Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,677)

Search Parameters:
Keywords = H adsorption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1988 KiB  
Article
Storage Stability of Odorants in NalophanTM Bags: Effect of Storage Condition on Recovery
by Elisa Polvara, Alice Gariboldi, Benedetta Proserpio, Marzio Invernizzi and Selena Sironi
Appl. Sci. 2025, 15(17), 9258; https://doi.org/10.3390/app15179258 - 22 Aug 2025
Abstract
Sample storage is a key factor in odour quantification. This study investigates the loss of odorous compounds in Nalophan™ sampling bags during storage, simulating real-world transport and storage conditions. The goal was to quantify compound leakage over time by varying operational parameters to [...] Read more.
Sample storage is a key factor in odour quantification. This study investigates the loss of odorous compounds in Nalophan™ sampling bags during storage, simulating real-world transport and storage conditions. The goal was to quantify compound leakage over time by varying operational parameters to identify the most significant losses. The tested compounds—sulphur, oxygenated, and hydrocarbon VOCs—were prepared in the laboratory at 10 ppm. Tests were conducted on 12 L Nalophan™ bags with sampling intervals of 0, 6, 30, 48, and 100 h, exceeding the EN 13725 guideline limits (30 h). To evaluate recovery, environmental and internal humidity and temperature were varied. Additionally, the adsorption surface was increased by inserting Nalophan™ flakes inside the bags. The results show that under ambient conditions, losses during 30 h are contained and are within the order of instrumental uncertainty for all the tested compounds. A higher ambient temperature and humidity did not significantly affect recovery. In contrast, internal humidity appeared to have a more noticeable effect, particularly affecting low molecular weight sulphur compounds and oxygenates. These findings suggest optimal storage strategies for olfactometric samples, highlighting that significant losses do not occur within the EN 13725:2022 storage time limits. Moreover, even exceeding these time limits, the observed losses remain limited to 100 h. Full article
(This article belongs to the Section Environmental Sciences)
21 pages, 4657 KiB  
Article
Fixed-Bed Adsorption of Gallium and Indium from EoL CIGS Leachates on Extractant-Mesoporous Carbon: Integrated Experimental Simulation Approach
by Víctor Ramos, Alejandra Vázquez Adán, Arturo Jiménez, Rubén Miranda, Eduardo Díez and Araceli Rodríguez
Surfaces 2025, 8(3), 59; https://doi.org/10.3390/surfaces8030059 - 22 Aug 2025
Abstract
Although the exponential increase in photovoltaic installations does contribute to mitigating climate change, it has posed the problem of photovoltaic (PV) residue. As PV panels contain strategic metals, their recovery has become a priority. This paper therefore employs a mesoporous carbon impregnated with [...] Read more.
Although the exponential increase in photovoltaic installations does contribute to mitigating climate change, it has posed the problem of photovoltaic (PV) residue. As PV panels contain strategic metals, their recovery has become a priority. This paper therefore employs a mesoporous carbon impregnated with P507 extractant as adsorbent to selectively recover gallium and indium from solutions simulating the leachate of end-of-life CIGS (Copper Indium Gallium Selenide) cells in a fixed-bed. The previous batch results obtained in our lab show that both metals can be selectively separated by simply adjusting the initial pH, with large adsorption capacities (44.97 mg/g for gallium and 34.24 mg/g for indium). The obtained breakthrough curves were fitted to the Thomas, Yan, Yoon, and HSDM (Homogeneous Surface Diffusion Model) models using a simulation program developed in Python 3.12 obtaining good results in all cases (R2 > 0.9). The estimated parameters were used to predict the experimental breakthrough curve for a different experiment that had not been used for parameter estimation, being the best predictive results the obtained with the HSDM. This is logical, given that unlike the other three models, it is mechanistic. Full article
(This article belongs to the Collection Featured Articles for Surfaces)
Show Figures

Graphical abstract

36 pages, 19095 KiB  
Review
Research and Application of Green Technology Based on Microbially Induced Carbonate Precipitation (MICP) in Mining: A Review
by Yuzhou Liu, Kaijian Hu, Meilan Pan, Wei Dong, Xiaojun Wang and Xingyu Zhu
Sustainability 2025, 17(17), 7587; https://doi.org/10.3390/su17177587 - 22 Aug 2025
Abstract
Microbially induced carbonate precipitation (MICP), as an eco-friendly biomineralization technology, has opened up an innovative path for the green and low-carbon development of the mining industry. Unlike conventional methods, its in situ solidification minimizes environmental disturbances and reduces carbon emissions during construction. This [...] Read more.
Microbially induced carbonate precipitation (MICP), as an eco-friendly biomineralization technology, has opened up an innovative path for the green and low-carbon development of the mining industry. Unlike conventional methods, its in situ solidification minimizes environmental disturbances and reduces carbon emissions during construction. This article reviews the research on MICP technology in various scenarios within the mining industry, summarizes the key factors influencing the application of MICP, and proposes a future research direction to fill the gap of the lack of systematic guidance for the application of MICP in this field. Specifically, it elaborates on the solidification mechanism of MICP and its current application in the solidification and storage of tailings, heavy metal immobilization, waste resource utilization, carbon sequestration, and field-scale deployment, establishing a technical foundation for broader implementation in the mining sector. Key influencing factors that affect the solidification effect of MICP are discussed, along with critical engineering challenges such as the attenuation of microbial activity and the low uniformity of calcium carbonate precipitation under extreme conditions. Proposed solutions include environmentally responsive self-healing technologies (the stimulus-responsive properties of the carriers extend the survival window of microorganisms), a one-phase low-pH injection method (when the pH = 5, the delay time for CaCO3 to appear is 1.5 h), and the incorporation of auxiliary additives (the auxiliary additives provided more adsorption sites for microorganisms). Future research should focus on in situ real-time monitoring of systems integrated with deep learning, systematic mineralization evaluation standard system, and urea-free mineralization pathways under special conditions. Through interdisciplinary collaboration, MICP offers significant potential for integrated scientific and engineering solutions in mine waste solidification and sustainable resource utilization. Full article
25 pages, 4954 KiB  
Article
Copper-Decorated Catalytic Carbon/Ceramic Hollow Fibers for NO Reduction: Enhanced Performance via Tangential Flow Reactor Design and Process Intensification
by George V. Theodorakopoulos, Sergios K. Papageorgiou, Fotios K. Katsaros, Konstantinos G. Beltsios and George Em. Romanos
Fibers 2025, 13(9), 112; https://doi.org/10.3390/fib13090112 - 22 Aug 2025
Abstract
In this study, high-yield biopolymer/ceramic hollow fibers were fabricated via a facile, modified polyol process in a spinneret setup, enabling the controlled adsorption of Cu2+ ions. Post sintering transformed these into catalytic copper-decorated carbon/ceramic (alumina) composite hollow fibers, with alginate serving as [...] Read more.
In this study, high-yield biopolymer/ceramic hollow fibers were fabricated via a facile, modified polyol process in a spinneret setup, enabling the controlled adsorption of Cu2+ ions. Post sintering transformed these into catalytic copper-decorated carbon/ceramic (alumina) composite hollow fibers, with alginate serving as both a metal ion binder and a copper nanoparticle stabilizer. The resulting hollow fibers featured porous walls with a high surface area and were densely decorated with copper nanoparticles. Their structural and morphological characteristics were analyzed, and their NO reduction performance was assessed in a continuous flow configuration, where the gas stream passed through both the shell and lumen sides of a fiber bundle in a tangential flow mode. This study also examined the stability, longevity and regeneration potential of the catalytic fibers, including the mechanisms of deactivation and reactivation. Carbon content was found to be decisive for catalytic performance. High-carbon fibers exhibited a light-off temperature of 250 °C, maintained about 90% N2 selectivity and sustained a consistently high NO reduction efficiency for over 300 h, even without reducing gases like CO. In contrast, low-carbon fibers displayed a higher light-off temperature of 350 °C and a reduced catalytic efficiency. The results indicate that carbon enhances both activity and selectivity, counterbalancing deactivation effects. Owing to their scalability, durability and effectiveness, these catalytic fibers and their corresponding bundle-type reactor configuration represent a promising technology for advanced NO abatement. Full article
13 pages, 15513 KiB  
Article
Fabrication of VOx/AFCC-PG Catalyst from Waste Support for Hg0 Removal in Flue Gas
by Xuhui Wei, Ruoyang Du, Rushan Zhao, Wenzhi Li, Caihong Jiang and Junwei Wang
Catalysts 2025, 15(9), 799; https://doi.org/10.3390/catal15090799 - 22 Aug 2025
Abstract
The efficient removal of elemental mercury (Hg0) from coal-fired flue gas is a critical challenge in environmental governance. This study proposes utilizing waste fluid catalytic cracking catalyst (WFCC) as the potential support for Hg0 catalytic oxidation. After activation (AFCC) via [...] Read more.
The efficient removal of elemental mercury (Hg0) from coal-fired flue gas is a critical challenge in environmental governance. This study proposes utilizing waste fluid catalytic cracking catalyst (WFCC) as the potential support for Hg0 catalytic oxidation. After activation (AFCC) via calcination decarbonization, a composite support (AFCC-PG) was fabricated using palygorskite (PG) as a binder. Subsequently, VOx was loaded onto the support to form the VOx/AFCC-PG catalyst for Hg0 removal. Experimental results demonstrate that the VOx/AFCC-PG catalyst achieves >95% Hg0 removal efficiency under simulated flue gas conditions (150 °C, GHSV = 6000 h−1) while maintaining excellent stability over 60 h. Furthermore, Hg-TPD and XPS analyses indicate that the synergistic lattice oxygen oxidation–adsorption established between VOx and the AFCC-PG plays a key role in efficient Hg0 removal. This study proposes a cost-effective strategy for both the resource utilization of waste catalysts and the control of mercury pollution in coal-fired flue gas. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Graphical abstract

18 pages, 2307 KiB  
Article
Technological Properties Contrast of Galena, Sphalerite, Carbonaceous Material and Choice of Flotation Technology
by Akim Yergeshev, Rustam Tokpayev, Marina Karmeeva, Tamina Khavaza, Nazymarzu Yergesheva, Azhar Atchabarova, Mikhail Nauryzbayev and Vladislava Ignatkina
Minerals 2025, 15(8), 883; https://doi.org/10.3390/min15080883 - 21 Aug 2025
Abstract
The presence of galena, sphalerite (cleiophane), and Carbonaceous Material (CM) in sulphide ore complicates the application of a direct-differential flotation flowsheet due to increased mutual interactions between both marketable concentrates and final tailings. Flotation tests, measurements of electrokinetic (zeta) potential, adsorption of sulphydric [...] Read more.
The presence of galena, sphalerite (cleiophane), and Carbonaceous Material (CM) in sulphide ore complicates the application of a direct-differential flotation flowsheet due to increased mutual interactions between both marketable concentrates and final tailings. Flotation tests, measurements of electrokinetic (zeta) potential, adsorption of sulphydric collectors, and colorimetric indicators were employed to elucidate the cause-and-effect relationships underlying the reduction in contrast of the flotation properties of galena and cleiophane surfaces. It was established that galena and cleiophane exhibit comparable flotation responses when using diesel oil within a pH range of 6–8. While high galena recovery is anticipated, the similar recovery of cleiophane is attributed to the ZnS zeta potential approaching zero in this pH interval. Experimental results demonstrated a distinct difference in the flotation behavior of galena and cleiophane, both with natural surface oxidation and following the removal of sulphoxy films. The application of Carbonaceous Material depressants derived from wood processing by-products (lignin-sulphonates) resulted in a significant decrease in sphalerite recovery. Although the flotation rate constant for Carbonaceous Material in the presence of lignin-sulphonate-based depressants decreases, the overall recovery to concentrate increases over time. The implementation of a bulk-differential flowsheet, involving the preliminary removal of CM prior to the bulk Pb-Zn flotation of lead-zinc sulphide ore, has been demonstrated to be effective. Full article
(This article belongs to the Special Issue Mineral Processing and Recycling Technologies for Sustainable Future)
Show Figures

Figure 1

18 pages, 4673 KiB  
Article
Effect of Iron–Carbon–Zeolite Substrate Configuration on Cadmium Removal in Vertical-Flow Constructed Wetlands
by Mengyi Li, Shiyu Chen, Jundan Chen, Naifu Zhou and Guanlong Yu
Separations 2025, 12(8), 223; https://doi.org/10.3390/separations12080223 - 21 Aug 2025
Abstract
The excessive emission of cadmium (Cd2+) poses a serious threat to the aquatic environment due to its high toxicity and bioaccumulation potential. This study constructed three types of vertical-subsurface-flow constructed wetlands configured with iron–carbon–zeolite composite substrates, including an iron–carbon–zeolite constructed wetland [...] Read more.
The excessive emission of cadmium (Cd2+) poses a serious threat to the aquatic environment due to its high toxicity and bioaccumulation potential. This study constructed three types of vertical-subsurface-flow constructed wetlands configured with iron–carbon–zeolite composite substrates, including an iron–carbon–zeolite constructed wetland (TF-CW), a zeolite–iron–carbon constructed wetland (FT-CW), and an iron–carbon–zeolite mixed constructed wetland (H-CW), to investigate the purification performance and mechanisms of constructed wetlands for cadmium-containing wastewater (0~6 mg/L). The results demonstrated that iron–carbon–zeolite composite substrates significantly enhanced Cd2+ removal efficiency (>99%) through synergistic redox-adsorption mechanisms, where the iron–carbon substrate layer dominated Fe-Cd co-precipitation, while the zeolite layer achieved short-term cadmium retention through ion-exchange adsorption. FT-CW exhibited superior NH4+-N removal efficiency (77.66%~92.23%) compared with TF-CW (71.45%~88.05%), while iron–carbon micro-electrolysis effectively inhibited NO3-N accumulation (<0.1 mg/L). Under cadmium stress, Typha primarily accumulated cadmium through its root systems (>85%) and alleviated oxidative damage by dynamically regulating antioxidative enzyme activity, with the superoxide dismutase (SOD) peak occurring at 3 mg/L Cd2+ treatment. Microbial community analysis revealed that iron–carbon substrates promoted the relative abundance of Bacteroidota and Patescibacteria as well as the enrichment of Saccharimonadales, Thauera, and Rhodocyclaceae (genera), enhancing system stability. This study confirms that iron–carbon–zeolite CWs provide an efficient and sustainable technological pathway for heavy metal-contaminated water remediation through multidimensional mechanisms of “chemical immobilization–plant enrichment–microbial metabolism”. Full article
Show Figures

Figure 1

22 pages, 4188 KiB  
Article
Composite Materials Based on Biochar Obtained from Tomato Wastes and Fe3O4/MnO2 Used for Paracetamol Adsorption
by Adina Stegarescu, Ildiko Lung, Alin Cârdan, Mariana Bocșa, Alexandru Turza, Mihaela Diana Lazar, Monica Dan, Septimiu Tripon, Irina Kacso, Stelian Pintea, Ocsana Opriș and Maria-Loredana Soran
Materials 2025, 18(16), 3914; https://doi.org/10.3390/ma18163914 - 21 Aug 2025
Abstract
The pharmaceutical contamination of water, especially by widely used drugs, presents important environmental and health concerns due to the inefficiency of conventional treatment methods. The present study proposes a sustainable solution using biochar (Bch) obtained from tomato waste, functionalized with Fe3O [...] Read more.
The pharmaceutical contamination of water, especially by widely used drugs, presents important environmental and health concerns due to the inefficiency of conventional treatment methods. The present study proposes a sustainable solution using biochar (Bch) obtained from tomato waste, functionalized with Fe3O4 and MnO2 nanoparticles, for the removal of paracetamol from aqueous solutions. The composite materials were synthesized, characterized, and evaluated under varying conditions, including pH, temperature, contact time, initial drug concentration, and adsorbent dose. The materials exhibited porous structures with wide pore size distributions. Optimal removal efficiency was achieved for 30 mg L−1 paracetamol concentration, pH 2, 25 °C, 0.3 g L−1 adsorbent dose, and 20 min contact time. The Freundlich isotherm provided the best fit for the adsorption data. Kinetic studies revealed that the pseudo-second-order model best described the adsorption process. Thermodynamic parameters indicated that the process was spontaneous, feasible, and exothermic. Compared with similar materials derived from agricultural waste, the tomato waste-based composites demonstrated competitive adsorption capacities. These findings suggest that Bch-HCl/MnO2 and Bch-HCl/Fe3O4/MnO2 are promising, cost-effective adsorbents for mitigating pharmaceutical pollutants in wastewater. Full article
Show Figures

Graphical abstract

16 pages, 1518 KiB  
Article
Comparative Simulation of Solar Adsorption and Absorption Cooling Systems with Latent Heat Storage with Erythritol and MgCl2·6H2O
by Rosenberg J. Romero, Fernando Lara, Eduardo Venegas-Reyes, Moisés Montiel-Gonzalez and Jesús Cerezo
Processes 2025, 13(8), 2655; https://doi.org/10.3390/pr13082655 - 21 Aug 2025
Abstract
The energy requirements for conditioning spaces have been increasing primarily due to population growth and climate change. This paper shows a comparison between an adsorption (ADC) and absorption cooling (ABC) systems to keep a building below the 25 °C set-point in dynamic conditions, [...] Read more.
The energy requirements for conditioning spaces have been increasing primarily due to population growth and climate change. This paper shows a comparison between an adsorption (ADC) and absorption cooling (ABC) systems to keep a building below the 25 °C set-point in dynamic conditions, utilizing a latent heat storage tank with MgCl2·6H2O and erythritol, and employing evacuated tube and parabolic trough collectors. The storage tank geometry is a plate heat exchanger. An auxiliary system was incorporated to control the temperature range of the solar cooling systems. The results showed that the coefficient of performance was kept around 0.40–0.60 and 0.70 for adsorption and absorption cooling, respectively. The latent heat storage tank with erythritol captured more solar energy than MgCl2·6H2O. A maximum solar fraction of 0.96 was obtained with MgCl2·6H2O, a thickness of 0.15 m, 20 m2 of parabolic trough collector area, and absorption cooling, while the energy supply was fully satisfied with a solar collector with erythritol, a thickness of 0.1 m, 13 m2 of parabolic trough area, and absorption cooling. In general, erythritol obtained better results of solar collector fractions than MCHH; however, it has less thermal stability than MgCl2·6H2O, and the cost is higher. Full article
Show Figures

Figure 1

21 pages, 4690 KiB  
Article
High-Pressure Catalytic Ethanol Reforming for Enhanced Hydrogen Production Using Efficient and Stable Nickel-Based Catalysts
by Feysal M. Ali, Pali Rosha, Karen Delfin, Dean Hoaglan, Robert Rapier, Mohammad Yusuf and Hussameldin Ibrahim
Catalysts 2025, 15(8), 795; https://doi.org/10.3390/catal15080795 - 21 Aug 2025
Abstract
The urgent need to address the climate crisis demands a swift transition from fossil fuels to renewable energy. Clean hydrogen, produced through ethanol steam reforming (ESR), offers a viable solution. Traditional ESR operates at atmospheric pressure, requiring costly separation and compression of hydrogen. [...] Read more.
The urgent need to address the climate crisis demands a swift transition from fossil fuels to renewable energy. Clean hydrogen, produced through ethanol steam reforming (ESR), offers a viable solution. Traditional ESR operates at atmospheric pressure, requiring costly separation and compression of hydrogen. High-pressure ESR, however, improves hydrogen purification, streamlines processes like pressure swing adsorption, and reduces operational costs while enhancing energy efficiency. High-pressure ESR also enables compact reactor designs, minimizing equipment size and land use by compressing reactants into smaller volumes. This study evaluates two nickel-based commercial catalysts, AR-401 and NGPR-2, under high-pressure ESR conditions. Key parameters, including reaction temperature, steam-to-ethanol ratio, and weight hourly space velocity, were optimized. At 30 bars, 700 °C, and a steam-to-ethanol ratio of 9, both catalysts demonstrated complete ethanol conversion, with hydrogen selectivity of 65–70% and yields of 4–4.5 moles of H2 per mole of ethanol. Raising the temperature to 850 °C improved hydrogen selectivity to 74% and yielded 5.2 moles of H2 per mole. High-pressure ESR using renewable ethanol provides a scalable, efficient pathway for hydrogen production, supporting sustainable energy solutions. Full article
Show Figures

Figure 1

30 pages, 8812 KiB  
Article
Efficient and Sustainable Removal of Phosphates from Wastewater Using Autoclaved Aerated Concrete and Pumice
by Oanamari Daniela Orbuleț, Cristina Modrogan, Magdalena Bosomoiu, Mirela Cișmașu (Enache), Elena Raluca Cîrjilă (Mihalache), Adina-Alexandra Scarlat (Matei), Denisa Nicoleta Airinei, Adriana Miu (Mihail), Mădălina Grinzeanu and Annette Madelene Dăncilă
Environments 2025, 12(8), 288; https://doi.org/10.3390/environments12080288 - 21 Aug 2025
Viewed by 33
Abstract
Phosphates are key pollutants involved in the eutrophication of water bodies, creating the need for efficient and low-cost strategies for their removal in order to meet environmental quality standards. This study presents a comparative thermodynamic evaluation of phosphate ion adsorption from aqueous solutions [...] Read more.
Phosphates are key pollutants involved in the eutrophication of water bodies, creating the need for efficient and low-cost strategies for their removal in order to meet environmental quality standards. This study presents a comparative thermodynamic evaluation of phosphate ion adsorption from aqueous solutions using two sustainable and readily available materials: autoclaved aerated concrete (AAC) and pumice stone (PS). Batch experiments were conducted under acidic (pH 3) and alkaline (pH 9) conditions to determine equilibrium adsorption capacities, and kinetic experiments were carried out for the best-performing adsorbent. Adsorption data were fitted to the Langmuir and the Freundlich isotherm models, while kinetic data were evaluated using pseudo-first-order and pseudo-second-order models. The Freundlich model showed the best correlation (R2 = 0.90 − 0.97), indicating the heterogeneous nature of the adsorbent surfaces, whereas the Langmuir parameters suggested monolayer adsorption, with maximum capacities of 1006.69 mg/kg for PS and 859.20 mg/kg for AAC at pH 3. Kinetic results confirmed a pseudo-second-order behavior, indicating chemisorption as the main mechanism and the rate-limiting step in the adsorption process. To the best of our knowledge, this is the first study to compare the thermodynamic performance of AAC and PS for phosphate removal under identical experimental conditions. The findings demonstrate the potential of both materials as efficient, low-cost, and thermodynamically favorable adsorbents. Furthermore, the use of AAC, an industrial by-product, and PS, a naturally abundant volcanic material, supports resource recovery and waste valorization, aligning with the principles of the circular economy and sustainable water management. Full article
Show Figures

Graphical abstract

20 pages, 3871 KiB  
Article
Influence of Ammonium on the Adsorption and Desorption of Heavy Metals in Natural Zeolites
by Luca Marco Ofiera and Christian Kazner
Processes 2025, 13(8), 2647; https://doi.org/10.3390/pr13082647 - 21 Aug 2025
Viewed by 74
Abstract
Natural zeolites have gained attention as low-cost adsorbents for the removal of heavy metals (HMs) from wastewater. However, their performance can be compromised by the presence of competing cations such as ammonium (NH4+). This study investigated the competitive adsorption and [...] Read more.
Natural zeolites have gained attention as low-cost adsorbents for the removal of heavy metals (HMs) from wastewater. However, their performance can be compromised by the presence of competing cations such as ammonium (NH4+). This study investigated the competitive adsorption and desorption dynamics of NH4+ and six HMs (Cd, Cr, Cu, Ni, Pb, and Zn) on two natural zeolites. Batch and column experiments using synthetic wastewater were conducted to evaluate the effects of different NH4+ concentrations, pH, and particle size on HM removal efficiency and desorption effects. Results showed that increasing NH4+ concentrations significantly reduce HM adsorption, with total capacity decreasing by ~45% at 100 mg/L NH4-N in kinetic tests. Adsorption isotherms of the HM mixture for both zeolite types followed a clear sigmoidal trend, which was captured well by the Hill model (R2 = 0.99), with loading rates up to 56.14 mg/g. Pb consistently exhibited the highest affinity for zeolites, while Cd, Cr, Ni, and Zn were most affected by NH4+ competition in the column tests. Desorption tests confirmed that NH4+ rapidly re-mobilises adsorbed metals, in particular Cd, Cu, and Zn. Slightly acidic to neutral pH conditions were optimal for minimising HM remobilisation. These findings underscore the need to consider competitive interactions and operational conditions when applying natural zeolites for HM removal, especially in ammonium-rich environments such constructed wetlands, soil filters, or other decentralised applications. Full article
(This article belongs to the Special Issue Innovation of Heavy Metal Adsorption Process)
Show Figures

Figure 1

16 pages, 2633 KiB  
Article
A Comparative Study of Supported Sulfonic Acids Derived from CdO and CaO for the Reactive Adsorption of o-Xylene
by Hongmei Wang, Xiaoxu Zhang, Yifei Niu and Zichuan Ma
Inorganics 2025, 13(8), 275; https://doi.org/10.3390/inorganics13080275 - 20 Aug 2025
Viewed by 143
Abstract
The recovery and control of volatile organic compounds (VOCs) have gained significant attention. Supported sulfonic acid materials show potential in converting aromatic VOCs into non-volatile sulfonic acid derivatives. However, their effectiveness is closely tied to the anchoring state of the sulfonic acid groups. [...] Read more.
The recovery and control of volatile organic compounds (VOCs) have gained significant attention. Supported sulfonic acid materials show potential in converting aromatic VOCs into non-volatile sulfonic acid derivatives. However, their effectiveness is closely tied to the anchoring state of the sulfonic acid groups. In this study, two supported sulfonic acids, SSA@CdO and SSA@CaO, were synthesized via the respective reactions of CdO and CaO with chlorosulfonic acid to investigate how the properties of the supports influence sulfonic acid anchoring and reactivity toward o-xylene. Comprehensive characterization and performance tests revealed that sulfonic acid groups on CdO were covalently bonded, forming positively charged sites ([O0.5Cd–O]ɗ−–SO3Hɗ+) with high loading (9.7 mmol/g), enabling excellent o-xylene removal (≥95.6%) and adsorption capacity (51.67–91.59 mg/g) at 130–150 °C. In contrast, ion-paired bonding on CaO formed negatively charged sites ([O0.5Ca]+:OSO3H), which were inactive in electrophilic sulfonation. This work provides new insights for enhancing supported sulfonic acid materials in VOC treatment. Full article
Show Figures

Graphical abstract

14 pages, 13989 KiB  
Article
Facile Preparation of a Cellulose-Based Thermoresponsive Gel for Rapid Water Harvesting from the Atmosphere
by Xiaoyu Wang, Hui Zhang, Xinxin Liu, Jie Du and Yingguang Xu
Polymers 2025, 17(16), 2253; https://doi.org/10.3390/polym17162253 - 20 Aug 2025
Viewed by 190
Abstract
Atmospheric water harvesting, as an emerging water collection technology, is expected to mitigate water resource crises. Adsorption-based atmospheric water harvesting technology offers distinct advantages, including geographical independence and reduced reliance on ambient humidity levels. Herein, a thermoresponsive gel (PNIPAM/TO-CNF) integrated with lithium chloride [...] Read more.
Atmospheric water harvesting, as an emerging water collection technology, is expected to mitigate water resource crises. Adsorption-based atmospheric water harvesting technology offers distinct advantages, including geographical independence and reduced reliance on ambient humidity levels. Herein, a thermoresponsive gel (PNIPAM/TO-CNF) integrated with lithium chloride was constructed to achieve accelerated moisture sorption and rapid desorption capabilities. In the designated PNIPAM/TO-CNF/LiCl gel, PNIPAM provided a temperature-responsive hydrophilic–hydrophobic transition network; the hydrophilicity and structural strength were enhanced by TO-CNF, the moisture absorption capacity was dramatically elevated by hygroscopic salt LiCl, and pore-forming agent polyethylene glycol created a favorable porous structure. This synergistic design endows the gel with an optimized hydrophilic network, temperature-responsive behavior, and a porous architecture conducive to water vapor transportation, thereby achieving rapid moisture absorption and desorption. Under 60% relative humidity, the gel exhibited a water vapor adsorption capacity of 144% within 1 h, reaching its maximum absorption capacity of 178% after 140 min. The gel exhibited an even more superior desorption performance: when heated to 70 °C, its moisture content rapidly decreased to 16% of its initial weight within 1 h, corresponding to the desorption of 91% of the total absorbed water. A simplified pore-forming methodology that enables the integration of temperature-responsive properties with efficient moisture transfer channels was reported in this paper, providing a viable design pathway for achieving accelerated adsorption–desorption cycles in atmospheric water harvesting. Full article
(This article belongs to the Special Issue Advances in Lignocellulose: Cellulose, Hemicellulose and Lignin)
Show Figures

Graphical abstract

24 pages, 4005 KiB  
Article
Separation of the Biofuel Methyl Ethyl Ketone from Aqueous Solutions Using Avocado-Based Activated Carbons: Synthesis Conditions and Multilayer Adsorption Properties
by Hilda Elizabeth Reynel-Avila, Eduardo Ledea-Figueredo, Lizbeth Liliana Díaz-Muñoz, Adrián Bonilla-Petriciolet, Ismael Alejandro Aguayo-Villarreal, Laura Gabriela Elvir-Padilla and Carlos Javier Durán-Valle
Molecules 2025, 30(16), 3426; https://doi.org/10.3390/molecules30163426 - 20 Aug 2025
Viewed by 146
Abstract
This study reports the separation of methyl ethyl ketone (MEK), a relevant compound in the biorefinery context, from aqueous solutions using activated carbons derived from avocado seed biomass. Two synthesis routes were explored via chemical and thermal activation with H2SO4 [...] Read more.
This study reports the separation of methyl ethyl ketone (MEK), a relevant compound in the biorefinery context, from aqueous solutions using activated carbons derived from avocado seed biomass. Two synthesis routes were explored via chemical and thermal activation with H2SO4 and KOH. A Taguchi experimental design was applied to tailor synthesis conditions, with MEK adsorption capacity as the target property. Adsorption kinetics and isotherms were evaluated to determine the thermodynamic behavior of MEK separation using the best-performing activated carbons. The carbon activated with H2SO4 achieved the highest adsorption capacity (142 mg g−1) at 20 °C and pH 4, surpassing KOH-based materials. This enhanced performance correlated to increased surface area and acidic oxygenated functionalities. However, higher pH and temperature reduced the adsorption efficiency for all adsorbents. Comprehensive characterization was performed using XRD, XRF, FTIR, SEM, N2 adsorption–desorption isotherms, pH at point of zero charge, and surface acidity/basicity analysis via Boehm titration. Thermodynamic data and surface characterization indicated that MEK adsorption occurs via a double-layer mechanism dominated by electrostatic interactions and hydrogen bonding. The findings highlight an optimized approach for tailoring avocado-based activated carbons to efficiently recover MEK from aqueous media, supporting its potential application in downstream purification of fermentation broths for biofuel production and energy transition processes. Full article
(This article belongs to the Special Issue Porous Carbon Materials: Preparation and Application)
Show Figures

Figure 1

Back to TopTop