers with occupational exposure, to pet owners and via food. Full article
(This article belongs to the Section Mammals)
Show Figures

Figure 1

10 pages, 2354 KiB  
Communication
Phylodynamic Analysis Suggests That Deer Species May Be a True Reservoir for Hepatitis E Virus Genotypes 3 and 4
by Anastasia A. Karlsen, Vera S. Kichatova, Karen K. Kyuregyan and Mikhail I. Mikhailov
Microorganisms 2023, 11(2), 375; https://doi.org/10.3390/microorganisms11020375 - 1 Feb 2023
Cited by 5 | Viewed by 1953
Abstract
Hepatitis E virus (HEV) genotypes 3 and 4 (HEV-3 and HEV-4) cause zoonotic infection in humans, with domestic pigs and wild boars being the main reservoirs of infection. Other than suids, HEV-3 and HEV-4 are found in ruminants, most frequently in deer species. [...] Read more.
Hepatitis E virus (HEV) genotypes 3 and 4 (HEV-3 and HEV-4) cause zoonotic infection in humans, with domestic pigs and wild boars being the main reservoirs of infection. Other than suids, HEV-3 and HEV-4 are found in ruminants, most frequently in deer species. However, it is still debatable, whether HEV infection in deer is a spillover, or indicates a stable virus circulation in these host species. To explore the patterns of HEV-3 and HEV-4 transmission in deer and other host species, we performed a Bayesian analysis of HEV sequences available in GenBank. A total of 27 HEV sequences from different deer species were found in GenBank. Sequences from wild boars collected in the same territories, as well as sequences from all mammals that were most similar to sequences from deer in blast search, were added to the dataset, comprising 617 in total sequences. Due to the presence of partial genomic sequences, they were divided into four subsets (two ORF1 fragments and two ORF2 fragments) and analyzed separately. European HEV-3 sequences and Asian HEV-4 sequences collected from deer species demonstrated two transmission patterns. The first pattern was spillover infection, and the second pattern was deer-to-deer transmission, indicating stable HEV circulation in these species. However, all geographic HEV clusters that contained both deer and swine sequences originated from ancestral swine strains. HEV-3 and HEV-4 transmission patterns in ungulates reconstructed by means of Bayesian analysis indicate that deer species are a true host for HEV. However, wild and domestic swine are often the primary source of infection for ruminants living in the same areas. Complete HEV genomic sequences from different parts of the world are crucial for further understanding the HEV-3 and HEV-4 circulation patterns in wildlife. Full article
(This article belongs to the Special Issue Hepatitis E Virus (HEV) and Other Hepeviridae)
Show Figures

Figure 1

17 pages, 2724 KiB  
Article
In Vitro Replication of Swine Hepatitis E Virus (HEV): Production of Cell-Adapted Strains
by Giovanni Ianiro, Marina Monini, Maria Grazia Ammendolia, Luca De Sabato, Fabio Ostanello, Gabriele Vaccari and Ilaria Di Bartolo
Animals 2023, 13(2), 276; https://doi.org/10.3390/ani13020276 - 13 Jan 2023
Cited by 6 | Viewed by 2662
Abstract
The hepatitis E caused by the virus HEV of genotypes HEV-3 and HEV-4 is a zoonotic foodborne disease spread worldwide. HEV is currently classified into eight different genotypes (HEV-1–8). Genotypes HEV-3 and HEV-4 are zoonotic and are further divided into subtypes. Most of [...] Read more.
The hepatitis E caused by the virus HEV of genotypes HEV-3 and HEV-4 is a zoonotic foodborne disease spread worldwide. HEV is currently classified into eight different genotypes (HEV-1–8). Genotypes HEV-3 and HEV-4 are zoonotic and are further divided into subtypes. Most of the information on HEV replication remains unknown due to the lack of an efficient cell cultivation system. Over the last couple of years, several protocols for HEV cultivation have been developed on different cell lines; even if they were troublesome, long, and scarcely reproducible, they offered the opportunity to study the replicative cycle of the virus. In the present study, we aimed to obtain a protocol ready to use viral stock in serum free medium that can be used with reduced time of growth and without any purification steps. The employed method allowed isolation and cell adaptation of four swine HEV-3 strains, belonging to three different subtypes. Phylogenetic analyses conducted on partial genome sequences of in vitro isolated strains did not reveal any insertion in the hypervariable region (HVR) of the genomes. A limited number of mutations was acquired in the genome during the virus growth in the partial sequences of Methyltransferase (Met) and ORF2 coding genes. Full article
(This article belongs to the Special Issue Animals’ Tenth Anniversary)
Show Figures

Figure 1

12 pages, 1668 KiB  
Brief Report
Characterization of a Near Full-Length Hepatitis E Virus Genome of Subtype 3c Generated from Naturally Infected South African Backyard Pigs
by Ravendra P. Chauhan and Michelle L. Gordon
Pathogens 2022, 11(9), 1030; https://doi.org/10.3390/pathogens11091030 - 11 Sep 2022
Cited by 4 | Viewed by 2593
Abstract
Eight genotypes of the hepatitis E virus (Orthohepevirus A; HEV) designated HEV-1 to HEV-8 have been reported from various mammalian hosts. Notably, domestic pigs and wild boars are the natural reservoirs of HEV-3 and HEV-4 genotypes with zoonotic propensity. Since [...] Read more.
Eight genotypes of the hepatitis E virus (Orthohepevirus A; HEV) designated HEV-1 to HEV-8 have been reported from various mammalian hosts. Notably, domestic pigs and wild boars are the natural reservoirs of HEV-3 and HEV-4 genotypes with zoonotic propensity. Since HEV infection in domestic pigs is usually subclinical, it may remain undetected, facilitating zoonotic spillover of HEV to the exposed human populations. A previous study from our group in 2021, using deep sequencing of a pooled saliva sample, generated various swine enteric virus genomes, including a near full-length swine HEV genome (7040 nt; 97.7% genome coverage) from five-month-old grower pigs at a backyard pig farm in the uMgungundlovu District, KwaZulu-Natal, South Africa. In the present study, we describe the further characterization, including genotyping and subtyping of the swine HEV isolate using phylogenetics and ‘HEVnet Typing Tool’. Our analyses confirmed that the South African swine HEV genome characterized in this study belonged to HEV genotype 3 subtype 3c (HEV-3c). While HEV-3c infections in domestic pigs have been previously reported from Brazil, Germany, Italy, and the Netherlands, they only generated partial genome sequences of open reading frame 1 (ORF1) and/or ORF2. To our knowledge, this is the first near full-length swine HEV-3c genome generated from naturally infected domestic pigs (Sus scrofa domesticus) in South Africa. However, due to the gap in the information on the HEV-3c genome sequences in various geographical locations worldwide, including South Africa, the epidemiology of the South African swine HEV genome characterized in this study remains inconclusive. Molecular and genomic surveillance of HEV in domestic pig populations in South Africa would be useful to determine their prevalence, circulating subtypes, and zoonosis risk. Full article
(This article belongs to the Special Issue Zoonotic Hepatitis E Virus: A Focus on Animals, Food and Environment)
Show Figures

Figure 1

7 pages, 756 KiB  
Brief Report
HuH-7-Lunet BLR Cells Propagate Rat Hepatitis E Virus (HEV) in a Cell Culture System Optimized for HEV
by Mathias Schemmerer, Monika Erl and Jürgen J. Wenzel
Viruses 2022, 14(5), 1116; https://doi.org/10.3390/v14051116 - 23 May 2022
Cited by 9 | Viewed by 3418
Abstract
The family Hepeviridae comprises the species Orthohepevirus A–D (HEV-A to -D). HEV-C genotype 1 (HEV-C1, rat HEV) is able to infect humans. This study investigated whether an optimized HEV-A cell culture system is able to propagate the cell culture-derived rat HEV, and if [...] Read more.
The family Hepeviridae comprises the species Orthohepevirus A–D (HEV-A to -D). HEV-C genotype 1 (HEV-C1, rat HEV) is able to infect humans. This study investigated whether an optimized HEV-A cell culture system is able to propagate the cell culture-derived rat HEV, and if de novo isolation of the virus from rat liver is possible. We tested the liver carcinoma cell lines PLC/PRF/5, HuH-7, and HuH-7-Lunet BLR for their susceptibility to HEV-C1 strains. Cells were infected with the cell culture-derived HEV-C1 strain R63 and rat liver-derived strain R68. Cells were maintained in MEMM medium, which was refreshed every 3–4 days. The viral load of HEV-C1 was determined by RT-qPCR in the supernatant and expressed as genome copies per mL (c/mL). Rat HEV replication was most efficient in the newly introduced HuH-7-Lunet BLR cell line. Even if the rat HEV isolate had been pre-adapted to PLC/PRF/5 by multiple passages, replication in HuH-7-Lunet BLR was still at least equally effective. Only HuH-7-Lunet BLR cells were susceptible to the isolation of HEV-C1 from the liver homogenate. These results suggest HuH-7-Lunet BLR as the most permissive cell line for rat HEV. Our HEV-C1 cell culture system may be useful for basic research, the animal-free generation of large amounts of the virus as well as for the testing of antiviral compounds and drugs. Full article
(This article belongs to the Special Issue Rodent-Borne Viruses 2.0)
Show Figures

Figure 1

15 pages, 2745 KiB  
Article
Molecular and Pathological Detection of Hepatitis E Virus in Roe Deer (Capreolus capreolus) and Fallow Deer (Dama dama) in Central Italy
by Niccolò Fonti, Maria Irene Pacini, Mario Forzan, Francesca Parisi, Marcello Periccioli, Maurizio Mazzei and Alessandro Poli
Vet. Sci. 2022, 9(3), 100; https://doi.org/10.3390/vetsci9030100 - 24 Feb 2022
Cited by 18 | Viewed by 3424
Abstract
Hepatitis E virus (HEV) is a common causative agent of acute hepatitis in the world, with a serious public health burden in both developing and industrialized countries. Cervids, along with wild boars and lagomorphs, are the main wild hosts of HEV in Europe [...] Read more.
Hepatitis E virus (HEV) is a common causative agent of acute hepatitis in the world, with a serious public health burden in both developing and industrialized countries. Cervids, along with wild boars and lagomorphs, are the main wild hosts of HEV in Europe and constitute a documented source of infection for humans. The aim of this study was to evaluate the presence of HEV in roe deer (Capreolus capreolus) and fallow deer (Dama dama) living in Tuscany, Central Italy. Liver samples from 48 roe deer and 60 fallow deer were collected from carcasses during the hunting seasons. Following the results obtained from molecular and histopathologic studies, 5/48 (10.4%) roe deer and 1/60 (1.7%) fallow deer liver samples were positive for the presence of HEV RNA. All PCR-positive livers were also IHC-positive for viral antigen presence, associated with degenerative and inflammatory lesions with predominantly CD3+ cellular infiltrates. This study represents the first identification in Italy of HEV RNA in roe and fallow deer and the first study in literature describing liver alterations associated with HEV infection in cervids. These results demonstrate that HEV is present in wild cervid populations in Italy and confirm the potential zoonotic role of these species. Full article
(This article belongs to the Special Issue Epidemiology of Wildlife Infectious Diseases)
Show Figures

Figure 1

17 pages, 1107 KiB  
Article
Study of Animal Mixing and the Dynamics of Hepatitis E Virus Infection on a Farrow-to-Finish Pig Farm
by Susan M. Withenshaw, Sylvia S. Grierson and Richard P. Smith
Animals 2022, 12(3), 272; https://doi.org/10.3390/ani12030272 - 22 Jan 2022
Cited by 8 | Viewed by 3647
Abstract
In Europe, swine are a livestock reservoir for Hepatitis E virus genotype 3 (HEV-3). Consumption of food containing HEV-3 can cause zoonotic human infection, though risk is reduced by heat treatment. Implementing controls that limit infection in slaughter pigs may further reduce foodborne [...] Read more.
In Europe, swine are a livestock reservoir for Hepatitis E virus genotype 3 (HEV-3). Consumption of food containing HEV-3 can cause zoonotic human infection, though risk is reduced by heat treatment. Implementing controls that limit infection in slaughter pigs may further reduce foodborne transmission risk but knowledge of infection dynamics on commercial farms is limited. This study addressed this knowledge gap and in particular investigated the influence of group mixing. Faeces were collected from grower (n = 212) and fattener (n = 262) pigs on a farrow-to-finish farm on four occasions. HEV RNA was detected on all occasions, and prevalence was higher in growers (85.8%) than fatteners (26.0%; p < 0.001). HEV-positive samples were also collected from the wider farm environment (n = 67; 64.7% prevalence), indicating potential sources for HEV re-circulation within the herd. Timing of infection in a cohort was also investigated. HEV was absent from all piglet faeces (n = 98) and first detected at weaner stage (25.7% prevalence), but only in groups weaned earlier or comprising pigs from many different litters. Farrowing sow faeces (n = 75) were HEV-negative but antibodies were detected in blood from two sows. Results suggest that multiple factors influence HEV infection dynamics on pig farms, and potential foci for further study into practical control solutions are highlighted. Full article
Show Figures

Figure 1

Back to TopTop