Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = Garcinia cambogia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 785 KiB  
Review
Dietary Supplements for Weight Loss and Drug Interactions
by Francisco Rivas García, José Antonio García Sierra, Maria-Isabel Valverde-Merino and Maria Jose Zarzuelo Romero
Pharmaceuticals 2024, 17(12), 1658; https://doi.org/10.3390/ph17121658 - 9 Dec 2024
Cited by 2 | Viewed by 3881
Abstract
Food supplements are used for a variety of purposes, one of which is weight reduction. As excess weight is a long-term condition, some supplements are expected to be used for long periods of time. The long-term use of these dietary supplements makes it [...] Read more.
Food supplements are used for a variety of purposes, one of which is weight reduction. As excess weight is a long-term condition, some supplements are expected to be used for long periods of time. The long-term use of these dietary supplements makes it highly likely that they will be combined with medications, increasing the risk of food supplement–drug interactions, which are not always known or disclosed, and can lead to serious health problems, as has been observed. This article discusses some of the compounds used as food supplements for weight reduction (green tea extract, Garcinia cambogia, chitosan, quercetin and resveratrol) and the interactions they may cause with some drugs such as: dextromethorphan, buspirone, diclofenac, irinotecan, 5-fluorouracil, cytochrome P450 inducers and inhibitors, statins, orlistat, warfarina, acenocoumarol, fluoxetine, valproate, quetiapine, carbamazepine. This information is expected to be useful for healthcare professionals to detect and intervene on food supplement–drug interactions to ensure the optimization of therapy and patient safety. Full article
Show Figures

Figure 1

30 pages, 15361 KiB  
Review
Medicinally Significant Enantiopure Compounds from Garcinia Acid Isolated from Garcinia gummi-gutta
by Simimole Haleema, Chithra Gopinath, Zabeera Kallingathodi, Grace Thomas and Prasad L. Polavarapu
Symmetry 2024, 16(10), 1331; https://doi.org/10.3390/sym16101331 - 9 Oct 2024
Cited by 1 | Viewed by 1893
Abstract
Garcinia gummi-gutta, commonly known as Garcinia cambogia (syn.), is a popular traditional herbal medicine known for its role in treating obesity, and has been incorporated into several nutraceuticals globally for this purpose. The fruit rind is also used as a food preservative [...] Read more.
Garcinia gummi-gutta, commonly known as Garcinia cambogia (syn.), is a popular traditional herbal medicine known for its role in treating obesity, and has been incorporated into several nutraceuticals globally for this purpose. The fruit rind is also used as a food preservative and a condiment because of its high content of hydroxycitric acid, which imparts a sharp, sour flavour. This review highlights the major bioactive compounds present in the tree Garcinia gummi-gutta, with particular emphasis on (2S, 3S)-tetrahydro-3-hydroxy-5-oxo-2,3-furan dicarboxylic acid, commonly referred to as garcinia acid. This acid can be isolated in large amounts through a simple procedure. Additionally, it explores the synthetic transformations of garcinia acid into biologically potent and functionally useful enantiopure compounds, a relatively under-documented area in the literature. This acid, with its six-carbon skeleton, a γ-butyrolactone moiety, and two chiral centres bearing chemically amenable functional groups, offers a versatile framework as a chiron for the construction of diverse molecules of both natural and synthetic origin. The synthesis of chiral 3-substituted and 3,4-disubstituted pyrrolidine-2,5-diones, analogues of the Quararibea metabolite—a chiral enolic-γ-lactone; the concave bislactone skeletons of fungal metabolites (+)-avenaciolide and (−)-canadensolide; the structural skeletons of the furo[2,3-b]furanol part of the anti-HIV drug Darunavir; (−)-tetrahydropyrrolo[2,1-a]isoquinolinones, an analogue of (−)-crispine A; (−)-hexahydroindolizino[8,7-b]indolones, an analogue of the naturally occurring (−)-harmicine; and furo[2,3-b]pyrroles are presented here. Full article
(This article belongs to the Special Issue Chemistry: Symmetry/Asymmetry—Feature Papers and Reviews)
Show Figures

Figure 1

14 pages, 6750 KiB  
Article
Lycopene and Garcinia cambogia Induce White-to-Brown Adipose Differentiation: An Innovative Strategy to Curb Obesity
by Federica Mannino, Vincenzo Arcoraci, Giovanna Vermiglio, Davide Labellarte, Igor Pirrotta, Domenico Antonio Giorgi, Alessandro Scarfone, Alessandra Bitto, Letteria Minutoli, Mario Vaccaro, Mariarosaria Galeano, Giovanni Pallio and Natasha Irrera
Pharmaceuticals 2024, 17(8), 986; https://doi.org/10.3390/ph17080986 - 25 Jul 2024
Cited by 1 | Viewed by 1735
Abstract
Obesity is considered one of the main risk factors for cardiovascular diseases. The browning process has been recently recognized as a promising anti-obesity therapy. Lycopene (LYC) and Garcinia cambogia fruit extract (GE) might be important resources for anti-obesity drugs; therefore, the aim of [...] Read more.
Obesity is considered one of the main risk factors for cardiovascular diseases. The browning process has been recently recognized as a promising anti-obesity therapy. Lycopene (LYC) and Garcinia cambogia fruit extract (GE) might be important resources for anti-obesity drugs; therefore, the aim of this study was to investigate the anti-obesity effects of LYC and GE on 3T3-L1 adipocytes and Zucker rats. Mouse 3T3-L1 pre-adipocytes were differentiated in mature adipocytes and then treated with LYC (0.5 μM), GE (30 mg/mL) or LYC + GE for 24 h. Moreover, male Zucker Crl:ZUC-Leprfa rats were randomly assigned to 5 groups of 10 animals to orally receive Vehicle (Ctrl), Orlistat (20 mg/kg), LYC (5 mg/kg), GE (1000 mg/kg) or LYC + GE for 28 days. LYC, GC extracts and even more LYC + GE stimulated the mRNA and protein expression of thermogenic genes UCP1, CIDEA and DIO2, significantly reduced lipid droplet size and increased lipid droplet number in adipocytes. UCP1 mRNA and protein expression was also increased in the visceral adipose tissue of the rats that received the dietary intake of LYC, GE and even more LYC + GE. Moreover, LYC + GE induced the reorganization of visceral fat depots that showed a great number of small adipocytes and a significant reduction in weight gain and food intake compared to the control group. The obtained results demonstrated that LYC + GE might be used as new approaches for obesity management in order to induce the browning process and achieve a metabolically active tissue instead of a tissue characterized by lipid depot accumulation. Full article
(This article belongs to the Special Issue Drug Candidates for the Treatment of Obesity, 2nd Edition)
Show Figures

Figure 1

25 pages, 544 KiB  
Review
Herbal- and Dietary-Supplement-Induced Liver Injury: A Review of the Recent Literature
by Palak A. Patel-Rodrigues, Lindsey Cundra, Dalal Alhaqqan, Daniel T. Gildea, Stephanie M. Woo and James H. Lewis
Livers 2024, 4(1), 94-118; https://doi.org/10.3390/livers4010008 - 13 Feb 2024
Cited by 4 | Viewed by 20578
Abstract
Herbal-induced liver injury (HILI) continues to increase in prevalence each year due to the ongoing popularity of herbal supplements and complementary and alternative medicines. A detailed literature review of case reports and clinical studies published from March 2021 to March 2023 was performed. [...] Read more.
Herbal-induced liver injury (HILI) continues to increase in prevalence each year due to the ongoing popularity of herbal supplements and complementary and alternative medicines. A detailed literature review of case reports and clinical studies published from March 2021 to March 2023 was performed. We discuss the epidemiology and diagnosis of HILI as well as the current and proposed laws and regulations. The 2021 ACG guidelines and 2022 AASLD practice guidelines for the diagnosis and management of drug and herbal-induced liver injury are discussed. We describe updates to previously reported etiologies of HILI such as ayurveda, ashwagandha, turmeric, kratom, green tea extract, and garcinia cambogia. Newly described supplements resulting in HILI, such as tinospora cordifolia, horse chestnut, alkaline water, and more, are described. We discuss newly and previously identified hepatoprotective herbal supplements as they have been reported in the study of animal models and human liver cells. This review suggests the need for ongoing research on the causes and mechanisms of HILI to ensure its proper diagnosis, prevention, and treatment in the future. The goal of this review is to provide novice and expert readers with knowledge regarding the possible etiologies of HILI and a general overview. Full article
Show Figures

Figure 1

19 pages, 5984 KiB  
Article
Hydroxycitric Acid Alleviated Lung Ischemia-Reperfusion Injury by Inhibiting Oxidative Stress and Ferroptosis through the Hif-1α Pathway
by Zi-Long Lu, Cong-Kuan Song, Shi-Shi Zou, Shi-Ze Pan, Kai Lai, Ning Li and Qing Geng
Curr. Issues Mol. Biol. 2023, 45(12), 9868-9886; https://doi.org/10.3390/cimb45120616 - 8 Dec 2023
Cited by 9 | Viewed by 2110
Abstract
Lung ischemia-reperfusion injury (LIRI) is a prevalent occurrence in various pulmonary diseases and surgical procedures, including lung resections and transplantation. LIRI can result in systemic hypoxemia and multi-organ failure. Hydroxycitric acid (HCA), the primary acid present in the peel of Garcinia cambogia, exhibits [...] Read more.
Lung ischemia-reperfusion injury (LIRI) is a prevalent occurrence in various pulmonary diseases and surgical procedures, including lung resections and transplantation. LIRI can result in systemic hypoxemia and multi-organ failure. Hydroxycitric acid (HCA), the primary acid present in the peel of Garcinia cambogia, exhibits anti-inflammatory, antioxidant, and anticancer properties. However, the effects of HCA on LIRI remain unknown. To investigate the impact of HCA on LIRI in mice, the mice were randomly divided into four groups: the control group, the I/R model group, and the I/R + low- or high-dose HCA groups. Human umbilical vein endothelial cells (HUVECs) were subjected to hypoxia for 12 h followed by reoxygenation for 6 h to simulate in vitro LIRI. The results demonstrated that administration of HCA effectively attenuated lung injury, inflammation, and edema induced by ischemia reperfusion. Moreover, HCA treatment significantly reduced malondialdehyde (MDA) and reactive oxygen species (ROS) levels while decreasing iron content and increasing superoxide dismutase (SOD) levels after ischemia-reperfusion insult. Mechanistically, HCA administration significantly inhibited Hif-1α and HO-1 upregulation both in vivo and in vitro. We found that HCA could also alleviate endothelial barrier damage in H/R-induced HUVECs in a concentration-dependent manner. In addition, overexpression of Hif-1α counteracted HCA-mediated inhibition of H/R-induced endothelial cell ferroptosis. In summary, these results indicate that HCA alleviated LIRI by inhibiting oxidative stress and ferroptosis through the Hif-1α pathway. Full article
(This article belongs to the Special Issue Iron Metabolism: From Molecular Mechanisms to Molecular Imaging)
Show Figures

Figure 1

14 pages, 2309 KiB  
Article
Garcinia cambogia Extract Increased Hepatic Levels of Lipolysis-Stimulated Lipoprotein Receptor and Lipids in Mice on Normal Diet
by Marine Hanse, Samina Akbar, Hamed Layeghkhavidaki and Frances T. Yen
Int. J. Mol. Sci. 2023, 24(22), 16298; https://doi.org/10.3390/ijms242216298 - 14 Nov 2023
Cited by 2 | Viewed by 4019
Abstract
Garcinia cambogia extract (GCE) is a popular weight-loss supplement that also lowers plasma triglyceride (TG) levels. We hypothesized that GCE-mediated inhibition of ATP citrate lyase and thereby hepatic TG production could lead to compensatory mechanisms, including increased hepatic TG uptake via lipoprotein receptors. [...] Read more.
Garcinia cambogia extract (GCE) is a popular weight-loss supplement that also lowers plasma triglyceride (TG) levels. We hypothesized that GCE-mediated inhibition of ATP citrate lyase and thereby hepatic TG production could lead to compensatory mechanisms, including increased hepatic TG uptake via lipoprotein receptors. GCE (20 mg/day) administered 40 days orally to female C57BL/6Rj mice on a standard chow diet led to a decrease in both plasma fasting and post-prandial TG-rich lipoprotein levels, but with no significant change in body weight gain. Lipolysis stimulated lipoprotein receptor (LSR) protein levels, but not those of LDL-receptor, were increased as compared to controls. Mouse Hepa1-6 cells treated with the GCE active ingredient, hydroxycitrate, also led to increased LSR protein levels. Hepatic total cholesterol, TG, and muscle TG contents were higher in GCE-treated animals as compared to controls, whereas adipose TG levels were unchanged. LSR and LDL-receptor protein levels were correlated with liver total cholesterol, but only LDL-receptor was associated with liver TG. These results show that GCE treatment in mice on a standard chow diet led to significantly increased liver and muscle lipids, with no significant change in adipose tissue TG levels, which should be considered in the long-term use of GCE. Full article
(This article belongs to the Special Issue Feature Papers in Molecular Endocrinology and Metabolism)
Show Figures

Graphical abstract

23 pages, 5285 KiB  
Article
Interaction of Garcinia cambogia (Gaertn.) Desr. and Drugs as a Possible Mechanism of Liver Injury: The Case of Montelukast
by Silvia Di Giacomo, Antonella Di Sotto, Ester Percaccio, Erica Scuotto, Cecilia Battistelli, Gabriela Mazzanti, Francesca Menniti-Ippolito and Ilaria Ippoliti
Antioxidants 2023, 12(9), 1771; https://doi.org/10.3390/antiox12091771 - 16 Sep 2023
Cited by 1 | Viewed by 3498
Abstract
Overweight and obesity prevalence has increased worldwide. Apart from conventional approaches, people also resort to botanical supplements for reducing body weight, although several adverse events have been associated with these products. In this context, the present study aimed at evaluating the toxicity of [...] Read more.
Overweight and obesity prevalence has increased worldwide. Apart from conventional approaches, people also resort to botanical supplements for reducing body weight, although several adverse events have been associated with these products. In this context, the present study aimed at evaluating the toxicity of Garcinia cambogia-based products and shedding light on the mechanisms involved. The suspected hepatotoxic reactions related to G. cambogia-containing products collected within the Italian Phytovigilance System (IPS) were examined. Then, an in vitro study was performed to evaluate the possible mechanisms responsible for the liver toxicity, focusing on the modulation of oxidative stress and Nrf2 expression. From March 2002 to March 2022, the IPS collected eight reports of hepatic adverse reactions related to G. cambogia, which exclusively involved women and were mostly severe. The causality assessment was probable in three cases, while it was possible in five. In the in vitro experiments, a low cytotoxicity of G. cambogia was observed. However, its combination with montelukast greatly reduced cell viability, increased the intracellular ROS levels, and affected the cytoplasmic Nrf2 expression, thus suggesting an impairment of the antioxidant and cytoprotective defenses. Overall, our results support the safety concerns about G. cambogia-containing supplements and shed light on the possible mechanisms underpinning its hepatotoxicity. Full article
(This article belongs to the Special Issue Something is Rotten in the State of Redox)
Show Figures

Figure 1

19 pages, 5417 KiB  
Article
Combination of Lactobacillus plantarum HAC03 and Garcinia cambogia Has a Significant Anti-Obesity Effect in Diet-Induced Obesity Mice
by Youn-Goo Kang, Taeyoung Lee, Jaeyoung Ro, Sanghun Oh, Jin-Hwan Kwak and Ah-Ram Kim
Nutrients 2023, 15(8), 1859; https://doi.org/10.3390/nu15081859 - 12 Apr 2023
Cited by 6 | Viewed by 3914
Abstract
Obesity is a major global health problem which is associated with various diseases and psychological conditions. Increasing understanding of the relationship between obesity and gut microbiota has led to a worldwide effort to use microbiota as a treatment for obesity. However, several clinical [...] Read more.
Obesity is a major global health problem which is associated with various diseases and psychological conditions. Increasing understanding of the relationship between obesity and gut microbiota has led to a worldwide effort to use microbiota as a treatment for obesity. However, several clinical trials have shown that obesity treatment with single strains of probiotics did not achieve as significant results as in animal studies. To overcome this limitation, we attempted to find a new combination that goes beyond the effects of probiotics alone by combining probiotics and a natural substance that has a stronger anti-obesity effect. In this study, we used a diet-induced obesity mouse (DIO) model to investigate the effects of combining Lactobacillus plantarum HAC03 with Garcinia cambogia extract, as compared to the effects of each substance alone. Combining L. plantarum HAC03 and G. cambogia, treatment showed a more than two-fold reduction in weight gain compared to each substance administered alone. Even though the total amount administered was kept the same as for other single experiments, the combination treatment significantly reduced biochemical markers of obesity and adipocyte size, in comparison to the treatment with either substance alone. The treatment with a combination of two substances also significantly decreased the gene expression of fatty acid synthesis (FAS, ACC, PPARγ and SREBP1c) in mesenteric adipose tissue (MAT). Furthermore, 16S rRNA gene sequencing of the fecal microbiota suggested that the combination of L. plantarum HAC03 and G. cambogia extract treatment changed the diversity of gut microbiota and altered specific bacterial taxa at the genus level (the Eubacterium coprostanoligenes group and Lachnospiraceae UCG group) and specific functions (NAD salvage pathway I and starch degradation V). Our results support that the idea that the combination of L. plantarum HAC03 and G. cambogia extract has a synergistic anti-obesity effect by restoring the composition of the gut microbiota. This combination also increases the abundance of bacteria responsible for energy metabolism, as well as the production of SCFAs and BCAAs. Furthermore, no significant adverse effects were observed during the experiment. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

10 pages, 1614 KiB  
Article
Garcinia cambogia Phenolics as Potent Anti-COVID-19 Agents: Phytochemical Profiling, Biological Activities, and Molecular Docking
by Hanan Y. Aati, Ahmed Ismail, Mostafa E. Rateb, Asmaa M. AboulMagd, Hossam M. Hassan and Mona H. Hetta
Plants 2022, 11(19), 2521; https://doi.org/10.3390/plants11192521 - 26 Sep 2022
Cited by 13 | Viewed by 2862
Abstract
COVID-19 is a disease caused by the coronavirus SARS-CoV-2 and became a pandemic in a critically short time. Phenolic secondary metabolites attracted much attention from the pharmaceutical industries for their easily accessible natural sources and proven antiviral activity. In our mission, a metabolomics [...] Read more.
COVID-19 is a disease caused by the coronavirus SARS-CoV-2 and became a pandemic in a critically short time. Phenolic secondary metabolites attracted much attention from the pharmaceutical industries for their easily accessible natural sources and proven antiviral activity. In our mission, a metabolomics study of the Garcinia cambogia Roxb. fruit rind was performed using LC-HRESIMS to investigate its chemical profile, especially the polar aspects, followed by a detailed phytochemical analysis, which led to the isolation of eight known compounds. Using spectrometric techniques, the isolated compounds were identified as quercetin, amentoflavone, vitexin, rutin, naringin, catechin, p-coumaric, and gallic acids. The antiviral activities of the isolated compounds were investigated using two assays; the 3CL-Mpro enzyme showed that naringin had a potent effect with IC50 16.62 μg/mL, followed by catechin and gallic acid (IC50 26.2, 30.35 μg/mL, respectively), while the direct antiviral inhibition effect of naringin confirmed the potency with an EC50 of 0.0169 μM. To show the molecular interaction, in situ molecular docking was carried out using a COVID-19 protease enzyme. Both biological effects and docking studies showed the hydrophobic interactions with Gln 189 or Glu 166, per the predicated binding pose of the isolated naringin. Full article
Show Figures

Figure 1

14 pages, 1036 KiB  
Article
Quality Evaluation of Dietary Supplements for Weight Loss Based on Garcinia cambogia
by Adal Mena-García, Angie Julieth Bellaizac-Riascos, Maite Rada-Mendoza, Diana María Chito-Trujillo, Ana Isabel Ruiz-Matute and María Luz Sanz
Nutrients 2022, 14(15), 3077; https://doi.org/10.3390/nu14153077 - 27 Jul 2022
Cited by 8 | Viewed by 6056
Abstract
Food supplements of plant origin for weight control are increasingly being demanded by consumers as a way to promote good health. Among them, those based on Garcinia cambogia (GCFS) are widely commercialized considering their bioactive properties, mainly due to (-)-hydroxycitric acid ((-)-HCA). However, [...] Read more.
Food supplements of plant origin for weight control are increasingly being demanded by consumers as a way to promote good health. Among them, those based on Garcinia cambogia (GCFS) are widely commercialized considering their bioactive properties, mainly due to (-)-hydroxycitric acid ((-)-HCA). However, recently, controversy has arisen over their safety; thus, further research and continuous monitoring of their composition is required. Hence, in this work, a multi-analytical approach was followed to determine not only (-)-HCA but also other constituents of 18 GCFS, which could be used as quality markers to detect fraudulent practices in these samples. Discrepancies between the declared (-)-HCA content and that experimentally determined were detected by LC–UV in 33% of the samples. Moreover, GC–MS analyses of GCFS allowed the detection of different compounds not present in G. cambogia fruits and not declared on supplement labels, probably related to heat exposure or to the addition of excipients or other extracts. This multi-analytical methodology is shown to be advantageous to address different fraudulent practices affecting the quality of these supplements. Full article
(This article belongs to the Special Issue Modulation by Dietary Supplements in Obesity)
Show Figures

Graphical abstract

13 pages, 1912 KiB  
Article
Hydroxycitric Acid Inhibits Chronic Myelogenous Leukemia Growth through Activation of AMPK and mTOR Pathway
by Doriana Verrelli, Luca Dallera, Massimo Stendardo, Silvia Monzani, Sebastiano Pasqualato, Marco Giorgio and Rani Pallavi
Nutrients 2022, 14(13), 2669; https://doi.org/10.3390/nu14132669 - 27 Jun 2022
Cited by 15 | Viewed by 3547
Abstract
Metabolic regulation of cancer cell growth via AMP-activated protein kinase (AMPK) activation is a widely studied strategy for cancer treatment, including leukemias. Recent notions that naturally occurring compounds might have AMPK activity led to the search for nutraceuticals with potential AMPK-stimulating activity. We [...] Read more.
Metabolic regulation of cancer cell growth via AMP-activated protein kinase (AMPK) activation is a widely studied strategy for cancer treatment, including leukemias. Recent notions that naturally occurring compounds might have AMPK activity led to the search for nutraceuticals with potential AMPK-stimulating activity. We found that hydroxycitric acid (HCA), a natural, safe bioactive from the plant Garcinia gummi-gutta (cambogia), has potent AMPK activity in chronic myelogenous leukemia (CML) cell line K562. HCA is a known competitive inhibitor of ATP citrate lyase (ACLY) and is widely used as a weight loss inducer. We found that HCA was able to inhibit the growth of K562 cells in in vitro and in vivo xenograft models. At the mechanistic level, we identified a direct interaction between AMPK and ACLY that seems to be sensitive to HCA treatment. Additionally, HCA treatment resulted in the co-activation of AMPK and the mammalian target of rapamycin (mTOR) pathways. Moreover, we found an enhanced unfolded protein response as observed by activation of the eIF2α/ATF4 pathway that could explain the induction of cell cycle arrest at the G2/M phase and DNA fragmentation upon HCA treatment in K562 cells. Overall, these findings suggest HCA as a nutraceutical approach for the treatment of CMLs. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

11 pages, 736 KiB  
Article
Cytochrome P450 and P-gp Mediated Herb-Drug Interactions and Molecular Docking Studies of Garcinol
by Lavanya Bolla, Pratima Srivastava, Velayutham Ravichandiran and Satheesh Kumar Nanjappan
Membranes 2021, 11(12), 992; https://doi.org/10.3390/membranes11120992 - 19 Dec 2021
Cited by 14 | Viewed by 4186
Abstract
Garcinol is an active constituent of Garcinia indica and Garcinia cambogia. Recent studies have proven that garcinol has anti-inflammatory, anti-cancer, and anti-oxidant activities. The objective of this study was to evaluate the inhibitory effects of garcinol on the activities of the drug [...] Read more.
Garcinol is an active constituent of Garcinia indica and Garcinia cambogia. Recent studies have proven that garcinol has anti-inflammatory, anti-cancer, and anti-oxidant activities. The objective of this study was to evaluate the inhibitory effects of garcinol on the activities of the drug metabolizing cytochrome P450 (CYP) isozymes to predict potential herb-drug interactions with co-administered drugs. Garcinol was incubated with a mixture of rat liver microsomes and eight CYP probe substrate cocktail under optimized incubation conditions and the samples were analyzed using a validated method on LC-MS/MS. Garcinol showed strong inhibition with IC50 values of CYP1A2 (7.6 µM), CYP2C9 (8.0 µM), CYP2B6 (2.1 µM), CYP2D6 (9.5 µM), and CYP3A4 (5.1 µM), respectively, and moderate inhibition towards CYP2C19 (16.4 µM) and CYP2E1 (19.0 µM). Molecular docking studies were performed on garcinol against the active sites of CYP2B6 and CYP3A4 proteins. These results further confirmed that the inhibitory activity of garcinol occurred by occupying the active sites of these human CYPs and by making favorable interactions with its key residues. In-vivo CYP inhibition studies were carried out in Sprague-Dawley rats. These results suggest garcinol may cause herb-drug interactions, mediated by inhibition of CYPs involved in drug metabolism in-vivo by altering the pharmacokinetic parameters like AUC and Cmax in a clinically significant manner. Garcinol was found to upregulate the expression and activity of P-gp in western blotting study and P-gp inhibition study in-vivo. These findings give a clear understanding to predict potential herb-drug/drug-drug interactions of garcinol for safe clinical use in future. Full article
(This article belongs to the Special Issue Study on Drug-Membrane Interactions, Volume II)
Show Figures

Figure 1

13 pages, 3297 KiB  
Article
Arousal-Inducing Effect of Garcinia cambogia Peel Extract in Pentobarbital-Induced Sleep Test and Electroencephalographic Analysis
by Duhyeon Kim, Jinsoo Kim, Seonghui Kim, Minseok Yoon, Minyoung Um, Dongmin Kim, Sangoh Kwon and Suengmok Cho
Nutrients 2021, 13(8), 2845; https://doi.org/10.3390/nu13082845 - 19 Aug 2021
Cited by 11 | Viewed by 5518
Abstract
Caffeine, a natural stimulant, is known to be effective for weight loss. On this basis, we screened the arousal-inducing effect of five dietary supplements with a weight loss effect (Garcinia cambogia, Coleus forskohlii, Camellia sinensis L., Irvingia gabonensis, and [...] Read more.
Caffeine, a natural stimulant, is known to be effective for weight loss. On this basis, we screened the arousal-inducing effect of five dietary supplements with a weight loss effect (Garcinia cambogia, Coleus forskohlii, Camellia sinensis L., Irvingia gabonensis, and Malus pumila M.), of which the G. cambogia peel extract (GC) showed a significant arousal-inducing effect in the pentobarbital-induced sleep test in mice. This characteristic of GC was further evaluated by analysis of electroencephalogram and electromyogram in C57L/6N mice, and it was compared to that of the positive control, caffeine. Administration of GC (1500 mg/kg) significantly increased wakefulness and decreased non-rapid eye movement sleep, similar to that of caffeine (25 mg/kg), with GC and caffeine showing a significant increase in wakefulness at 2 and 6 h, respectively. Compared to that of caffeine, the shorter duration of efficacy of GC could be advantageous because of the lower possibility of sleep disturbance. Furthermore, the arousal-inducing effects of GC (1500 mg/kg) and caffeine (25 mg/kg) persisted throughout the chronic (3 weeks) administration study. This study, for the first time, revealed the arousal-inducing effect of GC. Our findings suggest that GC might be a promising natural stimulant with no side effects. In addition, it is preferential to take GC as a dietary supplement for weight loss during the daytime to avoid sleep disturbances owing to its arousal-inducing effect. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Graphical abstract

20 pages, 3180 KiB  
Article
Garcinia cambogia Ameliorates Non-Alcoholic Fatty Liver Disease by Inhibiting Oxidative Stress-Mediated Steatosis and Apoptosis through NRF2-ARE Activation
by Joo-Hui Han, Min-Ho Park and Chang-Seon Myung
Antioxidants 2021, 10(8), 1226; https://doi.org/10.3390/antiox10081226 - 29 Jul 2021
Cited by 30 | Viewed by 5626
Abstract
Excessive free fatty acids (FFAs) causes reactive oxygen species (ROS) generation and non-alcoholic fatty liver disease (NAFLD) development. Garcinia cambogia (G. cambogia) is used as an anti-obesity supplement, and its protective potential against NAFLD has been investigated. This study aims to [...] Read more.
Excessive free fatty acids (FFAs) causes reactive oxygen species (ROS) generation and non-alcoholic fatty liver disease (NAFLD) development. Garcinia cambogia (G. cambogia) is used as an anti-obesity supplement, and its protective potential against NAFLD has been investigated. This study aims to present the therapeutic effects of G. cambogia on NAFLD and reveal underlying mechanisms. High-fat diet (HFD)-fed mice were administered G. cambogia for eight weeks, and steatosis, apoptosis, and biochemical parameters were examined in vivo. FFA-induced HepG2 cells were treated with G. cambogia, and lipid accumulation, apoptosis, ROS level, and signal alterations were examined. The results showed that G. cambogia inhibited HFD-induced steatosis and apoptosis and abrogated abnormalities in serum chemistry. G. cambogia increased in NRF2 nuclear expression and activated antioxidant responsive element (ARE), causing induction of antioxidant gene expression. NRF2 activation inhibited FFA-induced ROS production, which suppressed lipogenic transcription factors, C/EBPα and PPARγ. Moreover, the ability of G. cambogia to inhibit ROS production suppressed apoptosis by normalizing the Bcl-2/BAX ratio and PARP cleavage. Lastly, these therapeutic effects of G. cambogia were due to hydroxycitric acid (HCA). These findings provide new insight into the mechanism by which G. cambogia regulates NAFLD progression. Full article
Show Figures

Figure 1

14 pages, 3063 KiB  
Article
Polygonum multiflorum Thunb. Hot Water Extract Reverses High-Fat Diet-Induced Lipid Metabolism of White and Brown Adipose Tissues in Obese Mice
by Ra-Yeong Choi and Mi-Kyung Lee
Plants 2021, 10(8), 1509; https://doi.org/10.3390/plants10081509 - 23 Jul 2021
Cited by 9 | Viewed by 4172
Abstract
The purpose of the present study was to determine whether an anti-obesity effect of a Polygonum multiflorum Thunb. hot water extract (PW) was involved in the lipid metabolism of white adipose tissue (WAT) and brown adipose tissue (BAT) in high-fat diet (HFD)-induced C57BL/6N [...] Read more.
The purpose of the present study was to determine whether an anti-obesity effect of a Polygonum multiflorum Thunb. hot water extract (PW) was involved in the lipid metabolism of white adipose tissue (WAT) and brown adipose tissue (BAT) in high-fat diet (HFD)-induced C57BL/6N obese mice. Mice freely received a normal diet (NCD) or an HFD for 12 weeks; HFD-fed mice were orally given PW (100 or 300 mg/kg) or garcinia cambogia (GC, 200 mg/kg) once a day. After 12 weeks, PW (300 mg/kg) or GC significantly alleviated adiposity by reducing body weight, WAT weights, and food efficiency ratio. PW (300 mg/kg) improved hyperinsulinemia and enhanced insulin sensitivity. In addition, PW (300 mg/kg) significantly down-regulated expression of carbohydrate-responsive element-binding protein (ChREBP) and diacylglycerol O-acyltransferase 2 (DGAT2) genes in WAT compared with the untreated HFD group. HFD increased BAT gene levels such as adrenoceptor beta 3 (ADRB3), peroxisome proliferator-activated receptor γ (PPARγ), hormone-sensitive lipase (HSL), cluster of differentiation 36 (CD36), fatty acid-binding protein 4 (FABP4), PPARγ coactivator 1-α (PGC-1α), PPARα, and carnitine palmitoyltransferase 1B (CPT1B) compared with the NCD group; however, PW or GC effectively reversed those levels. These findings suggest that the anti-obesity activity of PW was mediated via suppression of lipogenesis in WAT, leading to the normalization of lipid metabolism in BAT. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants II)
Show Figures

Figure 1

Back to TopTop