Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = GA-PSO-BP neural network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 21660 KB  
Article
Assessment of Ecological Suitability for Highway Under-Bridge Areas: A Methodological Integration of Multi-Criteria Decision-Making and Optimized Backpropagation Neural Networks
by Yiwei Han, Shuhong Huang, Siyan Zhao, Xinyu Zhang, Yanbing Chen, Zhenhai Wu, Yuanhao Huang, Wei Ren and Donghui Peng
Urban Sci. 2025, 9(12), 528; https://doi.org/10.3390/urbansci9120528 - 10 Dec 2025
Viewed by 399
Abstract
Highway under-bridge areas represent a valuable land resource while simultaneously constituting a sensitive ecological zone. Achieving a balance between its redevelopment and ecological preservation constitutes a critical challenge within the field of ecological engineering. Although prior research has addressed urban elevated underbridge space, [...] Read more.
Highway under-bridge areas represent a valuable land resource while simultaneously constituting a sensitive ecological zone. Achieving a balance between its redevelopment and ecological preservation constitutes a critical challenge within the field of ecological engineering. Although prior research has addressed urban elevated underbridge space, investigations specifically focusing on highway underpasses remain limited. The absence of standardized criteria for assessing the suitability of these spaces has resulted in uncoordinated and fragmented utilization. In response, this study proposes a comprehensive evaluation framework that integrates multi-criteria decision-making (MCDM) methodologies with optimized backpropagation neural networks, specifically genetic-algorithm-optimized BP (GA-BP) and particle-swarm-optimization-optimized BP (PSO-BP). The model incorporates indicators spanning physical characteristics, environmental factors, safety considerations, and accessibility metrics, and is applied to an empirical dataset comprising 134 highway bridge underpasses in Fuzhou City. The results indicate that (1) both the GA-BP and PSO-BP models enhance convergence speed and classification accuracy, with the GA-BP model demonstrating superior stability and suitability for classifying underpass suitability; (2) the principal determinants of suitability include traffic accessibility, safety parameters, and spatial relationships with adjacent water bodies and agricultural lands; and (3) underpasses characterized as hub-type, single-sided road-adjacent, and cross-connection configurations exhibit greater potential for redevelopment. This investigation represents the first integration of MCDM and optimized neural network techniques in this context, offering a robust tool to support the scientific planning and ecological conservation of underbridge space environments. Full article
Show Figures

Figure 1

21 pages, 4203 KB  
Article
Hierarchical Prediction of Subway-Induced Ground Settlement Based on Waveform Characteristics and Machine Learning with Applications to Building Safety
by Xin Meng, Yongjun Qin, Liangfu Xie, Peng He and Liling Zhu
Buildings 2025, 15(18), 3390; https://doi.org/10.3390/buildings15183390 - 19 Sep 2025
Viewed by 716
Abstract
Ground settlement caused by urban subway construction can significantly impact surrounding buildings and underground infrastructure, posing risks to structural safety and long-term performance. Accurate prediction of settlement trends is therefore essential for ensuring building integrity and supporting informed decision-making during construction. This study [...] Read more.
Ground settlement caused by urban subway construction can significantly impact surrounding buildings and underground infrastructure, posing risks to structural safety and long-term performance. Accurate prediction of settlement trends is therefore essential for ensuring building integrity and supporting informed decision-making during construction. This study proposes a hierarchical prediction framework that incorporates waveform-based curve classification and machine learning to forecast ground settlement patterns. Monitoring data from the Urumqi Metro construction project are analyzed, and settlement curve types are identified using Fréchet distance, categorized into five distinct forms: inverse cotangent, exponential, multi-step, one-shaped, and oscillating. Each type is then matched with the most suitable predictive model, including the Autoregressive Integrated Moving Average (ARIMA), Attention Mechanism-enhanced Long Short-Term Memory (AM-LSTM), Genetic Algorithm-optimized Support Vector Regression (GA-SVR), and Particle Swarm Optimization-based Backpropagation neural network (PSO-BP). Results show that AM-LSTM achieves the best performance for inverse cotangent and large-sample exponential curves; ARIMA excels for small-sample exponential curves; PSO-BP is most effective for multi-step curves; and GA-SVR offers superior accuracy for one-shaped and oscillating curves. Validation on a newly excavated section of Urumqi Metro Line 2 confirms the model’s potential in enhancing the safety management of buildings and infrastructure in subway construction zones. Full article
(This article belongs to the Topic Resilient Civil Infrastructure, 2nd Edition)
Show Figures

Figure 1

17 pages, 4339 KB  
Article
Research on Cantilever Beam Roller Tension Sensor Based on Surface Acoustic Wave
by Yang Feng, Bingkun Zhang, Yang Chen, Ben Wang, Hua Xia, Haoda Yu, Xulehan Yu and Pengfei Yang
Micromachines 2025, 16(9), 1044; https://doi.org/10.3390/mi16091044 - 11 Sep 2025
Viewed by 654
Abstract
This paper presents a design method for a continuous tension detection sensor based on a cantilever beam structure and compensates for the temperature drift of a SAW sensor based on a neural network algorithm. Firstly, a novel cantilever beam roller structure is proposed [...] Read more.
This paper presents a design method for a continuous tension detection sensor based on a cantilever beam structure and compensates for the temperature drift of a SAW sensor based on a neural network algorithm. Firstly, a novel cantilever beam roller structure is proposed to significantly enhance the sensitivity of the transmission of silk thread tension to a SAW tension sensor. Secondly, to improve the sensitivity of the SAW tension sensor, the COMSOL finite element method (FEM) is employed for simulation to determine the optimal IDT placement. An unbalanced split IDT design is utilized to suppress potential parasitic responses. Finally, the designed sensor is tested, and a GA-PSO-BP algorithm is employed to fit the test data for temperature compensation. The experimental results demonstrate that the temperature sensitivity coefficient of the data optimized by the GA-PSO-BP algorithm is reduced by an order of magnitude compared to the raw data, with reductions of 6.0409×103 °C1 and 3.0312×103 °C1 compared to the BP neural network and the PSO-BP algorithm, respectively. The average output error of the optimized data is reduced by 5.748% compared to the sensor measurement data, and it is also lower than both the BP neural network and the PSO-BP algorithm. It provides new design ideas for the development of tension sensors. Full article
(This article belongs to the Special Issue Surface and Bulk Acoustic Wave Devices, 2nd Edition)
Show Figures

Figure 1

47 pages, 10020 KB  
Article
A Bio-Inspired Adaptive Probability IVYPSO Algorithm with Adaptive Strategy for Backpropagation Neural Network Optimization in Predicting High-Performance Concrete Strength
by Kaifan Zhang, Xiangyu Li, Songsong Zhang and Shuo Zhang
Biomimetics 2025, 10(8), 515; https://doi.org/10.3390/biomimetics10080515 - 6 Aug 2025
Cited by 3 | Viewed by 1008
Abstract
Accurately predicting the compressive strength of high-performance concrete (HPC) is critical for ensuring structural integrity and promoting sustainable construction practices. However, HPC exhibits highly complex, nonlinear, and multi-factorial interactions among its constituents (such as cement, aggregates, admixtures, and curing conditions), which pose significant [...] Read more.
Accurately predicting the compressive strength of high-performance concrete (HPC) is critical for ensuring structural integrity and promoting sustainable construction practices. However, HPC exhibits highly complex, nonlinear, and multi-factorial interactions among its constituents (such as cement, aggregates, admixtures, and curing conditions), which pose significant challenges to conventional predictive models. Traditional approaches often fail to adequately capture these intricate relationships, resulting in limited prediction accuracy and poor generalization. Moreover, the high dimensionality and noisy nature of HPC mix data increase the risk of model overfitting and convergence to local optima during optimization. To address these challenges, this study proposes a novel bio-inspired hybrid optimization model, AP-IVYPSO-BP, which is specifically designed to handle the nonlinear and complex nature of HPC strength prediction. The model integrates the ivy algorithm (IVYA) with particle swarm optimization (PSO) and incorporates an adaptive probability strategy based on fitness improvement to dynamically balance global exploration and local exploitation. This design effectively mitigates common issues such as premature convergence, slow convergence speed, and weak robustness in traditional metaheuristic algorithms when applied to complex engineering data. The AP-IVYPSO is employed to optimize the weights and biases of a backpropagation neural network (BPNN), thereby enhancing its predictive accuracy and robustness. The model was trained and validated on a dataset comprising 1030 HPC mix samples. Experimental results show that AP-IVYPSO-BP significantly outperforms traditional BPNN, PSO-BP, GA-BP, and IVY-BP models across multiple evaluation metrics. Specifically, it achieved an R2 of 0.9542, MAE of 3.0404, and RMSE of 3.7991 on the test set, demonstrating its high accuracy and reliability. These results confirm the potential of the proposed bio-inspired model in the prediction and optimization of concrete strength, offering practical value in civil engineering and materials design. Full article
Show Figures

Figure 1

19 pages, 1761 KB  
Article
Prediction of China’s Silicon Wafer Price: A GA-PSO-BP Model
by Jining Wang, Hui Chen and Lei Wang
Mathematics 2025, 13(15), 2453; https://doi.org/10.3390/math13152453 - 30 Jul 2025
Cited by 1 | Viewed by 927
Abstract
The BP (Back-Propagation) neural network model (hereafter referred to as the BP model) often gets stuck in local optima when predicting China’s silicon wafer price, which hurts the accuracy of the forecasts. This study addresses the issue by enhancing the BP model. It [...] Read more.
The BP (Back-Propagation) neural network model (hereafter referred to as the BP model) often gets stuck in local optima when predicting China’s silicon wafer price, which hurts the accuracy of the forecasts. This study addresses the issue by enhancing the BP model. It integrates the principles of genetic algorithm (GA) with particle swarm optimization (PSO) to develop a new model called the GA-PSO-BP. This study also considers the material price from both the supply and demand sides of the photovoltaic industry. These prices are important factors in China’s silicon wafer price prediction. This research indicates that improving the BP model by integrating GA allows for a broader exploration of potential solution spaces. This approach helps to prevent local minima and identify the optimal solution. The BP model converges more quickly by using PSO for weight initialization. Additionally, the method by which particles share information decreases the probability of being confined to local optima. The upgraded GA-PSO-BP model demonstrates improved generalization capabilities and makes more accurate predictions. The MAE (Mean Absolute Error) value of the GA-PSO-BP model is 31.01% lower than those of the standalone BP model and also falls by 19.36% and 16.28% relative to the GA-BP and PSO-BP models, respectively. The smaller the value, the closer the prediction result of the model is to the actual value. This model has proven effective and superior in China’s silicon wafer price prediction. This capability makes it an essential resource for market analysis and decision-making within the silicon wafer industry. Full article
Show Figures

Figure 1

16 pages, 2166 KB  
Article
Error Compensation for Delta Robot Based on Improved PSO-GA-BP Algorithm
by Kaiwen Yang, Zhan Pan, Linlin Zheng, Qinwen Li and Deyong Shang
Mathematics 2025, 13(13), 2118; https://doi.org/10.3390/math13132118 - 28 Jun 2025
Viewed by 590
Abstract
Aiming to address the problem of accuracy degradation in Delta robots caused by machining accuracy, assembly precision, etc., this paper corrects the robot’s driving angles to achieve error compensation and designs a compensation algorithm based on particle swarm optimization (PSO) and BP neural [...] Read more.
Aiming to address the problem of accuracy degradation in Delta robots caused by machining accuracy, assembly precision, etc., this paper corrects the robot’s driving angles to achieve error compensation and designs a compensation algorithm based on particle swarm optimization (PSO) and BP neural network. In terms of algorithm improvement, the inertia weight and learning factors of the PSO algorithm are optimized to effectively enhance the global search ability and convergence performance of the algorithm. Additionally, the core mechanisms of genetic algorithms, including selection, crossover, and mutation operations, are introduced to improve algorithm diversity, ultimately proposing an improved PSO-GA-BP error compensation algorithm. This algorithm uses the improved PSO-GA algorithm to optimize the optimal correction angles and trains the BP network with the optimized dataset to achieve predictive compensation for other points. The simulation results show that the comprehensive error of the robot after compensation by this algorithm is reduced by 83.8%, verifying its effectiveness in positioning accuracy compensation and providing a new method for the accuracy optimization of parallel robots. Full article
Show Figures

Figure 1

20 pages, 1242 KB  
Article
Risk Assessment of Supplier R&D Investment Based on Improved BP Neural Network
by Yinghua Song, Xiaoyan Sang, Zhe Wang and Hongqian Xu
Mathematics 2025, 13(13), 2094; https://doi.org/10.3390/math13132094 - 26 Jun 2025
Cited by 2 | Viewed by 777
Abstract
As market competition intensifies, the survival and development of suppliers increasingly rely on research and development (R&D) investment and innovation. Due to the uncertainty of factors affecting supplier R&D investment, the risks faced by supplier R&D investment are also uncertain. Therefore, identifying and [...] Read more.
As market competition intensifies, the survival and development of suppliers increasingly rely on research and development (R&D) investment and innovation. Due to the uncertainty of factors affecting supplier R&D investment, the risks faced by supplier R&D investment are also uncertain. Therefore, identifying and assessing risks in advance and controlling risks can provide effective support for suppliers to carry out risk management of R&D investment. This paper selects key factors through literature review and factor analysis, and establishes a risk index evaluation system for R&D investment of medical material suppliers. Seventeen indicators that affect and constrain project investment factors were identified as input variables of the back propagation (BP) neural network, the comprehensive score of the R&D investment risk assessment was used as the output variable of medical supplies suppliers, and a risk assessment model for the R&D investment of medical material suppliers was established. By leveraging the ability of particle swarm optimization (PSO), whale optimization algorithm (WOA), and genetic algorithm (GA) to search for global optimal solutions, the BP neural network is improved to avoid becoming trapped in local optimal solutions and enhance the model’s generalization ability. The improvement in accuracy and convergence speed of these three methods is compared and analyzed. The results show that the BP neural network improved by the genetic algorithm has better accuracy and faster convergence speed in predicting and assessing risks. This indicates that the BP neural network model improved by genetic algorithm is effective and feasible for predicting the risk assessment of the R&D investment of medical supplies suppliers. Full article
Show Figures

Figure 1

23 pages, 2042 KB  
Article
A Wireless Sensor Network-Based Combustible Gas Detection System Using PSO-DBO-Optimized BP Neural Network
by Min Zhou, Sen Wang, Jianming Li, Zhe Wei and Lingqiao Shui
Sensors 2025, 25(10), 3151; https://doi.org/10.3390/s25103151 - 16 May 2025
Cited by 2 | Viewed by 1454
Abstract
Combustible gas leakage remains a critical safety concern in industrial and indoor environments, necessitating the development of detection systems that are both accurate and practically deployable. This study presents a wireless gas detection system that integrates a gas sensor array, a low-power microcontroller [...] Read more.
Combustible gas leakage remains a critical safety concern in industrial and indoor environments, necessitating the development of detection systems that are both accurate and practically deployable. This study presents a wireless gas detection system that integrates a gas sensor array, a low-power microcontroller with Zigbee-based communication, and a Back Propagation (BP) neural network optimized via a sequential hybrid strategy. Specifically, Particle Swarm Optimization (PSO) is employed for global parameter initialization, followed by Dung Beetle Optimization (DBO) for local refinement, jointly enhancing the network’s convergence speed and predictive precision. Experimental results confirm that the proposed PSO-DBO-BP model achieves high correlation coefficients (above 0.997) and low mean relative errors (below 0.25%) for all monitored gases, including hydrogen, carbon monoxide, alkanes, and smog. The model exhibits strong robustness in handling nonlinear responses and cross-sensitivity effects across multiple sensors, demonstrating its effectiveness in complex detection scenarios under laboratory conditions within embedded wireless sensor networks. Full article
(This article belongs to the Special Issue Wireless Sensor Networks for Condition Monitoring)
Show Figures

Figure 1

30 pages, 7785 KB  
Article
Data Value Assessment in Digital Economy Based on Backpropagation Neural Network Optimized by Genetic Algorithm
by Xujiang Qin, Qi He, Xin Zhang and Xiang Yang
Symmetry 2025, 17(5), 761; https://doi.org/10.3390/sym17050761 - 14 May 2025
Cited by 2 | Viewed by 1131
Abstract
As a new form of economic activity driven by data resources and digital technologies, the digital economy underscores the strategic significance of data as a core production factor. This growing importance necessitates accurate and robust valuation methods. Data valuation poses core modeling challenges [...] Read more.
As a new form of economic activity driven by data resources and digital technologies, the digital economy underscores the strategic significance of data as a core production factor. This growing importance necessitates accurate and robust valuation methods. Data valuation poses core modeling challenges due to its nonlinear nature and the instability of neural networks, including gradient vanishing, parameter sensitivity, and slow convergence. To overcome these challenges, this study proposes a genetic algorithm-optimized BP (GA-BP) model, enhancing the efficiency and accuracy of data valuation. The BP neural network employs a symmetrical architecture, with neurons organized in layers and information transmitted symmetrically during both forward and backward propagation. Similarly, the genetic algorithm maintains a symmetric evolutionary process, featuring symmetric operations in both crossover and mutation. The empirical data used in this study are sourced from the Shanghai Data Exchange, comprising 519 data samples. Based on this dataset, the model incorporates 9 primary indicators and 21 secondary indicators to comprehensively assess data value, optimizing network weights and thresholds through the genetic algorithm. Experimental results show that the GA-BP model outperforms the traditional BP network in terms of mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE), and coefficient of determination (R2), achieving a 47.6% improvement in prediction accuracy. Furthermore, GA-BP exhibits faster convergence and greater stability. When compared to other models such as long short-term memory (LSTM), convolutional neural networks (CNNs), and optimization-based BP variants like particle swarm optimization BP (PSO-BP) and whale optimization algorithm BP (WOA-BP), GA-BP demonstrates superior generalization and robustness. This approach provides valuable insights into the commercialization of data assets. Full article
Show Figures

Figure 1

20 pages, 7280 KB  
Article
Optimisation of Aluminium Alloy Variable Diameter Tubes Hydroforming Process Based on Machine Learning
by Yong Xu, Xuewei Zhang, Wenlong Xie, Shihong Zhang, Yaqiang Tian and Liansheng Chen
Appl. Sci. 2025, 15(9), 5045; https://doi.org/10.3390/app15095045 - 1 May 2025
Cited by 1 | Viewed by 1010
Abstract
To predict the forming behaviour of aluminium alloy variable diameter tubes during hydroforming, a genetic algorithm-enhanced particle swarm optimisation (GA-PSO) is used to optimise a backpropagation neural network (BP-NN). A fast prediction model based on the GA-PSO-BP neural network for the hydroforming of [...] Read more.
To predict the forming behaviour of aluminium alloy variable diameter tubes during hydroforming, a genetic algorithm-enhanced particle swarm optimisation (GA-PSO) is used to optimise a backpropagation neural network (BP-NN). A fast prediction model based on the GA-PSO-BP neural network for the hydroforming of aluminium alloy variable diameter tubes was established. The loading paths (internal pressure, axial feeds, and coefficient of friction) were randomly sampled using the Latin hypercube random sampling method. The minimum wall thickness, maximum wall thickness, and maximum expansion height of the formed tubes are included in the main evaluation factors of the forming results. A variety of machine learning algorithms are used to predict, and the prediction results are compared with the finite element model in terms of error. The maximum average absolute value error and mean square error of the proposed model are less than 0.2, which improves the accuracy by 20.4% compared to the unoptimised PSO-BP neural network algorithm. The maximum error between simulated and predicted results is within 4%. The model allows effective prediction of the hydroforming effect of aluminium alloy variable diameter tubes and improves the computational rate and model accuracy of the model. The same process parameters are experimentally verified, the minimum wall thickness of the formed part is 1.27 mm, the maximum wall thickness is 1.53 mm, and the maximum expansion height is 5.11 mm. The maximum thinning and the maximum thickening rate comply with the standard of hydroforming, and the tube has good formability without obvious defects. Full article
(This article belongs to the Special Issue AI-Enhanced Metal/Alloy Forming)
Show Figures

Figure 1

24 pages, 4017 KB  
Article
Prediction of the Height of Water-Conducting Fissure Zone for Shallow-Buried Coal Seams Under Fully Mechanized Caving Conditions in Northern Shaanxi Province
by Wei Chen, Shujia Geng, Xi Chen, Tao Li, Paraskevas Tsangaratos and Ioanna Ilia
Water 2025, 17(3), 312; https://doi.org/10.3390/w17030312 - 23 Jan 2025
Cited by 2 | Viewed by 947
Abstract
Accurate prediction of the height of water-conducting fissure zone (HWCFZ) is an important issue in coal water control and a prerequisite for ensuring the safe production of coal mines. At present, the prediction model of HWCFZ has some issues such as poor prediction [...] Read more.
Accurate prediction of the height of water-conducting fissure zone (HWCFZ) is an important issue in coal water control and a prerequisite for ensuring the safe production of coal mines. At present, the prediction model of HWCFZ has some issues such as poor prediction accuracy. Based on the widely collected measured data of the HWCFZ in different coal mines in northern Shaanxi Province, China, the HWCFZ in shallow-buried coal seams is categorized into two types, i.e., typical shallow-buried coal seams and near-shallow-buried seams, according to the different depths of burial and base-loading ratios. On the basis of summarizing the research results of the previous researchers, three factors, namely, mining thickness, coal seam depth, and working length, were selected, and the data of the height of the water-conducting fissure zone in the study area were analyzed by using a multivariate nonlinear regression method. Subsequently, each group of the data was randomly divided into training data and validation data with a ratio of 70:30. Then, the training data were used to build a neural network model (BP), random forest model (RF), a hybrid integration of particle swarm optimization and the support vector machine model (PSO-SVR), and a hybrid integration of genetic algorithm optimization and the support vector machine model (GA-SVR). Finally, the test samples were used to test the model accuracy and evaluate the generalization ability. Accordingly, the optimal prediction model for the typical shallow-buried area and near-shallow-buried area of Jurassic coal seams in northern Shaanxi was established. The results show that the HWCFZ for the typical shallow-buried coal seam is suitable to be determined by the multivariate nonlinear regression method, with an accuracy of 0.64; the HWCFZ for near-shallow-buried coal seams is suitable to be predicted by the two-factor PSO-SVR computational model of mining thickness and the burial depth, with a prediction accuracy of 0.84; and machine learning methods are more suitable for near-shallow-buried areas, dealing with small-scale data and discrete data. Full article
Show Figures

Figure 1

14 pages, 5735 KB  
Article
Research on Fire Detection of Cotton Picker Based on Improved Algorithm
by Zhai Shi, Fangwei Wu, Changjie Han and Dongdong Song
Sensors 2025, 25(2), 564; https://doi.org/10.3390/s25020564 - 19 Jan 2025
Cited by 3 | Viewed by 1422
Abstract
According to the physical characteristics of cotton and the work characteristics of cotton pickers in the field, during the picking process, there is a risk of cotton combustion. The cotton picker working environment is complex, cotton ignition can be hidden, and fire is [...] Read more.
According to the physical characteristics of cotton and the work characteristics of cotton pickers in the field, during the picking process, there is a risk of cotton combustion. The cotton picker working environment is complex, cotton ignition can be hidden, and fire is difficult to detect. Therefore, in this study, we designed an improved algorithm for multi-sensor data fusion; built a cotton picker fire detection system by using infrared temperature sensors, CO sensors, and the upper computer; and proposed a BP neural network model based on improved mutation operator hybrid gray wolf optimizer and particle swarm optimization (MGWO-PSO) algorithm based on the BP neural network model. This algorithm includes the introduction of a mutation operator in the gray wolf algorithm to improve the search ability of the algorithm, and, at the same time, we introduce the PSO algorithm idea. The improved fusion algorithm is used as a learning algorithm to optimize the BP neural network, and the optimized network is used to process and predict the data collected from temperature and gas sensors, which effectively improves the accuracy of fire prediction. The sensor measurements were compared with the actual values to verify the effectiveness of the GWO-PSO-optimized BP neural network model. Once experimentally verified, the improved GWO-PSO algorithm achieves a correlation coefficient R of 0.96929, a prediction accuracy rate of 96.10%, and a prediction error rate of only 3.9%, while the system monitors an accurate early warning rate of 96.07%, and the false alarm and omission rates are both less than 5%. This study can detect cotton picker fires in real time and provide timely warnings, which provides a new method for the accurate detection of fires during the field operation of cotton pickers. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

18 pages, 2189 KB  
Article
Prediction of China’s Carbon Price Based on the Genetic Algorithm–Particle Swarm Optimization–Back Propagation Neural Network Model
by Jining Wang, Xuewei Zhao and Lei Wang
Sustainability 2025, 17(1), 59; https://doi.org/10.3390/su17010059 - 25 Dec 2024
Cited by 7 | Viewed by 1759
Abstract
Traditional BP neural networks frequently encounter local optima during carbon price forecasts. This study adopts a hybrid approach, combining a genetic algorithm and particle swarm optimization (GA-PSO) to improve the BP neural network, resulting in the creation of a GA-PSO-BP neural network model. [...] Read more.
Traditional BP neural networks frequently encounter local optima during carbon price forecasts. This study adopts a hybrid approach, combining a genetic algorithm and particle swarm optimization (GA-PSO) to improve the BP neural network, resulting in the creation of a GA-PSO-BP neural network model. Seven critical factors were identified affecting carbon prices, and we utilized data on carbon emission trading prices from China for the analysis. Compared to traditional BP neural network models, including GA-BP neural network models optimized solely with genetic algorithms and PSO-BP neural network models enhanced through particle swarm optimization, the findings reveal that the GA-PSO-BP neural network model demonstrates superior performance in terms of precision and robustness. Furthermore, it demonstrates advancements across various error evaluation metrics, thus delivering more accurate forecasts. Offering precise carbon price predictions, the enhanced GA-PSO-BP neural network model proves to be a valuable tool for analyzing the market and making decisions in the carbon pricing sector. Full article
Show Figures

Figure 1

19 pages, 3440 KB  
Article
A Hybrid Strategy-Improved SSA-CNN-LSTM Model for Metro Passenger Flow Forecasting
by Jing Liu, Qingling He, Zhikun Yue and Yulong Pei
Mathematics 2024, 12(24), 3929; https://doi.org/10.3390/math12243929 - 13 Dec 2024
Cited by 7 | Viewed by 2182
Abstract
To address the issues of slow convergence and large errors in existing metaheuristic algorithms when optimizing neural network-based subway passenger flow prediction, we propose the following improvements. First, we replace the random initialization method of the population in the SSA with Circle mapping [...] Read more.
To address the issues of slow convergence and large errors in existing metaheuristic algorithms when optimizing neural network-based subway passenger flow prediction, we propose the following improvements. First, we replace the random initialization method of the population in the SSA with Circle mapping to enhance its diversity and quality. Second, we introduce a hybrid mechanism combining dimensional small-hole imaging backward learning and Cauchy mutation, which improves the diversity of the individual sparrow selection of optimal positions and helps overcome the algorithm’s tendency to become trapped in local optima and premature convergence. Finally, we enhance the individual sparrow position update process by integrating a cosine strategy with an inertia weight adjustment, which improves the algorithm’s global search ability, effectively balancing global search and local exploitation, and reducing the risk of local optima and insufficient convergence precision. Based on the analysis of the correlation between different types of subway station passenger flows and weather factors, the ISSA is used to optimize the hyperparameters of the CNN-LSTM model to construct a subway passenger flow prediction model based on ISSA-CNN-LSTM. Simulation experiments were conducted using card swipe data from Harbin Metro Line 1. The results show that the ISSA provides a more accurate optimization with the average values and standard deviations of the 12 benchmark test function simulations being closer to the optimal values. The ISSA-CNN-LSTM model outperforms the SSA-CNN-LSTM, PSO-ELMAN, GA-BP, CNN-LSTM, and LSTM models in terms of error evaluation metrics such as MAE, RMSE, and MAPE, with improvements ranging from 189.8% to 374.6%, 190.9% to 389.5%, and 3.3% to 6.7%, respectively. Moreover, the ISSA-CNN-LSTM model exhibits the smallest variation in prediction errors across different types of subway stations. The ISSA demonstrates superior parameter optimization accuracy and convergence speed compared to the SSA. The ISSA-CNN-LSTM model is suitable for the precise prediction of passenger flow at different types of subway stations, providing theoretical and data support for subway station passenger density and trend forecasting, passenger organization and management, risk emergency response, and the improvement of service quality and operational safety. Full article
Show Figures

Figure 1

27 pages, 7716 KB  
Article
An Innovative Online Adaptive High-Efficiency Controller for Micro Gas Turbine: Design and Simulation Validation
by Rui Yang, Yongbao Liu, Xing He and Zhimeng Liu
J. Mar. Sci. Eng. 2024, 12(12), 2150; https://doi.org/10.3390/jmse12122150 - 25 Nov 2024
Cited by 4 | Viewed by 1185
Abstract
In this article, an innovative online adaptive high-efficiency control strategy is proposed to improve the power generation efficiency of a marine micro gas turbine under partial load. Firstly, a mathematical model of the micro-gas turbine is established, and a control strategy consisting of [...] Read more.
In this article, an innovative online adaptive high-efficiency control strategy is proposed to improve the power generation efficiency of a marine micro gas turbine under partial load. Firstly, a mathematical model of the micro-gas turbine is established, and a control strategy consisting of an on-board prediction model and an online update model is proposed. To evaluate the performance changes of the gas turbine, we applied deep learning techniques to enhance the extreme learning machine (ELM) algorithm, resulting in the development of a high-precision, high-real-time deep extreme learning machine (DL_ELM) prediction model. This model effectively monitors changes in the gas turbine’s performance. Furthermore, an online time-series deep extreme learning machine with a dynamic forgetting factor (DFF_DL_OSELM) model is designed to achieve the real-time tracking of performance variations. When the DL_ELM model detects a gas turbine’s performance change, a particle swarm optimization (PSO) algorithm is employed to iteratively calculate the DFF_DL_OSELM model, determining the optimal speed control scheme to ensure the gas turbine operates at maximum efficiency. To validate the superiority of the proposed control strategy, a comparison is made with traditional high-efficiency control strategies based on polynomial fitting and BP neural networks. The results demonstrate that although all three strategies can achieve efficient operation under constant conditions, traditional strategies fail to identify and adjust to performance changes in real time, leading to decreased control performance and potential engine damage as engine characteristics degrade. In contrast, the proposed online adaptive control strategy dynamically adjusts the speed control plan based on performance degradation, ensuring that the gas turbine operates efficiently while keeping the turbine inlet and exhaust temperatures within safe limits. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop