Serological Evidence of Hepatitis E Virus Infection in Brazilian Equines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Serological Analysis
- (a)
- Cutoff value = mean OD + 3 × standard deviation (SD) of the horse negative samples [30], where the horse negative samples were 18 serum samples derived from newborn and colostrum-deprived animals;
- (b)
- Cutoff value = mean OD + 3 × SD of the horse negative samples, where the horse negative samples were determined according to parameters of the kit (OD < mean OD of cutoff controls) (adapted formula from [30]);
- (c)
- Cutoff value = 2 × mean OD of the horse negative samples, where the horse negative samples were determined according to parameters of the kit (OD < mean OD of cutoff controls) (adapted formula from [30]);
- (d)
- Cutoff value = 3 × mean OD of the horse negative samples, where the horse negative samples were determined according to parameters of the kit (OD < mean OD of cutoff controls) (adapted formula from [30]);
- (e)
- Change-point analysis, a statistical algorithm in the R package which finds the step in the series of OD values that separates positive and negative samples [30].
2.3. Molecular Analysis
2.4. Statistical Analysis
3. Results
3.1. Serological Evidence of HEV Infection
3.1.1. Evaluation of the Adapted ELISA Assay and Cutoff Determination
3.1.2. Descriptive and Statistical Analyses
3.2. Molecular Investigation of HEV Infection
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, D.; Drexler, J.F.; Meng, X.-J.; Norder, H.; Okamoto, H.; van der Poel, W.H.M.; Purdy, M.A.; Reuter, G.; de Souza, W.M.; Ulrich, R.G.; et al. Taxon Details|ICTV. Available online: https://ictv.global/taxonomy/taxondetails?taxnode_id=202203665. (accessed on 5 June 2023).
- Spahr, C.; Knauf-Witzens, T.; Vahlenkamp, T.; Ulrich, R.G.; Johne, R. Hepatitis E virus and related viruses in wild, domestic and zoo animals: A review. Zoonoses Public Health 2018, 65, 11–29. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Meng, X.J. Hepatitis E virus: Host tropism and zoonotic infection. Curr. Opin. Microbiol. 2021, 59, 8–15. [Google Scholar] [CrossRef]
- Kenney, S.P. The current host range of hepatitis E viruses. Viruses 2019, 11, 5. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Nishizawa, T.; Sato, H.; Sato, Y.; Jirintai; Nagashima, S.; Okamoto, H. Analysis of the full-length genome of a Hepatitis E Virus isolate obtained from a wild boar in Japan that is classifiable into a Novel Genotype. J. Gen. Virol. 2011, 92, 902–908. [Google Scholar] [CrossRef]
- Rasche, A.; Saqib, M.; Liljander, A.M.; Bornstein, S.; Zohaib, A.; Renneker, S.; Steinhagen, K.; Wernery, R.; Younan, M.; Gluecks, I.; et al. Hepatitis E virus infection in dromedaries, North and East Africa, United Arab Emirates, and Pakistan, 1983–2015. Emerg. Infect. Dis. 2016, 22, 1249–1252. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.-H.; Tan, B.-H.; Teo, E.C.-Y.; Lim, S.-G.; Dan, Y.-Y.; Wee, A.; Aw, P.P.K.; Zhu, Y.; Hibberd, M.L.; Tan, C.-K.; et al. Chronic Infection with Camelid Hepatitis e Virus in a Liver Transplant Recipient Who Regularly Consumes Camel Meat and Milk. Gastroenterology 2016, 150, 355–357.e3. [Google Scholar] [CrossRef]
- Woo, P.C.; Lau, S.K.; Teng, J.L.; Tsang, A.K.L.; Joseph, M.; Wong, E.Y.; Tang, Y.; Sivakumar, S.; Xie, J.; Bai, R.; et al. New hepatitis E virus genotype in camels, the Middle East. Emerg. Infect. Dis. 2014, 20, 1044–1048. [Google Scholar] [CrossRef]
- de Oliveira, J.M.; Santos, D.R.L.D.; Pinto, M.A. Hepatitis E Virus Research in Brazil: Looking Back and Forwards. Viruses 2023, 15, 548. [Google Scholar] [CrossRef]
- Moraes, D.F.d.S.D.; Mesquita, J.R.; Dutra, V.; Nascimento, M.S.J. Systematic review of hepatitis e virus in Brazil: A one-health approach of the human-animal-environment triad. Animals 2021, 11, 2290. [Google Scholar] [CrossRef]
- Pandolfi, R.; De Almeida, D.R.; Pinto, M.A.; Kreutz, L.C.; Frandoloso, R. In house ELISA based on recombinant ORF2 protein underline high prevalence of IgG antihepatitis e virus amongst blood donors in south Brazil. PLoS ONE 2017, 12, e0176409. [Google Scholar] [CrossRef]
- Heldt, F.H.; Staggmeier, R.; Gularte, J.S.; Demoliner, M.; Henzel, A.; Spilki, F.R. Hepatitis E Virus in Surface Water, Sediments, and Pork Products Marketed in Southern Brazil. Food Environ. Virol. 2016, 8, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Lopes dos Santos, D.R.; Lewis-Ximenez, L.L.; da Silva, M.F.M.; de Sousa, P.S.F.; Gaspar, A.M.C.; Pinto, M.A. First report of a human autochthonous hepatitis E virus infection in Brazil. J. Clin. Virol. 2010, 47, 276–279. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, D.R.L.; Durães-Carvalho, R.; Gardinali, N.R.; Machado, L.C.; de Paula, V.S.; Wallau, G.L.; Oliveira, J.M.; Pena, L.J.; Pinto, M.A.; Gil, L.H.V.G.; et al. Uncovering neglected subtypes and zoonotic transmission of Hepatitis E virus (HEV) in Brazil. Virol. J. 2023, 20, 83. [Google Scholar] [CrossRef] [PubMed]
- Vitral, C.L.; Pinto, M.A.; Lewis-Ximenez, L.L.; Khudyakov, Y.E.; Santos, D.R.D.; Gaspar, A.M.C. Serological evidence of hepatitis E virus infection in different animal species from the Southeast of Brazil. Mem. Inst. Oswaldo Cruz 2005, 100, 117–122. [Google Scholar] [CrossRef]
- Bastos, C.; Eisen, A.K.A.; Demoliner, M.; Heldt, F.H.; Filippi, M.; Pereira, V.M.d.A.G.; Teixeira, T.A.M.; Roth, L.O.; Gularte, J.S.; Spilki, F.R. Hepatitis E virus genotype 3 in bovine livers slaughtered in the state of Rio Grande do Sul, Brazil. Braz. J. Microbiol. 2022, 53, 1115–1120. [Google Scholar] [CrossRef]
- Cunha, L.; Luchs, A.; Azevedo, L.S.; Silva, V.C.M.; Lemos, M.F.; Costa, A.C.; Compri, A.P.; França, Y.; Viana, E.; Malta, F.; et al. Detection of Hepatitis E Virus Genotype 3 in Feces of Capybaras (Hydrochoeris hydrochaeris) in Brazil. Viruses 2023, 15, 335. [Google Scholar] [CrossRef]
- Adlhoch, C.; Avellon, A.; Baylis, S.A.; Ciccaglione, A.R.; Couturier, E.; de Sousa, R.; Epštein, J.; Ethelberg, S.; Faber, M.; Fehér, A.; et al. Hepatitis E virus: Assessment of the epidemiological situation in humans in Europe, 2014/15. J. Clin. Virol. 2016, 82, 9–16. [Google Scholar] [CrossRef]
- Izopet, J.; Tremeaux, P.; Marion, O.; Migueres, M.; Capelli, N.; Chapuy-Regaud, S.; Mansuy, J.-M.; Abravanel, F.; Kamar, N.; Lhomme, S. Hepatitis E virus infections in Europe. J. Clin. Virol. 2019, 120, 20–26. [Google Scholar] [CrossRef]
- Christensen, P.B.; Engle, R.E.; Hjort, C.; Homburg, K.M.; Vach, W.; Georgsen, J.; Purcell, R.H. Time trend of the prevalence of hepatitis E antibodies among farmers and blood donors: A potential zoonosis in Denmark. Clin. Infect. Dis. 2008, 47, 1026–1031. [Google Scholar] [CrossRef]
- García-Bocanegra, I.; Rivero, A.; Caballero-Gómez, J.; López-López, P.; Cano-Terriza, D.; Frías, M.; Jiménez-Ruiz, S.; Risalde, M.A.; Gómez-Villamandos, J.C.; Rivero-Juarez, A. Hepatitis E virus infection in equines in Spain. Transbound. Emerg. Dis. 2019, 66, 66–71. [Google Scholar] [CrossRef]
- Rui, P.; Zhao, F.; Yan, S.; Wang, C.; Fu, Q.; Hao, J.; Zhou, X.; Zhong, H.; Tang, M.; Hui, W.; et al. Detection of hepatitis E virus genotypes 3 and 4 in donkeys in northern China. Equine Vet. J. 2020, 52, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Saad, M.D.; Hussein, H.A.; Bashandy, M.M.; Kamel, H.H.; Earhart, K.C.; Fryauff, D.J.; Younan, M.; Mohamed, A.H. Hepatitis E virus Infection in Work Horses in Egypt. Infect. Genet. Evol. 2007, 7, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Park, T.; Sohn, Y.; Park, B.-J.; Ahn, H.-S.; Go, H.-J.; Kim, D.-H.; Lee, J.-B.; Park, S.-Y.; Song, C.-S.; et al. Surveillance of hepatitis E virus in the horse population of Korea: A serological and molecular approach. Infect. Genet. Evol. 2022, 103, 105317. [Google Scholar] [CrossRef] [PubMed]
- 2017|IBGE. Available online: https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/21814-2017-censo-agropecuario.html (accessed on 25 May 2023).
- MAPA. Revisão do Estudo do Complexo do Agronegócio do Cavalo; MAPA: Brasília, Brazil, 2016; p. 54. [Google Scholar]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 11 August 2023).
- Arruda, I.F.; Freitas, W.A.; Carrijo, K.F.; Paz, P.S.; Silva, M.M.; Sudré, A.P.; Marques-Santos, F.; Fonseca, A.B.M.; Amendoeira, M.R.R.; Millar, P.R. Occurrence of anti-toxoplasma gondii antibodies and risk factors associated with infection in equids slaughtered for human consumption in Brazil. Rev. Bras. Parasitol. Vet. 2020, 29, e002320. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, A.S.; Lampe, E.; de Albuquerque, P.P.L.F.; Chalhoub, F.L.L.; de Filippis, A.M.B.; Villar, L.M.; Cruz, O.G.; Pinto, M.A.; de Oliveira, J.M. Epidemiological investigation and analysis of the NS5B gene and protein variability of non-primate hepacivirus in several horse cohorts in Rio de Janeiro state, Brazil. Infect. Genet. Evol. 2018, 59, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Lardeux, F.; Torrico, G.; Aliaga, C. Calculation of the ELISA’s cut-off based on the change-point analysis method for detection of Trypanosoma cruzi infection in Bolivian dogs in the absence of controls. Mem. Inst. Oswaldo Cruz 2016, 111, 501–504. [Google Scholar] [CrossRef]
- Jothikumar, N.; Cromeans, T.L.; Robertson, B.H.; Meng, X.J.; Hill, V.R. A broadly reactive one-step real-time RT-PCR assay for rapid and sensitive detection of hepatitis E virus. J. Virol. Methods 2006, 131, 65–71. [Google Scholar] [CrossRef]
- Gardinali, N.R.; Guimarães, J.R.; Gil Melgaço, J.; Kevorkian, Y.B.; Bottino, F.d.O.; Vieira, Y.R.; Silva, A.C.d.A.d.; Pinto, D.P.; da Fonseca, L.B.; Vilhena, L.S.; et al. Cynomolgus monkeys are successfully and persistently infected with hepatitis E virus genotype 3 (HEV-3) after long-term immunosuppressive therapy. PLoS ONE 2017, 12, e0174070. [Google Scholar] [CrossRef]
- Jeffcott, L.B. Some Practical Aspects of the Transfer of Passive Immunity to Newborn Foals. Equine Vet. J. 1974, 6, 109–115. [Google Scholar] [CrossRef]
- Zhang, W.; Shen, Q.; Mou, J.; Gong, G.; Yang, Z.; Cui, L.; Zhu, J.; Ju, G.; Hua, X. Hepatitis E virus infection among domestic animals in eastern China. Zoonoses Public Health 2008, 55, 291–298. [Google Scholar] [CrossRef]
- Li, Y.; Qu, C.; Spee, B.; Zhang, R.; Penning, L.C.; de Man, R.A.; Peppelenbosch, M.P.; Fieten, H.; Pan, Q. Hepatitis e virus seroprevalence in pets in the Netherlands and the permissiveness of canine liver cells to the infection. Ir. Vet. J. 2020, 73, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Wang, L.; Li, Y.; Du, G.; Zhuang, H.; Zhu, Y.; Xue, C.; Li, L.; Chang, Y.; Geng, J. Hepatitis E virus infection among animals and humans in Xinjiang, China: Possibility of swine to human transmission of sporadic hepatitis E in an endemic area. Am. J. Trop. Med. Hyg. 2010, 82, 961–966. [Google Scholar] [CrossRef]
- Yoo, D.; Willson, P.; Pei, Y.; Hayes, M.A.; Deckert, A.; Dewey, C.E.; Friendship, R.M.; Yoon, Y.; Gottschalk, M.; Yason, C.; et al. Prevalence of Hepatitis E Virus Antibodies in Canadian Swine Herds and Identification of a Novel Variant of Swine Hepatitis E Virus. Clin. Diagn. Lab. Immunol. 2001, 8, 1213–1219. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. ICH Guideline M10 on Bioanalytical Method Validation. Sci. Med. Health 2019, 427, 57. [Google Scholar]
- Willen, L.; Mertens, P.; Volf, P. Evaluation of the rSP03B sero-strip, a newly proposed rapid test for canine 429 exposure to Phlebotomus perniciosus, vector of Leishmania infantum. PLoS Negl. Trop. Dis. 2018, 12, e0006607. [Google Scholar] [CrossRef]
- Oliveira, S.A.M.; Brum, M.C.S.; Anziliero, D.; Dellagostin, O.; Weiblen, R.; Flores, E.F. Prokaryotic 432 expression of a truncated form of bovine herpesvirus 1 glycoprotein E (gE) and its use in an ELISA for gE 433 antibodie. Pesqui. Vet. Bras. 2013, 33, 41–46. [Google Scholar] [CrossRef]
- Lunn, J.A.; Lee, R.; Smaller, J.; MacKay, B.M.; King, T.; Hunt, G.B.; Martin, P.; Krockenberger, M.B.; Spielman, D.; Malik, R. Twenty two cases of canine neural angiostronglyosis in eastern Australia (2002–2005) and a 435 review of the literature. Parasites Vectors 2012, 5, 70. [Google Scholar] [CrossRef]
- Pisano, M.B.; Campbell, C.; Anugwom, C.; Ré, V.E.; Debes, J.D. Hepatitis E virus infection in the United States: Seroprevalence, risk factors and the influence of immunological assays. PLoS ONE 2022, 17, e0272809. [Google Scholar] [CrossRef]
- de Almeida e Araujo, D.C.; de Oliveira, J.M.; Haddad, S.K.; da Roza, D.L.; Bottino, F.d.O.; Faria, S.B.S.C.; Bellíssimo-Rodrigues, F.; Passos, A.D.C. Declining prevalence of hepatitis A and silent circulation of hepatitis E virus infection in southeastern Brazil. IJID 2020, 101, 17–23. [Google Scholar] [CrossRef]
- Evers, F.; Garcia, J.L.; Navarro, I.T.; de Freitas, J.C.; Bonesi, G.L.; do Nascimento Benitez, A.; Nino, B.S.L.; Ewald, M.P.C.; Taroda, A.; Almeida, J.C.; et al. Zoonosis of public health interest in slaughtered Brazilian equidae. Semin. Ciênc Agrár. 2012, 33, 3223–3232. [Google Scholar] [CrossRef]
- Junqueira, A.; Bressan, M.C.; Rebello, F.F.P.; Faria, P.B.; Vieira, J.O.; Savian, T.V. Composição centesimal e teor de colesterol na carne de equinos (Equus caballus, Linneaus, 1758) machos e fêmeas agrupados por peso de carcaça. Ciência Agrotecnologia 2005, 29, 362–368. [Google Scholar] [CrossRef]
- Jori, F.; Laval, M.; Maestrini, O.; Casabianca, F.; Charrier, F.; Pavio, N. Assessment of domestic pigs, wild boars and feral hybrid pigs as reservoirs of hepatitis E virus in Corsica, France. Viruses 2016, 8, 236. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Lopez, P.; Risalde, M.d.L.A.; Frias, M.; García-Bocanegra, I.; Brieva, T.; Caballero-Gomez, J.; Camacho, A.; Fernández-Molera, V.; Machuca, I.; Gomez-Villamandos, J.C.; et al. Risk factors associated with hepatitis E virus in pigs from different production systems. Vet. Microbiol. 2018, 224, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Capai, L.; Maestrini, O.; Casabianca, F.; Villechenaud, N.; Masse, S.; Bosseur, F.; Lamballerie, X.; Charrel, R.N.; Falchi, A. Drastic decline of hepatitis E virus detection in domestic pigs after the age of 6 months, Corsica, France. Transbound. Emerg. Dis. 2019, 66, 2462–2473. [Google Scholar] [CrossRef]
- Baggio, R.; Overbeck, G.E.; Durigan, G.; Pillar, V.D. To graze or not to graze: A core question for conservation and sustainable use of grassy ecosystems in Brazil. Perspect. Ecol. Conserv. 2021, 19, 256–266. [Google Scholar] [CrossRef]
- Fleurance, G.; Sallé, G.; Lansade, L.; Wimel, L.; Dumont, B. Comparing the effects of horse grazing alone or with cattle on horse parasitism and vegetation use in a mesophile pasture. Grass Forage Sci. 2022, 77, 175–188. [Google Scholar] [CrossRef]
- da Silva, C.M.; Oliveira, J.M.; Mendoza-Sassi, R.A.; Figueiredo, A.S.; Mota, L.D.; Nader, M.M.; Gardinali, N.R.; Kevorkian, Y.B.; Salvador, S.B.S.; Pinto, M.A.; et al. Detection and characterization of hepatitis E virus genotype 3 in HIV-infected patients and blood donors from southern Brazil. Int. J. Infect. Dis. 2019, 86, 114–121. [Google Scholar] [CrossRef]
- Lewis, H.C.; Wichmann, O.; Duizer, E. Transmission routes and risk factors for autochthonous hepatitis E virus infection in Europe: A systematic review. Epidemiol. Infect. 2010, 138, 145–166. [Google Scholar] [CrossRef]
OD Value | Mean ± SD | p Value | CI 95% |
---|---|---|---|
Group A | 0.483 ± 0.317 | <0.0001 | 0.428 to 0.538 |
Group B | 0.186 ± 0.158 | 0.158 to 0.214 | |
Newborn/colostrum-deprived | 0.0263 ± 0.006 | 0.0231 to 0.0295 |
Sample | Mean ± SD | CV (%) |
---|---|---|
Group A (n = 10) | 0.463 ± 0.041 | 9.5 |
Group B (n = 10) | 0.271 ± 0.024 | 8.5 |
Newborn/colostrum-deprived foals (n = 10) | 0.017 ± 0.002 | 12.1 |
Mean | 10.03 |
Cutoff 1 | Group A Positive (%) | Group B Positive (%) | Overall % of Positive | Group A × B | OR | CI 95% | Cohen’s Kappa | |
---|---|---|---|---|---|---|---|---|
(a) | 0.0443 | 132 (100) | 123 (98.4) | 99.22 | - | - | - | - |
(b) | 0.608 | 60 (45.5) | 08 (6.4) | 26.46 | p < 0.0001 | 12.19 | 5.51 to 26.97 | 1.0 |
0.427 | 0.977 | |||||||
0.354 | 0.935 | |||||||
0.488 | 0.959 | |||||||
(c) | 0.677 | 54 (40.9) | 12 (9.6) | 25.68 | p < 0.0001 | 6.52 | 3.273 to 12.98 | 0.857 |
0.460 | 1.0 | |||||||
0.305 | 1.0 | |||||||
0.345 | 1.0 | |||||||
(d) | 1.016 | 27 (20.5) | 05 (4.0) | 12.45 | p < 0.0001 | 6.17 | 2.294 to 16.60 | 1.0 |
0.689 | 0.863 | |||||||
0.458 | 0.693 | |||||||
0.517 | 0.954 | |||||||
(e) | Failed | - | - | - | - | - | - | - |
Variables | N (%) | Relative Frequency (%) |
---|---|---|
Purpose 1 | ||
Meat | 61 (23.7) | 54.1 |
Milk | 49 (19.1) | 32.7 |
Reproduction | 44 (17.1) | 4.5 |
Sport | 81 (31.5) | 7.4 |
Sport/Meat | 22 (8.7) | 50.0 |
Age (years) 2 | ||
0–2 | 27 (10.5) | 3.7 |
>2–5 | 28 (10.9) | 14.3 |
>5–10 | 36 (14.0) | 2.8 |
>10–15 | 12 (4.7) | 16.7 |
>15 | 22 (8.6) | 0.0 |
NI | 132 (51.4) | 45.5 |
Sex | ||
Female | 141 (54.8) | 20.6 |
Male | 116 (45.2) | 33.6 |
Breed 2 | ||
MM | 65 (25.3) | 6.2 |
Campolina | 53 (20.6) | 5.7 |
Quarter Horse | 4 (1.6) | 25.0 |
Crossbreed | 3 (1.2) | 0.0 |
NI | 132 (51.4) | 45.5 |
Other animals | ||
Bovine | 71 (27.6) | 25.4 |
Diverse 3 | 47 (18.3) | 27.7 |
Only horses | 94 (36.6) | 35.1 |
Domestic and wild birds | 45 (17.5) | 8.9 |
System | ||
Extensive | 156 (60.7) | 30.1 |
Intensive | 23 (9.0) | 26.1 |
Semi-intensive | 35 (13.6) | 8.6 |
NI | 43 (16.7) | 27.9 |
Water source 4 | ||
Riverside | 61 (46.2) | 54.1 |
Stream | 49 (37.1) | 32.7 |
Well | 22 (16,7) | 50.0 |
NI | 125 (48.6) | 6.4 |
Variable | p Value | Odds Ratio | CI 95% |
---|---|---|---|
Group A × B | <0.0001 | 12.19 | 5.51 to 26.97 |
Purpose Group A 1 | |||
Sport/Meat × Milk | 0.1436 | 1.828 | 0.875 to 3.819 |
Purpose Group B 1 | |||
Reproduction × Sport | 0.7115 | 0.5952 | 0.1149 to 3.083 |
Breeding system | |||
Extensive × SI × Intensive | 0.0321 | - | - |
Extensive × SI | 0.0096 | 4.599 | 1.34 to 15.77 |
Sex | |||
Male × Female | 0.0228 | 1.956 | 1.11 to 3.43 |
Age (years) 2 | |||
1–2× > 2–10× > 10 | 0.757 | - | - |
Breed 2 | |||
MM × CH × QH × Crossbreed | 1.0 | - | - |
Other animals 3 | |||
Bovine × Diverse 4 × None | 0.0721 | - | - |
Water source 3 | |||
Riverside × Stream × Well | 0.072 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salgado, C.R.S.; Silva, A.d.N.e.; Arruda, I.F.; Millar, P.R.; Amendoeira, M.R.R.; Leon, L.A.A.; Teixeira, R.B.C.; de Lima, J.T.B.; Chalhoub, F.L.L.; Bispo de Filippis, A.M.; et al. Serological Evidence of Hepatitis E Virus Infection in Brazilian Equines. Microorganisms 2023, 11, 2743. https://doi.org/10.3390/microorganisms11112743
Salgado CRS, Silva AdNe, Arruda IF, Millar PR, Amendoeira MRR, Leon LAA, Teixeira RBC, de Lima JTB, Chalhoub FLL, Bispo de Filippis AM, et al. Serological Evidence of Hepatitis E Virus Infection in Brazilian Equines. Microorganisms. 2023; 11(11):2743. https://doi.org/10.3390/microorganisms11112743
Chicago/Turabian StyleSalgado, Caroline Roberta Soares, Aldaleia do Nascimento e Silva, Igor Falco Arruda, Patrícia Riddell Millar, Maria Regina Reis Amendoeira, Luciane Almeida Amado Leon, Raffaella Bertoni Cavalcanti Teixeira, Jorge Tiburcio Barbosa de Lima, Flávia Löwen Levy Chalhoub, Ana Maria Bispo de Filippis, and et al. 2023. "Serological Evidence of Hepatitis E Virus Infection in Brazilian Equines" Microorganisms 11, no. 11: 2743. https://doi.org/10.3390/microorganisms11112743
APA StyleSalgado, C. R. S., Silva, A. d. N. e., Arruda, I. F., Millar, P. R., Amendoeira, M. R. R., Leon, L. A. A., Teixeira, R. B. C., de Lima, J. T. B., Chalhoub, F. L. L., Bispo de Filippis, A. M., Fonseca, A. B. M., de Oliveira, J. M., Pinto, M. A., & Figueiredo, A. S. (2023). Serological Evidence of Hepatitis E Virus Infection in Brazilian Equines. Microorganisms, 11(11), 2743. https://doi.org/10.3390/microorganisms11112743