Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (184)

Search Parameters:
Keywords = GPS/GLONASS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7180 KB  
Technical Note
Assessing the Quality of GNSS Observations for Permanent Stations in Mexico (2020–2023)
by Rosendo Romero-Andrade, Karan Nayak, Rafaela Mirasol Llanes-Hernández, Norberto Alcántar-Elizondo, Tiojari Dagoberto Guzmán-Galindo and Yedid Guadalupe Zambrano-Medina
Geomatics 2025, 5(3), 48; https://doi.org/10.3390/geomatics5030048 - 16 Sep 2025
Viewed by 309
Abstract
A quality assessment of Global Navigation Satellite System (GNSS) observations was conducted for 95 Continuously Operating Reference Stations (CORSs) across Mexico over the period 2020–2023 using the ANUBIS software package. The evaluation was carried out according to International GNSS Service (IGS) quality indicators, [...] Read more.
A quality assessment of Global Navigation Satellite System (GNSS) observations was conducted for 95 Continuously Operating Reference Stations (CORSs) across Mexico over the period 2020–2023 using the ANUBIS software package. The evaluation was carried out according to International GNSS Service (IGS) quality indicators, including the data utilization ratio (R), multipath effect (MP), cycle slips (CSR), and signal-to-noise ratio (SNR). Stations belonging to the National Active Geodetic Network (RGNA), the government-managed geodetic network, exhibited the highest observation quality, with most meeting IGS thresholds for MP, CSR, and SNR. Nevertheless, none of the RGNA stations reached the recommended 95% threshold for data utilization ratio. In contrast, CORS-NOAA and EarthScope stations operating in Mexico generally failed to satisfy IGS standards, although acceptable SNR values were observed at some sites. Upgrades to multi-constellation receivers (GPS, GLONASS, GALILEO) did not consistently improve data quality. These findings highlight the role of processing software and configuration choices in GNSS data quality assessments and emphasize the importance of continued modernization of geodetic infrastructure in Mexico. Full article
Show Figures

Figure 1

20 pages, 2729 KB  
Article
Simulation Study of Multi-GNSS Positioning Systems in Urban Canyon Environments
by Seung-Hoon Hwang and Ju-Hyun Maeng
Electronics 2025, 14(17), 3485; https://doi.org/10.3390/electronics14173485 - 31 Aug 2025
Viewed by 836
Abstract
This study presents a comprehensive performance evaluation of hybrid global navigation satellite system (GNSS) configurations in urban canyon environments across South Korea, focusing on the integration of Global Positioning System (GPS) with the BeiDou, GLONASS, Galileo, Quasi Zenith Satellite System (QZSS), and Navigation [...] Read more.
This study presents a comprehensive performance evaluation of hybrid global navigation satellite system (GNSS) configurations in urban canyon environments across South Korea, focusing on the integration of Global Positioning System (GPS) with the BeiDou, GLONASS, Galileo, Quasi Zenith Satellite System (QZSS), and Navigation with Indian Constellation (NavIC) constellations. Simulation scenarios representing pedestrian, vehicular, and unmanned aerial vehicle (UAV) movements are used to analyze the positioning accuracy and reliability of each hybrid system. The results indicate that GPS–BeiDou and GPS–QZSS combinations consistently provide superior accuracy and continuous satellite visibility, with GPS–BeiDou achieving centimeter-level precision in the UAV scenario. In contrast, GPS–GLONASS and GPS–NavIC systems exhibit higher error rates and less stable performance. These findings emphasize the critical role of satellite availability, receiver altitude, and signal compatibility in achieving robust positioning. Although the results are specific to South Korea, the proposed evaluation framework is broadly applicable and can help other countries assess hybrid GNSS performance to guide the design and optimization of their regional navigation satellite systems. Full article
Show Figures

Figure 1

16 pages, 12472 KB  
Article
Modeling and Accuracy Evaluation of Ionospheric VTEC Across China Utilizing CMONOC GPS/GLONASS Observations
by Fu-Ying Zhu and Chen Zhou
Atmosphere 2025, 16(8), 988; https://doi.org/10.3390/atmos16080988 - 20 Aug 2025
Viewed by 515
Abstract
Accurate estimation of the regional ionospheric model (RIM) is essential for Total electron content and high-precision applications of the Global Navigation Satellite System (GNSS). Utilizing dual-frequency observations from over 250 Crustal Movement Observation Network of China (CMONOC) monitoring stations, which are equipped with [...] Read more.
Accurate estimation of the regional ionospheric model (RIM) is essential for Total electron content and high-precision applications of the Global Navigation Satellite System (GNSS). Utilizing dual-frequency observations from over 250 Crustal Movement Observation Network of China (CMONOC) monitoring stations, which are equipped with both GPS and GLONASS receivers, this study investigates the Vertical Total Electron Content (VTEC) estimation models over the China region and evaluates the estimation accuracy under both GPS-only and GPS+GLONASS configurations. Results indicate that, over the Chinese region, the spherical harmonic reginal ionospheric model (G_SH RIM) and polynomial function reginal ionospheric model (G_Poly RIM) based on single GPS observations demonstrate comparable accuracy with highly consistent spatiotemporal distribution characteristics, showing grid mean deviations of 1.60 TECu and 1.62 TECu, respectively. The combined GPS+GLONASS observation-based RIMs (GR_SH RIM and GR_Poly RIM) significantly improve the TEC modeling accuracy in the Chinese peripheral regions, though the overall average accuracy decreases compared to single-GPS models. Specifically, GR_SH RIM and GR_Poly RIM exhibit mean deviations of 2.15 TECu and 2.32 TECu, respectively. A preliminary analysis reveals that the reduced accuracy is primarily due to the systematic errors introduced by imprecise differential code biases (DCBs) of GLONASS satellites. These findings can provide valuable references for multi-GNSS regional ionospheric estimation. Full article
(This article belongs to the Special Issue Advanced GNSS for Ionospheric Sounding and Disturbances Monitoring)
Show Figures

Figure 1

18 pages, 5324 KB  
Article
The Yunyao LEO Satellite Constellation: Occultation Results of the Neutral Atmosphere Using Multi-System Global Navigation Satellites
by Hengyi Yue, Naifeng Fu, Fenghui Li, Yan Cheng, Mengjie Wu, Peng Guo, Wenli Dong, Xiaogong Hu and Feixue Wang
Remote Sens. 2025, 17(16), 2851; https://doi.org/10.3390/rs17162851 - 16 Aug 2025
Viewed by 480
Abstract
The Yunyao Aerospace Constellation Program is the core project being developed by Yunyao Aerospace Technology Co., Ltd., Tianjin, China. It aims to provide scientific data for weather forecasting, as well as research on the ionosphere and neutral atmosphere. It is expected to launch [...] Read more.
The Yunyao Aerospace Constellation Program is the core project being developed by Yunyao Aerospace Technology Co., Ltd., Tianjin, China. It aims to provide scientific data for weather forecasting, as well as research on the ionosphere and neutral atmosphere. It is expected to launch 90 high time resolution weather satellites. Currently, the Yunyao space constellation provides nearly 16,000 BDS, GPS, GLONASS, and Galileo multi-system occultation profile products on a daily basis. This study initially calculates the precise orbits of Yunyao LEO satellites independently using each GNSS constellation, allowing the derivation of the neutral atmospheric refractive index profile. The precision of the orbit product was evaluated by comparing carrier-phase residuals (ranging from 1.48 cm to 1.68 cm) and overlapping orbits. Specifically, for GPS-based POD, the average 3D overlap accuracy was 4.93 cm, while for BDS-based POD, the average 3D overlap accuracy was 5.18 cm. Simultaneously, the global distribution, the local time distribution, and penetration depth of the constellation were statistically analyzed. BDS demonstrates superior performance with 21,093 daily occultation profiles, significantly exceeding GPS and GLONASS by 15.9% and 121%, respectively. Its detection capability is evidenced by 79.75% of profiles penetrating below a 2 km altitude, outperforming both GPS (78.79%) and GLONASS (71.75%) during the 7-day analysis period (DOY 169–175, 2023). The refractive index profile product was also compared with the ECWMF ERA5 product. At 35 km, the standard deviation of atmospheric refractivity for BDS remains below 1%, while for GPS and GLONASS it is found at around 1.5%. BDS also outperforms GPS and GLONASS in terms of the standard deviation in the atmospheric refractive index. These results indicate that Yunyao satellites can provide high-quality occultation product services, like for weather forecasting. With the successful establishment of the global BDS-3 network, the space signal accuracy has been significantly enhanced, with BDS-3 achieving a Signal-in-Space Ranging Error (SISRE) of 0.4 m, outperforming GPS (0.6 m) and GLONASS (1.7 m). This enables superior full-link occultation products for BDS. Full article
Show Figures

Figure 1

22 pages, 23032 KB  
Article
Statistical Approach to Research on the Relationship Between Kp/Dst Geomagnetic Indices and Total GPS Position Error
by Mario Bakota, Igor Jelaska, Serdjo Kos and David Brčić
Remote Sens. 2025, 17(14), 2374; https://doi.org/10.3390/rs17142374 - 10 Jul 2025
Viewed by 718
Abstract
This study examines the impact of geomagnetic disturbances quantified by the Kp and Dst indices on the accuracy of single-frequency GPS positioning across mid-latitudes and the equatorial zone, with a focus on temporal and spatial positioning errors variability. GNSS data from a globally [...] Read more.
This study examines the impact of geomagnetic disturbances quantified by the Kp and Dst indices on the accuracy of single-frequency GPS positioning across mid-latitudes and the equatorial zone, with a focus on temporal and spatial positioning errors variability. GNSS data from a globally distributed network of 14 IGS stations were analyzed for September 2017, featuring significant geomagnetic activity. The selection of stations encompassed equatorial and mid-latitude regions (approximately ±45°), strategically aligned with the distribution of the Dst index during geomagnetic storms. Satellite navigation data were processed using RTKLIB software in standalone mode with standardized atmospheric and orbital corrections. The GPS was chosen over GLONASS following preliminary testing, which revealed a higher sensitivity of GPS positional accuracy to variations in geomagnetic indices such as Kp and Dst, despite generally lower total error magnitudes. The ECEF coordinate system calculates the total GPS error as the vector sum of deviations in the X, Y, and Z axes. Statistical evaluation was performed using One-Way Repeated Measures ANOVA to determine whether positional error variances across geomagnetic activity phases were significant. The results of the variance analysis confirm that the variation in the total GPS positioning error is non-random and can be attributed to the influence of geomagnetic storms. However, regression analysis reveals that the impact of geomagnetic storms (quantified by Kp and Dst) displays spatiotemporal variability, with no consistent correlation to GPS positioning error dynamics. The findings, as well as the developed methodology, have qualitative implications for GNSS-dependent operations in sensitive sectors such as navigation, timing services, and geospatial monitoring. Full article
Show Figures

Figure 1

20 pages, 2791 KB  
Article
Assessment of Affordable Real-Time PPP Solutions for Transportation Applications
by Mohamed Abdelazeem, Amgad Abazeed, Abdulmajeed Alsultan and Amr M. Wahaballa
Algorithms 2025, 18(7), 390; https://doi.org/10.3390/a18070390 - 26 Jun 2025
Viewed by 470
Abstract
With the availability of multi-frequency, multi-constellation global navigation satellite system (GNSS) modules, precise transportation applications have become attainable. For transportation applications, GNSS geodetic-grade receivers can achieve an accuracy of a few centimeters to a few decimeters through differential, precise point positioning (PPP), real-time [...] Read more.
With the availability of multi-frequency, multi-constellation global navigation satellite system (GNSS) modules, precise transportation applications have become attainable. For transportation applications, GNSS geodetic-grade receivers can achieve an accuracy of a few centimeters to a few decimeters through differential, precise point positioning (PPP), real-time kinematic (RTK), and PPP-RTK solutions in both post-processing and real-time modes; however, these receivers are costly. Therefore, this research aims to assess the accuracy of a cost-effective multi-GNSS real-time PPP solution for transportation applications. For this purpose, the U-blox ZED-F9P module is utilized to collect dual-frequency multi-GNSS observations through a moving vehicle in a suburban area in New Aswan City, Egypt; thereafter, datasets involving different multi-GNSS combination scenarios are processed, including GPS, GPS/GLONASS, GPS/Galileo, and GPS/GLONASS/Galileo, using both RT-PPP and RTK solutions. For the RT-PPP solution, the satellite clock and orbit correction products from Bundesamt für Kartographie und Geodäsie (BKG), Centre National d’Etudes Spatiales (CNES), and the GNSS research center of Wuhan University (WHU) are applied to account for the real-time mode. Moreover, GNSS datasets from two geodetic-grade Trimble R4s receivers are collected; hence, the datasets are processed using the traditional kinematic differential solution to provide a reference solution. The results indicate that this cost-effective multi-GNSS RT-PPP solution can attain positioning accuracy within 1–3 dm, and is thus suitable for a variety of transportation applications, including intelligent transportation system (ITS), self-driving cars, and automobile navigation applications. Full article
(This article belongs to the Section Analysis of Algorithms and Complexity Theory)
Show Figures

Figure 1

20 pages, 7507 KB  
Article
Undifferenced Ambiguity Resolution for Precise Multi-GNSS Products to Support Global PPP-AR
by Junqiang Li, Jing Guo, Shengyi Xu and Qile Zhao
Remote Sens. 2025, 17(8), 1451; https://doi.org/10.3390/rs17081451 - 18 Apr 2025
Cited by 1 | Viewed by 1087
Abstract
Precise point positioning ambiguity resolution (PPP-AR) is a key technique for high-precision global navigation satellite system (GNSS) observations, with phase bias products playing a critical role in its implementation. The multi-GNSS experiment analysis center at Wuhan University (WUM) has adopted the undifferenced ambiguity [...] Read more.
Precise point positioning ambiguity resolution (PPP-AR) is a key technique for high-precision global navigation satellite system (GNSS) observations, with phase bias products playing a critical role in its implementation. The multi-GNSS experiment analysis center at Wuhan University (WUM) has adopted the undifferenced ambiguity resolution (UDAR) approach to generate high-precision orbit, clock, and observable-specific bias (OSB) products to support PPP-AR since day 162 of 2023. This study presents the analysis strategy employed and assesses the impact of the transition to ambiguity resolution on the orbit precision, using metrics such as orbit boundary discontinuities (OBD) and satellite laser ranging (SLR) validation. Additionally, the stability of the OSB products and the overall performance of PPP-AR solutions are evaluated. The OBD demonstrates specific improvements of 7.1% and 9.5% for GPS and Galileo, respectively, when UDAR is applied. Notably, BDS-3 medium Earth orbit satellites show a remarkable 15.2% improvement compared to the double-differenced results. However, for the remaining constellations, the improvements are either minimal or result in degradation. Using GPS and GLONASS solutions from the International GNSS Service (IGS) and other solutions from the European Space Agency (ESA) as references, the orbit differences of WUM solutions based on UDAR exhibit a significant reduction. However, the improvements in SLR validation are limited, as the radial orbit precision is primarily influenced by the dynamic model. The narrow-lane ambiguity fixing rate for static PPP-AR, based on data from approximately 430 globally distributed stations, reaches 99.2%, 99.2%, 88.8%, and 98.6% for GPS, Galileo, BDS-2, and BDS-3, respectively. The daily repeatability of station coordinates is approximately 1.4 mm, 1.9 mm, and 3.9 mm in the east, north, and up directions, respectively. Overall, these results demonstrate the effectiveness and potential of WUM’s undifferenced ambiguity resolution approach in enhancing GNSS data processing and facilitating PPP-AR applications. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Figure 1

21 pages, 7328 KB  
Article
Backpropagation Neural Network-Assisted Helmert Variance Model for Weighted Global Navigation Satellite System Localization in High Orbit
by Zhipu Wang, Xialan Chen, Zimin Huo, Zhibo Fang and Zhenting Xu
Electronics 2025, 14(8), 1529; https://doi.org/10.3390/electronics14081529 - 10 Apr 2025
Viewed by 457
Abstract
In high-orbit space missions, the significant attenuation of Global Navigation Satellite System (GNSS) signals due to long transmission distances and complex environmental interferences has led to a drastic degradation in the accuracy of traditional positioning models, which has attracted great attention in recent [...] Read more.
In high-orbit space missions, the significant attenuation of Global Navigation Satellite System (GNSS) signals due to long transmission distances and complex environmental interferences has led to a drastic degradation in the accuracy of traditional positioning models, which has attracted great attention in recent years. Although multi-system GNSS fusion positioning can alleviate the problem of insufficient satellite visibility, the existing methods are difficult to effectively cope with the challenges of multi-source noise coupling and inter-system error differences unique to high orbit. In this paper, we propose an adaptive GNSS positioning optimization framework for a high-orbit environment, which improves the orbiting reliability under complex signal conditions through dynamic weight allocation and a multi-system cooperative strategy. Different from the traditional weighting model, this method innovatively constructs a two-layer optimization mechanism: (1) Based on BP neural network, it evaluates the noise characteristics of pseudo-range observations in real time and realizes the adaptive suppression of receiver thermal noise, ionospheric delay, etc.; (2) it introduces Helmert variance component estimation to optimize the weighting ratio of GPS, GLONASS, BeiDou, and Galileo and reduces the impact of signal heterogeneity on the positioning solution of the multi-system. Simulation results show that the new method reduces the root-mean-square error of positioning by 32.8% compared with the traditional algorithm to 97.72 m in typical high-orbit scenarios and significantly improves the accuracy loss caused by the defective satellite geometrical configurations under multi-system synergy. Full article
Show Figures

Figure 1

23 pages, 8305 KB  
Article
Ultra-Low-Cost Real-Time Precise Point Positioning Using Different Streams for Precise Positioning and Precipitable Water Vapor Retrieval Estimates
by Mohamed Abdelazeem, Amgad Abazeed, Hussain A. Kamal and Mudathir O. A. Mohamed
Algorithms 2025, 18(4), 198; https://doi.org/10.3390/a18040198 - 1 Apr 2025
Viewed by 621
Abstract
This article aims to examine the real-time precise point positioning (PPP) solution’s accuracy utilizing the low-cost dual-frequency multi-constellation U-blox ZED-F9P module and real-time GNSS orbit and clock products from five analysis centers, including Bundesamt für Kartographie und Geodäsie (BKG), Centre National d’Etudes Spatiales [...] Read more.
This article aims to examine the real-time precise point positioning (PPP) solution’s accuracy utilizing the low-cost dual-frequency multi-constellation U-blox ZED-F9P module and real-time GNSS orbit and clock products from five analysis centers, including Bundesamt für Kartographie und Geodäsie (BKG), Centre National d’Etudes Spatiales (CNES), International GNSS Service (IGS), Geo Forschungs Zentrum (GFZ), and GNSS research center of Wuhan University (WHU). Three-hour static quad-constellation GNSS measurements are collected from ZED-F9P modules and geodetic grade Trimble R4s receivers over a reference station in Aswan City, Egypt, for a period of three consecutive days. Since a multi-GNSS PPP processing model is applied in the majority of the previous studies, this study employs the single-constellation GNSS PPP solution to process the acquired datasets. Different single-constellation GNSS PPP scenarios are adopted, namely, GPS PPP, GLONASS PPP, Galileo PPP, and BeiDou PPP models. The obtained PPP solutions from the low-cost module are validated for the positioning and precipitable water vapor (PWV) domains. To provide a reference positioning solution, the post-processed dual-frequency geodetic-grade GNSS PPP solution is applied; additionally, as the station under investigation is not a part of the IGS reference station network, a new technique is proposed to estimate reference PWV values. The findings reveal that the GPS and Galileo 3D position’s accuracy is within the decimeter level, while it is within the meter level for both the GLONASS and BeiDou models. Additionally, millimeter-level PWV precision is obtained from the four PPP models. Full article
(This article belongs to the Special Issue Algorithms and Application for Spatiotemporal Data Processing)
Show Figures

Figure 1

26 pages, 6305 KB  
Systematic Review
The Integration of IoT (Internet of Things) Sensors and Location-Based Services for Water Quality Monitoring: A Systematic Literature Review
by Rajapaksha Mudiyanselage Prasad Niroshan Sanjaya Bandara, Amila Buddhika Jayasignhe and Günther Retscher
Sensors 2025, 25(6), 1918; https://doi.org/10.3390/s25061918 - 19 Mar 2025
Cited by 3 | Viewed by 3565
Abstract
The increasing demand for clean and reliable water resources, coupled with the growing threat of water pollution, has made real-time water quality (WQ) monitoring and assessment a critical priority in many urban areas. Urban environments encounter substantial challenges in maintaining WQ, driven by [...] Read more.
The increasing demand for clean and reliable water resources, coupled with the growing threat of water pollution, has made real-time water quality (WQ) monitoring and assessment a critical priority in many urban areas. Urban environments encounter substantial challenges in maintaining WQ, driven by factors such as rapid population growth, industrial expansion, and the impacts of climate change. Effective real-time WQ monitoring is essential for safeguarding public health, promoting environmental sustainability, and ensuring adherence to regulatory standards. The rapid advancement of Internet of Things (IoT) sensor technologies and smartphone applications presents an opportunity to develop integrated platforms for real-time WQ assessment. Advances in the IoT provide a transformative solution for WQ monitoring, revolutionizing the way we assess and manage our water resources. Moreover, recent developments in Location-Based Services (LBSs) and Global Navigation Satellite Systems (GNSSs) have significantly enhanced the accessibility and accuracy of location information. With the proliferation of GNSS services, such as GPS, GLONASS, Galileo, and BeiDou, users now have access to a diverse range of location data that are more precise and reliable than ever before. These advancements have made it easier to integrate location information into various applications, from urban planning and disaster management to environmental monitoring and transportation. The availability of multi-GNSS support allows for improved satellite coverage and reduces the potential for signal loss in urban environments or densely built environments. To harness this potential and to enable the seamless integration of the IoT and LBSs for sustainable WQ monitoring, a systematic literature review was conducted to determine past trends and future opportunities. This research aimed to review the limitations of traditional monitoring systems while fostering an understanding of the positioning capabilities of LBSs in environmental monitoring for sustainable urban development. The review highlights both the advancements and challenges in using the IoT and LBSs for real-time WQ monitoring, offering critical insights into the current state of the technology and its potential for future development. There is a pressing need for an integrated, real-time WQ monitoring system that is cost-effective and accessible. Such a system should leverage IoT sensor networks and LBSs to provide continuous monitoring, immediate feedback, and spatially dynamic insights, empowering stakeholders to address WQ issues collaboratively and efficiently. Full article
Show Figures

Figure 1

14 pages, 2045 KB  
Article
Time to First Fix Robustness of Global Navigation Satellite Systems: Comparison Study
by Carlos Hernando-Ramiro, Óscar Gamallo-Palomares, Javier Junquera-Sánchez and José Antonio Gómez-Sánchez
Sensors 2025, 25(5), 1599; https://doi.org/10.3390/s25051599 - 5 Mar 2025
Viewed by 1617
Abstract
The time to first fix (TTFF) measures the time elapsed by a global navigation satellite system (GNSS) receiver from switch-on to provision of a navigation solution. This parameter is crucial for applications where a position, within an acceptable error, is needed as soon [...] Read more.
The time to first fix (TTFF) measures the time elapsed by a global navigation satellite system (GNSS) receiver from switch-on to provision of a navigation solution. This parameter is crucial for applications where a position, within an acceptable error, is needed as soon as possible after turning the device on. The quality of the TTFF depends mainly on the receiver, the environment, and the GNSS satellites employed. Although all four available GNSSs (BeiDou, Galileo, GLONASS, and GPS) are complementary, their constellations and signals differ, providing different TTFF performances. This becomes even more relevant in hostile environments, where the TTFF degrades from nominal results. In this work, the robustness of the signals of the four GNSSs against different levels of harshness and its influence on the TTFF performance are evaluated in a comparative way. For this purpose, a typical scenario for mass-market GNSS applications, involving cold-start conditions, single-frequency signals, and a low-cost receiver, is considered. The results indicate that GPS provides the most robust TTFF, followed by GLONASS (although at the expense of positioning accuracy), BeiDou, and Galileo, in that order. Full article
(This article belongs to the Special Issue Advances in GNSS Signal Processing and Navigation)
Show Figures

Figure 1

23 pages, 10008 KB  
Review
Multi-Global Navigation Satellite System for Earth Observation: Recent Developments and New Progress
by Shuanggen Jin, Xuyang Meng, Gino Dardanelli and Yunlong Zhu
Remote Sens. 2024, 16(24), 4800; https://doi.org/10.3390/rs16244800 - 23 Dec 2024
Cited by 3 | Viewed by 2558
Abstract
The Global Navigation Satellite System (GNSS) has made important progress in Earth observation and applications. With the successful design of the BeiDou Navigation Satellite System (BDS), four global navigation satellite systems are available worldwide, together with Galileo, GLONASS, and GPS. These systems have [...] Read more.
The Global Navigation Satellite System (GNSS) has made important progress in Earth observation and applications. With the successful design of the BeiDou Navigation Satellite System (BDS), four global navigation satellite systems are available worldwide, together with Galileo, GLONASS, and GPS. These systems have been widely employed in positioning, navigation, and timing (PNT). Furthermore, GNSS refraction, reflection, and scattering signals can remotely sense the Earth’s surface and atmosphere with powerful implications for environmental remote sensing. In this paper, the recent developments and new application progress of multi-GNSS in Earth observation are presented and reviewed, including the methods of BDS/GNSS for Earth observations, GNSS navigation and positioning performance (e.g., GNSS-PPP and GNSS-NRTK), GNSS ionospheric modelling and space weather monitoring, GNSS meteorology, and GNSS-reflectometry and its applications. For instance, the static Precise Point Positioning (PPP) precision of most MGEX stations was improved by 35.1%, 18.7%, and 8.7% in the east, north, and upward directions, respectively, with PPP ambiguity resolution (AR) based on factor graph optimization. A two-layer ionospheric model was constructed using IGS station data through three-dimensional ionospheric model constraints and TEC accuracy was increased by about 20–27% with the GIM model. Ten-minute water level change with centimeter-level accuracy was estimated with ground-based multiple GNSS-R data based on a weighted iterative least-squares method. Furthermore, a cyclone and its positions were detected by utilizing the GNSS-reflectometry from the space-borne Cyclone GNSS (CYGNSS) mission. Over the years, GNSS has become a dominant technology among Earth observation with powerful applications, not only for conventional positioning, navigation and timing techniques, but also for integrated remote sensing solutions, such as monitoring typhoons, river water level changes, geological geohazard warnings, low-altitude UAV navigation, etc., due to its high performance, low cost, all time and all weather. Full article
Show Figures

Graphical abstract

21 pages, 36735 KB  
Article
Adaptive Navigation Based on Multi-Agent Received Signal Quality Monitoring Algorithm
by Hina Magsi, Madad Ali Shah, Ghulam E. Mustafa Abro, Sufyan Ali Memon, Abdul Aziz Memon, Arif Hussain and Wan-Gu Kim
Electronics 2024, 13(24), 4957; https://doi.org/10.3390/electronics13244957 - 16 Dec 2024
Viewed by 990
Abstract
In the era of industrial evolution, satellites are being viewed as swarm intelligence that does not rely on a single system but multiple constellations that collaborate autonomously. This has enhanced the potential of the Global Navigation Satellite System (GNSS) to contribute to improving [...] Read more.
In the era of industrial evolution, satellites are being viewed as swarm intelligence that does not rely on a single system but multiple constellations that collaborate autonomously. This has enhanced the potential of the Global Navigation Satellite System (GNSS) to contribute to improving position, navigation, and timing (PNT) services. However, multipath (MP) and non-line-of-sight (NLOS) receptions remain the prominent vulnerability for the GNSS in harsh environments. The aim of this research is to investigate the impact of MP and NLOS receptions on GNSS performance and then propose a Received Signal Quality Monitoring (RSQM) algorithm. The RSQM algorithm works in two ways. Initially, it performs a signal quality test based on a fuzzy inference system. The input parameters are carrier-to-noise ratio (CNR), Normalized Range Residuals (NRR), and Code–Carrier Divergence (CCD), and it computes the membership functions based on the Mamdani method and classifies the signal quality as LOS, NLOS, weak NLOS, and strong NLOS. Secondly, it performs an adaptive navigation strategy to exclude/mask the affected range measurements while considering the satellite geometry constraints (i.e., DOP2). For this purpose, comprehensive research to quantify the multi-constellation GNSS receiver with four constellation configurations (GPS, BeiDou, GLONASS, and Galileo) has been carried out in various operating environments. This RSQM-based GNSS receiver has the capability to identify signal quality and perform adaptive navigation accordingly to improve navigation performance. The results suggest that GNSS performance in terms of position error is improved from 5.4 m to 2.3 m on average in the complex urban environment. Combining the RSQM algorithm with the GNSS has great potential for the future industrial revolution (Industry 5.0), making things automatic and sustainable like autonomous vehicle operation. Full article
(This article belongs to the Special Issue Collaborative Intelligence in the Era of Industry 5.0)
Show Figures

Figure 1

24 pages, 17001 KB  
Article
Two-Dimensional Differential Positioning with Global Navigation Satellite System Signal Frequency Division Relay Forwarding to Parallel Leaky Coaxial Cables in Tunnel
by Keyuan Jiao, Maozhong Song, Xiaolong Tang, Shimao Dong and Shenkai Xiong
Appl. Sci. 2024, 14(22), 10288; https://doi.org/10.3390/app142210288 - 8 Nov 2024
Viewed by 1437
Abstract
To address the issue of GNSS receivers being unable to function properly in tunnels due to the loss of Global Navigation Satellite System (GNSS) signals, this paper proposes a two-dimensional differential positioning system for tunnel environments based on dual leaky coaxial (LCX) cables [...] Read more.
To address the issue of GNSS receivers being unable to function properly in tunnels due to the loss of Global Navigation Satellite System (GNSS) signals, this paper proposes a two-dimensional differential positioning system for tunnel environments based on dual leaky coaxial (LCX) cables with GNSS signal frequency relay forwarding. The system receives mixed GNSS signals from open environments and utilizes the frequency selection capabilities of the MAX2769E chip to separate and generate radio frequency signals at different frequencies corresponding to GPS, BDS, and GLONASS. These signals are then used to drive three ports of the LCX cables, which are laid in parallel within the tunnel. By leveraging the uniform radiation characteristics of the LCX cables, stable GNSS signal coverage is achieved throughout the tunnel. On the receiving end, the GNSS receiver achieves two-dimensional positioning by utilizing inter-satellite pseudorange differences and reference point error correction. The simulation results indicate that the dual T-shaped radiating LCX cables configuration offers excellent positioning accuracy and noise resistance, achieving meter-level positioning accuracy in tunnel environments. Full article
Show Figures

Figure 1

22 pages, 8508 KB  
Article
An Evaluation of Optimization Algorithms for the Optimal Selection of GNSS Satellite Subsets
by Abdulaziz Alluhaybi, Panos Psimoulis and Rasa Remenyte-Prescott
Remote Sens. 2024, 16(10), 1794; https://doi.org/10.3390/rs16101794 - 18 May 2024
Cited by 5 | Viewed by 2746
Abstract
Continuous advancements in GNSS systems have led, apart from the broadly used GPS, to the development of other satellite systems (Galileo, BeiDou, GLONASS), which have significantly increased the number of available satellites for GNSS positioning applications. However, despite GNSS satellites’ redundancy, a potential [...] Read more.
Continuous advancements in GNSS systems have led, apart from the broadly used GPS, to the development of other satellite systems (Galileo, BeiDou, GLONASS), which have significantly increased the number of available satellites for GNSS positioning applications. However, despite GNSS satellites’ redundancy, a potential poor GNSS satellite signal (i.e., low signal-to-noise ratio) can negatively affect the GNSS’s performance and positioning accuracy. On the other hand, selecting high-quality GNSS satellite signals by retaining a sufficient number of GNSS satellites can enhance the GNSS’s positioning performance. Various methods, including optimization algorithms, which are also commonly adopted in artificial intelligence (AI) methods, have been applied for satellite selection. In this study, five optimization algorithms were investigated and assessed in terms of their ability to determine the optimal GNSS satellite constellation, such as Artificial Bee Colony optimization (ABC), Ant Colony Optimization (ACO), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Simulated Annealing (SA). The assessment of the optimization algorithms was based on two criteria, such as the robustness of the solution for the optimal satellite constellation and the time required to find the solution. The selection of the GNSS satellites was based on the weighted geometric dilution of precision (WGDOP) parameter, where the geometric dilution of precision (GDOP) is modified by applying weights based on the quality of the satellites’ signal. The optimization algorithms were tested on the basis of 24 h of tracking data gathered from a permanent GNSS station, for GPS-only and multi-GNSS data (GPS, GLONASS, and Galileo). According to the comparison results, the ABC, ACO, and PSO algorithms were equivalent in terms of selection accuracy and speed. However, ABC was determined to be the most suitable algorithm due it requiring the fewest number of parameters to be set. To further investigate ABC’s performance, the method was applied for the selection of an optimal GNSS satellite subset according to the number of total available tracked GNSS satellites (up to 31 satellites), leading to more than 300 million possible combinations of 15 GNSS satellites. ABC was able to select the optimal satellite subsets with 100% accuracy. Full article
(This article belongs to the Topic Artificial Intelligence in Navigation)
Show Figures

Figure 1

Back to TopTop