Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = GDL coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1561 KiB  
Article
The Effect of a Pectin Coating with Gamma-Decalactone on Selected Quality Attributes of Strawberries During Refrigerated Storage
by Gabriela Kozakiewicz, Jolanta Małajowicz, Karolina Szulc, Magdalena Karwacka, Agnieszka Ciurzyńska, Anna Żelazko, Monika Janowicz and Sabina Galus
Coatings 2025, 15(8), 903; https://doi.org/10.3390/coatings15080903 (registering DOI) - 2 Aug 2025
Viewed by 211
Abstract
This study investigated the effect of an apple pectin coating enriched with gamma-decalactone (GDL) on the physicochemical and microbiological quality of strawberries over 9 days of refrigerated storage. Strawberries were coated with pectin solutions containing a plasticizer and emulsifier, with or without GDL, [...] Read more.
This study investigated the effect of an apple pectin coating enriched with gamma-decalactone (GDL) on the physicochemical and microbiological quality of strawberries over 9 days of refrigerated storage. Strawberries were coated with pectin solutions containing a plasticizer and emulsifier, with or without GDL, and compared to uncoated controls. The coatings were evaluated for their effects on fruit mass loss, pH, extract content (°Brix), firmness, color parameters (L*, a*, b*, C*, h*, ΔE), and microbial spoilage. The pectin coating limited changes in extract, pH, and color and slowed firmness loss. Notably, GDL-enriched coatings significantly reduced spoilage (14.29% after 9 days vs. 57.14% in the control) despite accelerating pulp softening. Extract content increased the most in the GDL group (from 9.92 to 12.00 °Brix), while mass loss reached up to 22.8%. Principal Component Analysis (PCA) confirmed coating type as a major factor differentiating sample quality over time. These findings demonstrate the potential of bioactive pectin-based coatings to enhance fruit preservation and support the development of active packaging strategies. Further studies should optimize coating composition and control the release kinetics of functional compounds. Full article
(This article belongs to the Special Issue Preparation and Applications of Bio-Based Polymer Coatings)
Show Figures

Graphical abstract

13 pages, 2300 KiB  
Article
A Hierarchically Structured Ni-NOF@ZIF-L Heterojunction Using Van Der Waals Interactions for Electrocatalytic Reduction of CO2 to HCOOH
by Liqun Wu, Xiaojun He and Jian Zhou
Appl. Sci. 2025, 15(14), 8095; https://doi.org/10.3390/app15148095 - 21 Jul 2025
Viewed by 250
Abstract
The electrocatalytic CO2 reduction reaction (CO2RR) offers an energy-saving and environmentally friendly approach to producing hydrocarbon fuels. The use of a gas diffusion electrode (GDE) flow cell has generally improved the rate of CO2RR, while the gas diffusion [...] Read more.
The electrocatalytic CO2 reduction reaction (CO2RR) offers an energy-saving and environmentally friendly approach to producing hydrocarbon fuels. The use of a gas diffusion electrode (GDE) flow cell has generally improved the rate of CO2RR, while the gas diffusion layer (GDL) remains a significant challenge. In this study, we successfully engineered a novel metal–organic framework (MOF) heterojunction through the controlled coating of zeolitic imidazolate framework (ZIF-L) on ultrathin nickel—metal–organic framework (Ni-MOF) nanosheets. This innovative architecture simultaneously integrates GDL functionality and exposes abundant solid–liquid–gas triple-phase boundaries. The resulting Ni-MOF@ZIF-L heterostructure demonstrates exceptional performance, achieving a formate Faradaic efficiency of 92.4% while suppressing the hydrogen evolution reaction (HER) to 6.7%. Through computational modeling of the optimized heterojunction configuration, we further elucidated its competitive adsorption behavior and electronic modulation effects. The experimental and theoretical results demonstrate an improvement in electrochemical CO2 reduction activity with suppressed hydrogen evolution for the heterojunction because of its hydrophobic interface, good electron transfer capability, and high CO2 adsorption at the catalyst interface. This work provides a new insight into the rational design of porous crystalline materials in electrocatalytic CO2RR. Full article
Show Figures

Figure 1

19 pages, 5196 KiB  
Article
Impact of Air-Cathodes on Operational Stability of Single-Chamber Microbial Fuel Cell Biosensors for Wastewater Monitoring
by Anna Salvian, Daniel Farkas, Marina Ramírez-Moreno, Claudio Avignone Rossa, John R. Varcoe and Siddharth Gadkari
Energies 2024, 17(14), 3574; https://doi.org/10.3390/en17143574 - 20 Jul 2024
Cited by 2 | Viewed by 2008
Abstract
The increasing global water pollution leads to the need for urgent development of rapid and accurate water quality monitoring methods. Microbial fuel cells (MFCs) have emerged as real-time biosensors for biochemical oxygen demand (BOD), but they grapple with several challenges, including issues related [...] Read more.
The increasing global water pollution leads to the need for urgent development of rapid and accurate water quality monitoring methods. Microbial fuel cells (MFCs) have emerged as real-time biosensors for biochemical oxygen demand (BOD), but they grapple with several challenges, including issues related to reproducibility, operational stability, and cost-effectiveness. These challenges are substantially shaped by the selection of an appropriate air-breathing cathode. Previous studies indicated a critical influence of the cathode on both the enduring electrochemical performance of MFCs and the taxonomic diversity at the electroactive anode. However, the effect of different gas diffusion electrodes (GDE) on 3D-printed single-chamber MFCs for BOD biosensing application and its effect on the bioelectroactive anode was not investigated before. Our study focuses on comparing GDE cathode materials to enhance MFC performance for precise and rapid BOD analysis in wastewater. We examined for over 120 days two Pt-coated air-breathing cathodes with distinct carbonaceous gas diffusion layers (GDLs) and catalyst layers (CLs): cost-effective carbon paper (CP) with hand-coated CL and more expensive woven carbon cloth (CC) with CL pre-applied by the supplier. The results show significant differences in electrochemical characteristics and anodic biofilm composition between MFCs with CP and CC GDE cathodes. CP-MFCs exhibited lower sensitivity (16.6 C L mg−1 m−2) and a narrower dynamic range (25 to 600 mg L−1), attributed to biofouling-related degradation of the GDE. In contrast, CC-MFCs demonstrated superior performance with higher sensitivity (37.6 C L mg−1 m−2) and a broader dynamic range (25 to 800 mg L−1). In conclusion, our study underscores the pivotal role of cathode selection in 3D-printed MFC biosensors, influencing anodic biofilm enrichment time and overall BOD assessment performance. We recommend the use of cost-effective CP GDL with hand-coated CL for short-term MFC biosensor applications, while advocating for CC GDL supplied with CL as the preferred choice for long-term sensing implementations with enduring reliability. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

8 pages, 1174 KiB  
Brief Report
Health Technology Assessment of Cardiopulmonary Bypass Circuit with and without Phosphorylcholine Coating: A Retrospective Study on Safety and Efficiency in Cardiac Surgery
by Ignazio Condello, Giuseppe Nasso, Salvatore Scrivo, Flavio Fiore and Giuseppe Speziale
Life 2024, 14(7), 851; https://doi.org/10.3390/life14070851 - 6 Jul 2024
Cited by 1 | Viewed by 1745
Abstract
Background: Phosphorylcholine has emerged as a potential adjunctive agent in cardiopulmonary bypass (CPB) circuits. Phosphorylcholine serves as a coating for the CPB circuit, potentially enhancing biocompatibility and reducing thrombotic events. However, its impact on specific patient populations and procedural outcomes remains underexplored. Materials [...] Read more.
Background: Phosphorylcholine has emerged as a potential adjunctive agent in cardiopulmonary bypass (CPB) circuits. Phosphorylcholine serves as a coating for the CPB circuit, potentially enhancing biocompatibility and reducing thrombotic events. However, its impact on specific patient populations and procedural outcomes remains underexplored. Materials and Methods: In this retrospective study, we analyzed data from 60 patients who underwent cardiac surgery with CPB, comprising 20 cases each of coronary artery bypass grafting (CABG), mitral valve repair, and aortic valve replacement. The patient cohort was divided into two groups—30 patients whose CPB circuits were coated with phosphorylcholine (phosphorylcholine-coated group) and 30 patients who did not receive phosphorylcholine supplementation or circuit coating. Both groups underwent surgery with identical CPB circuit designs. We assessed the absence of adverse events, safety, and efficacy parameters, including blood loss, clotting, and the structural integrity of the CPB circuit. Additionally, we measured changes in mean albumin levels (g/dL), mean platelet counts (×109/L), and antithrombin III (ATIII) levels before and after CPB. Results: The retrospective analysis revealed an absence of adverse events in both groups. In the phosphorylcholine-coated group compared to the non-phosphorylcholine-coated group, there was a notable difference in the delta change in mean albumin levels (0.87 ± 0.1 vs. 1.65 ± 0.2 g/dL, p-value 0.021), mean platelet counts (42.251 ± 0.121 vs. 54.21 ± 0.194 × 109/L, p-value 0.049), and ATIII levels (16.85 ± 0.2 vs. 31.21 ± 0.3 p-value 0.017). There was a notable reduction in the perioperative consumption of human complex units after CPB (3 vs. 12, p-value 0.019). Conclusions: Both groups, phosphorylcholine and non-phosphorylcholine, demonstrated the absence of adverse events and that the systems are safe for iatrogenic complication. Our findings suggest that the use of phosphorylcholine coating on the CPB circuit, in the absence of supplementary phosphorylcholine, in cardiac surgery is associated with favorable changes in mean albumin levels, mean platelet counts, and ATIII levels. Further research is warranted to elucidate the full extent of phosphorylcholine’s impact on patient outcomes and CPB circuit performance. Full article
Show Figures

Figure 1

18 pages, 25784 KiB  
Article
Characterisation of Novel and High Performing Double-Sided Microporous-Layers-Coated Gas Diffusion Layers for Polymer Electrolyte Membrane Fuel Cells
by Fernando Ruscillo, Kun Zhang, Mohammed S. Ismail, Kevin J. Hughes, Derek B. Ingham, Lin Ma and Mohamed Pourkashanian
Energies 2023, 16(22), 7601; https://doi.org/10.3390/en16227601 - 16 Nov 2023
Cited by 3 | Viewed by 1865
Abstract
This study aims to experimentally evaluate the impact of a double-sided microporous layer coating on gas diffusion layers in terms of their key properties and fuel cell performance, in comparison to conventional single-sided coated gas diffusion layers (GDLs). Vulcan black and Ketjenblack were [...] Read more.
This study aims to experimentally evaluate the impact of a double-sided microporous layer coating on gas diffusion layers in terms of their key properties and fuel cell performance, in comparison to conventional single-sided coated gas diffusion layers (GDLs). Vulcan black and Ketjenblack were used as the carbon black materials. This was to investigate the sensitivity of the results with respect to the type of carbon black used. The results showed that the in-plane electrical conductivity is almost insensitive to microporous layer (MPL) loading and carbon black type. Furthermore, the electrical conductivity of all the MPL-coated GDLs are slightly lower than that of the uncoated GDL. The Ketjenblack black MPL samples were found to demonstrate higher gas permeability than the Vulcan black samples. The addition of the MPL resulted in a favourable shift in pore size distribution, with prominent micropores observed in both single- and double-sided MPL-coated GDLs. Contact angle measurements indicated a slight increase in the hydrophobicity with the addition of a microporous layer, but without significant differences between carbon black types or loading levels. Cross-sectional SEM images showed that there was a higher level of MPL penetration into the carbon substrate for the GDLs coated with Vulcan black as compared to a Ketjenblack coating. In situ fuel cell testing demonstrated the superior performance of the double-sided Vulcan black MPL-coated GDL under high humidity conditions, while the single-sided Vulcan black MPL-coated GDL exhibited better performance at low humidity conditions. All the above findings have been thoroughly discussed and justified. Full article
(This article belongs to the Special Issue Energy Storage: From Chemicals to Materials and More Ⅱ)
Show Figures

Figure 1

24 pages, 1892 KiB  
Article
Powering the Future: Progress and Hurdles in Developing Proton Exchange Membrane Fuel Cell Components to Achieve Department of Energy Goals—A Systematic Review
by Dinesh Kumar Madheswaran, Mohanraj Thangamuthu, Sakthivel Gnanasekaran, Suresh Gopi, Tamilvanan Ayyasamy and Sujit S. Pardeshi
Sustainability 2023, 15(22), 15923; https://doi.org/10.3390/su152215923 - 14 Nov 2023
Cited by 30 | Viewed by 8142
Abstract
This comprehensive review explores recent developments in Proton Exchange Membrane Fuel Cells (PEMFCs) and evaluates their alignment with the ambitious targets established by the U.S. Department of Energy (DOE). Notable advancements have been made in developing catalysts, membrane technology advancements, gas diffusion layers [...] Read more.
This comprehensive review explores recent developments in Proton Exchange Membrane Fuel Cells (PEMFCs) and evaluates their alignment with the ambitious targets established by the U.S. Department of Energy (DOE). Notable advancements have been made in developing catalysts, membrane technology advancements, gas diffusion layers (GDLs), and enhancements in bipolar plates. Notable findings include using carbon nanotubes and graphene oxide in membranes, leading to substantial performance enhancements. Innovative coatings and materials for bipolar plates have demonstrated improved corrosion resistance and reduced interfacial contact resistance, approaching DOE targets. Nevertheless, the persistent trade-off between durability and cost remains a formidable challenge. Extending fuel cell lifetimes to DOE standards often necessitates higher catalyst loadings, conflicting with cost reduction objectives. Despite substantial advancements, the ultimate DOE goals of USD 30/kW for fuel cell electric vehicles (FCEVs) and USD 600,000 for fuel cell electric buses (FCEBs) remain elusive. This review underscores the necessity for continuous research and innovation, emphasizing the importance of collaborative efforts among academia, industry, and government agencies to overcome the remaining technical barriers. Full article
(This article belongs to the Special Issue Research and Application of Renewable Energy: Novel Fuel Cells)
Show Figures

Figure 1

16 pages, 3282 KiB  
Article
Single- and Double-Sided Coated Gas Diffusion Layers Used in Polymer Electrolyte Fuel Cells: A Numerical Study
by Isaac C. Okereke, Mohammed S. Ismail, Derek B. Ingham, Kevin Hughes, Lin Ma and Mohamed Pourkashanian
Energies 2023, 16(11), 4363; https://doi.org/10.3390/en16114363 - 27 May 2023
Cited by 5 | Viewed by 2785
Abstract
A new three-dimensional numerical model of a polymer electrolyte fuel cell (PEFC) with a single straight channel was developed to primarily investigate the important impact of the double-sided microporous layer (MPL) coating on the overall performance of the fuel cell and the distribution [...] Read more.
A new three-dimensional numerical model of a polymer electrolyte fuel cell (PEFC) with a single straight channel was developed to primarily investigate the important impact of the double-sided microporous layer (MPL) coating on the overall performance of the fuel cell and the distribution of the current and the oxygen concentration within the cathode gas diffusion layers (GDLs). Realistic experimentally estimated interfacial contact resistance values between the gas diffusion layer and each of the bipolar plates and the catalyst layer values were incorporated into the model, and parametric studies were performed. The results showed that the double-sided MPL coating could significantly improve the fuel cell performance by up to 30%. Additionally, it was shown that the neglect of the contact resistance between the MPL and the catalyst layer could overestimate the fuel cell performance by up to 6%. In addition, the results showed that the fuel cell performance and the distribution of the current and oxygen are more sensitive to the porosity of the MPL facing the bipolar plate than the porosity of the MPL facing the catalyst layer. All the above results are presented and critically discussed in detail. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

16 pages, 6782 KiB  
Article
Microwave-Assisted Incorporation of AgNP into Chitosan–Alginate Hydrogels for Antimicrobial Applications
by Takuma Oe, Duangkamol Dechojarassri, Sachiro Kakinoki, Hideya Kawasaki, Tetsuya Furuike and Hiroshi Tamura
J. Funct. Biomater. 2023, 14(4), 199; https://doi.org/10.3390/jfb14040199 - 4 Apr 2023
Cited by 12 | Viewed by 3556
Abstract
Herein, improving the antibacterial activity of a hydrogel system of sodium alginate (SA) and basic chitosan (CS) using sodium hydrogen carbonate by adding AgNPs was investigated. SA-coated AgNPs produced by ascorbic acid or microwave heating were evaluated for their antimicrobial activity. Unlike ascorbic [...] Read more.
Herein, improving the antibacterial activity of a hydrogel system of sodium alginate (SA) and basic chitosan (CS) using sodium hydrogen carbonate by adding AgNPs was investigated. SA-coated AgNPs produced by ascorbic acid or microwave heating were evaluated for their antimicrobial activity. Unlike ascorbic acid, the microwave-assisted method produced uniform and stable SA-AgNPs with an optimal reaction time of 8 min. Transmission electron microscopy (TEM) confirmed the formation of SA-AgNPs with an average particle size of 9 ± 2 nm. Moreover, UV-vis spectroscopy confirmed the optimal conditions for SA-AgNP synthesis (0.5% SA, 50 mM AgNO3, and pH 9 at 80 °C). Fourier transform infrared (FTIR) spectroscopy confirmed that the –COO group of SA electrostatically interacted with either the Ag+ or –NH3+ of CS. Adding glucono-δ-lactone (GDL) to the mixture of SA-AgNPs/CS resulted in a low pH (below the pKa of CS). An SA-AgNPs/CS gel was formed successfully and retained its shape. This hydrogel exhibited 25 ± 2 mm and 21 ± 1 mm inhibition zones against E. coli and B. subtilis and showed low cytotoxicity. Additionally, the SA-AgNP/CS gel showed higher mechanical strength than SA/CS gels, possibly due to the higher crosslink density. In this work, a novel antibacterial hydrogel system was synthesized via 8 min of microwave heating. Full article
(This article belongs to the Special Issue Biomedical Applications of Chitin and Chitosan-II)
Show Figures

Figure 1

15 pages, 6841 KiB  
Article
Pore-Scale Modeling of Microporous Layer for Proton Exchange Membrane Fuel Cell: Effective Transport Properties
by Heng Zhang, Xuanyu Shao, Zhigang Zhan, Mrittunjoy Sarker, Pang-Chieh Sui, Po-Ya Abel Chuang and Mu Pan
Membranes 2023, 13(2), 219; https://doi.org/10.3390/membranes13020219 - 10 Feb 2023
Cited by 13 | Viewed by 4722
Abstract
A microporous layer (MPL) is a transition layer with a porous material structure, located between the gas diffusion layer (GDL) and catalyst layer (CL) in a proton exchange membrane fuel cell (PEMFC). It not only significantly improves electron transfer and heat conduction in [...] Read more.
A microporous layer (MPL) is a transition layer with a porous material structure, located between the gas diffusion layer (GDL) and catalyst layer (CL) in a proton exchange membrane fuel cell (PEMFC). It not only significantly improves electron transfer and heat conduction in membrane electrode assembly, but also effectively manages liquid water transport to enhance the fuel cell performance. The MPL is usually coated on one side of the GDL. The fragile nature of MPL makes it challenging to characterize the effective transport properties using experimental methods. In this study, a stochastic numerical method is implemented to reconstruct the three-dimensional microstructure of an MPL consisting of carbon particles and PTFE. The reliability of the MPL reconstructed model is validated using experimental data. The relationship between the effective transport properties and the compression strain is obtained using the Pore Scale Model (PSM), while the relationship between the liquid water saturation and capillary pressure is solved by Lattice Boltzmann Method (LBM). The effective transport properties in the MPL are then imported into the two-phase flow fuel cell model. It is found that the effective transport parameters in MPL obtained by PSM and LBM can improve the accuracy of the model calculation. This study provides an effective method to reconstruct the microstructure of MPL that can generate precise MPL transport parameters for utilization in various PEMFC performance prediction models. Full article
Show Figures

Figure 1

16 pages, 3269 KiB  
Article
Thin Film Plastic Antibody-Based Microplate Assay for Human Serum Albumin Determination
by Worachote Boonsriwong, Suticha Chunta, Nonthawat Thepsimanon, Sanita Singsanan and Peter A. Lieberzeit
Polymers 2021, 13(11), 1763; https://doi.org/10.3390/polym13111763 - 27 May 2021
Cited by 10 | Viewed by 3986
Abstract
Herein we demonstrate molecularly imprinted polymers (MIP) as plastic antibodies for a microplate-based assay. As the most abundant plasma protein, human serum albumin (HSA) was selected as the target analyte model. Thin film MIP was synthesized by the surface molecular imprinting approach using [...] Read more.
Herein we demonstrate molecularly imprinted polymers (MIP) as plastic antibodies for a microplate-based assay. As the most abundant plasma protein, human serum albumin (HSA) was selected as the target analyte model. Thin film MIP was synthesized by the surface molecular imprinting approach using HSA as the template. The optimized polymer consisted of acrylic acid (AA) and N-vinylpyrrolidone (VP) in a 2:3 (w/w) ratio, crosslinked with N,N′-(1,2-dihydroxyethylene) bisacrylamide (DHEBA) and then coated on the microplate well. The binding of MIP toward the bound HSA was achieved via the Bradford reaction. The assay revealed a dynamic detection range toward HSA standards in the clinically relevant 1–10 g/dL range, with a 0.01 g/dL detection limit. HSA-MIP showed minimal interference from other serum protein components: γ-globulin had 11% of the HSA response, α-globulin of high-density lipoprotein had 9%, and β-globulin of low-density lipoprotein had 7%. The analytical accuracy of the assay was 89–106% at the 95% confidence interval, with precision at 4–9%. The MIP-coated microplate was stored for 2 months at room temperature without losing its binding ability. The results suggest that the thin film plastic antibody system can be successfully applied to analytical/pseudoimmunological HSA determinations in clinical applications. Full article
(This article belongs to the Special Issue Polymer-Based Sensors)
Show Figures

Graphical abstract

15 pages, 4405 KiB  
Article
Mesoporous Carbon Fibers with Tunable Mesoporosity for Electrode Materials in Energy Devices
by Ting-Wei Huang, Mayumi Nagayama, Junko Matsuda, Kazunari Sasaki and Akari Hayashi
Molecules 2021, 26(3), 724; https://doi.org/10.3390/molecules26030724 - 30 Jan 2021
Cited by 6 | Viewed by 2970
Abstract
To improve the properties of mesoporous carbon (MC), used as a catalyst support within electrodes, MC fibers (MCFs) were successfully synthesized by combining organic–organic self-assembly and electrospinning deposition and optimizing heat treatment conditions. The pore structure was controlled by varying the experimental conditions. [...] Read more.
To improve the properties of mesoporous carbon (MC), used as a catalyst support within electrodes, MC fibers (MCFs) were successfully synthesized by combining organic–organic self-assembly and electrospinning deposition and optimizing heat treatment conditions. The pore structure was controlled by varying the experimental conditions. Among MCFs, MCF-A, which was made in the most acidic condition, resulted in the largest pore diameter (4–5 nm), and the porous structure and carbonization degree were further optimized by adjusting heat treatment conditions. Then, since the fiber structure is expected to have an advantage when MCFs are applied to devices, MCF-A layers were prepared by spray printing. For the resistance to compression, MCF-A layers showed higher resistance (5.5% change in thickness) than the bulk MC layer (12.8% change in thickness). The through-plane resistance was lower when the fiber structure remained more within the thin layer, for example, +8 mΩ for 450 rpm milled MCF-A and +12 mΩ for 800 rpm milled MCF-A against the gas diffusion layer (GDL) 25BC carbon paper without a carbon layer coating. The additional advantages of MCF-A compared with bulk MC demonstrate that MCF-A has the potential to be used as a catalyst support within electrodes in energy devices. Full article
(This article belongs to the Special Issue Electrospinning Technology and Electrospun Nanofibers)
Show Figures

Figure 1

17 pages, 6782 KiB  
Article
Performance Evaluation and Durability Enhancement of FEP-Based Gas Diffusion Media for PEM Fuel Cells
by Saverio Latorrata, Paola Gallo Stampino, Cinzia Cristiani and Giovanni Dotelli
Energies 2017, 10(12), 2063; https://doi.org/10.3390/en10122063 - 5 Dec 2017
Cited by 15 | Viewed by 5566
Abstract
Nowadays, micro-porous layers (MPLs) for polymer electrolyte membrane fuel cells (PEMFCs) are commonly deposited onto gas diffusion layer (GDL) substrates starting from hydrophobic carbon-based dispersions. In this work, different quantities of fluorinated ethylene propylene (FEP), a fluorinated copolymer proven to be superior to [...] Read more.
Nowadays, micro-porous layers (MPLs) for polymer electrolyte membrane fuel cells (PEMFCs) are commonly deposited onto gas diffusion layer (GDL) substrates starting from hydrophobic carbon-based dispersions. In this work, different quantities of fluorinated ethylene propylene (FEP), a fluorinated copolymer proven to be superior to polytetrafluoroethylene (PTFE) for a proper water management, were used to make both GDL and MPL hydrophobic. After the identification of the optimal amount of FEP, carboxymethylcellulose (CMC) was also added to gas diffusion media (GDM) to reduce overall ohmic resistance of the whole device and adhesion of MPLs to GDLs. Ex-situ chemical and mechanical accelerated stress tests (ASTs) were carried out to accelerate degradation of materials aiming to assess their durability. The highest quantity of FEP in GDMs led to the best electrochemical and diffusive properties. The presence of CMC allowed reducing overall ohmic resistance due to a better electrolyte hydration. A satisfactory durability was proven since the fundamental properties related to gas diffusion medium, such as wettability, ohmic and mass transport resistances, revealed to be quasi-stable upon ASTs. Full article
(This article belongs to the Special Issue Polymer Electrolyte Membrane Fuel Cells 2017)
Show Figures

Figure 1

14 pages, 2212 KiB  
Article
Development and Characterization of Non-Conventional Micro-Porous Layers for PEM Fuel Cells
by Riccardo Balzarotti, Saverio Latorrata, Paola Gallo Stampino, Cinzia Cristiani and Giovanni Dotelli
Energies 2015, 8(7), 7070-7083; https://doi.org/10.3390/en8077070 - 13 Jul 2015
Cited by 19 | Viewed by 6656
Abstract
Gas diffusion medium (GDM) is a crucial component in proton exchange membrane fuel cells (PEMFCs). Being composed of a gas diffusion layer (GDL) with a micro-porous layer (MPL) coated onto it, it ensures a proper water management due to the highly hydrophobic materials [...] Read more.
Gas diffusion medium (GDM) is a crucial component in proton exchange membrane fuel cells (PEMFCs). Being composed of a gas diffusion layer (GDL) with a micro-porous layer (MPL) coated onto it, it ensures a proper water management due to the highly hydrophobic materials employed in cell assembly. In current commercial applications, the desired water repellent behaviour is usually obtained by using polytetrafluoroethylene (PTFE). In this work, Fluorolink® P56 (Solvay Specialty Polymers, Milan, Italy), a commercially available, anionic, segmented high molecular weight polyfluorourethane with perfluoropolyether groups was extensively evaluated as an alternative to PTFE for micro-porous layer hydrophobization. A change in polymer used is desirable in order to simplify the production process, both in terms of ink formulation and thermal treatment, as well as to get a higher hydrophobicity and, consequently, more efficient water management. Innovative prepared samples were compared to a PTFE-based GDM, in order to assess differences both from morphological and from an electrochemical point of view. Full article
(This article belongs to the Special Issue Polymer Electrolyte Membrane Fuel Cells 2015)
Show Figures

Figure 1

Back to TopTop