Research on Cantilever Beam Roller Tension Sensor Based on Surface Acoustic Wave
Abstract
1. Introduction
2. Principles of SAW Tension Sensor and GA-PSO-BP Algorithm
2.1. Principle of the Cantilever Beam Roller SAW Structure
2.2. Principle of GA-PSO-BP Algorithm
2.2.1. BP Neural Network
2.2.2. PSO-BP Algorithm
2.2.3. GA-PSO-BP Algorithm
- (1)
- Initialization: Create a BP neural network. Initialize the population (for GA), where each individual represents the network’s weights and biases. Initialize the particle swarm (for PSO), with each particle also representing the weights and biases.
- (2)
- GA optimization: Generate new individuals by applying selection, crossover, and mutation operations to the network’s weights and biases. Evaluate each individual’s fitness using the network’s error or loss function.
- (3)
- PSO adjustment: Initialize or update the particle swarm’s positions based on the GA-processed population. Update each particle’s velocity and position using historical best positions (individual and global). Update the network’s weights and biases accordingly.
- (4)
- BP training: Train the BP neural network using the updated weights and biases, adjusting them through backpropagation based on the loss function.
- (5)
- Iteration check: Repeat steps (2)–(4) until a stopping condition is met, such as a maximum number of iterations or a minimum error threshold.
3. Design and Simulation of SAW Tension Sensor
3.1. Design of SAW Device
3.2. FEM of SAW Device
4. Data Measurement and Processing
4.1. Data Measurement
4.2. Data Processing
4.3. Data Comparison
5. Conclusions
- (1)
- A novel cantilever beam roller SAW tension sensor is developed. The rollers are fixed on the cantilever beam, enabling the silk thread tension to directly act on the cantilever beam, thereby better conducting to the SAW sensor. This structure can significantly enhance the sensitivity of the transmission of silk thread tension to the SAW tension sensor.
- (2)
- A SAW device is created using quartz as the piezoelectric substrate, achieving a target bandwidth of 2.04% at a center frequency of 60 MHz. To suppress parasitic responses of SAW, the sensor design incorporates an unbalanced split-electrode IDT structure, along with appropriate input and output IDTs. To determine the optimal IDT placement, COMSOL-FEM is utilized for modeling and simulation. Based on the simulation results, the significant strain and minimal deformation positions are selected to place the IDTs.
- (3)
- To address the temperature impact on SAW tension sensors, this paper applied the GA-PSO-BP algorithm. This algorithm integrates the global search capability of genetic algorithms (GA) with the local optimization strength of particle swarm optimization (PSO). It effectively reduced the temperature sensitivity coefficient to , marking a significant improvement over the original data and other traditional algorithms. Specifically, compared to traditional BP networks and PSO-BP algorithms, the reductions achieved are and , respectively. The average output error of the optimized data is reduced by 5.748% compared to the sensor measurement data. The average output error of the optimized data is reduced by 5.748% compared to the sensor measurement data, and it is also lower than both the BP neural network and the PSO-BP algorithm.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, D.; Liu, H. Development and Application of Technology for Low-Tension High-Density Shrink-Proof Finishing and Covalent Cross-Linking Crease Resistance Treatment of Silk. Jiangsu Silk 2015, 02, 37–39. [Google Scholar]
- Zheng, B.; Jiang, G.; Xia, F.; Zhang, A. Design of Dynamic Warp Tension Compensation System for Warp Knitting Based on Model Prediction. J. Text. Res. 2021, 42, 163–169. [Google Scholar]
- Ali, M.; Ahmed, R.; Amer, M. Yarn tension control technique for improving polyester soft winding process. Sci. Rep. 2021, 11, 1060. [Google Scholar] [CrossRef] [PubMed]
- Janczuk-Richter, M.; Dominik, M.; Roźniecka, E.; Koba, M.; Mikulic, P.; Bock, W.J.; Łoś, M.; Smietana, M.J.; Niedziółka-Jönsson, J. Long-period fiber grating sensorfor detection of viruses. Sens. Actuators B Chem. 2017, 250, 32–38. [Google Scholar] [CrossRef]
- Marques, C.A.F.; Peng, G.D.; Webb, D.J. Highly sensitive liquid level monitoringsystem utilizing polymer fiber bragg gratings. Opt. Express 2015, 23, 6058–6072. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Lu, X.; Zhu, C.; Liu, Q.; Zhang, H. Solving three key problems of the SAW yarn tension sensor. IEEE Trans. Electron Devices 2012, 59, 2853–2855. [Google Scholar] [CrossRef]
- Lu, W.; Feng, Y.; Zhu, C.; Zhen, J. Temperature compensation of the SAW yarn tension sensor. Ultrasonics 2017, 76, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Yuan, C.; Zhu, B.; Ke, Y.; Li, H. Research on Temperature Compensation Method for Surface Acoustic Wave Strain Sensors. Piezoelectrics Acoustooptics 2016, 38, 744–746. [Google Scholar]
- Youbi, U.; Hage-Ali, S.; Zhang, Q.; Yang, Y.; Ba, D.; M’jahed, H.; Aubert, T.; Elmazria, O. High-Q Wireless SAW Sensors Based on AlN/Sapphire Bilayer Structure, Operating at 2.45 GHz Range for High-Temperature Applications. IEEE Sens. Lett. 2024, 8, 1–4. [Google Scholar] [CrossRef]
- Sun, Y.; Miao, F.; Tao, B. Application of PSO-Based BP Neural Network in Temperature Compensation for Pressure Sensors. J. Sens. Technol. 2014, 27, 342–346. [Google Scholar]
- Feng, Y.; Liu, W.; Yu, H.; Hu, K.; Sun, S.; Wang, B. Temperature Compensation of SAW Winding Tension Sensor Based on PSO-LSSVM Algorithm. Micromachines 2023, 14, 2093. [Google Scholar] [CrossRef] [PubMed]
- Pan, F. Surface Acoustic Wave Materials and Devices; Science Press: Beijing, China, 2012; pp. 24–27. [Google Scholar]
- Ding, Y.; Lu, W.; Zhang, Y. Study on the practical application of surface acoustic wave yarn tension sensor. IEEE Trans. Ind. Electron. 2014, 69, 13781–13790. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Huang, J.; Zhou, H. Fitting analysis and research of measured data of SAW micro-pressure sensor based on BP neural network. Measurement 2020, 155, 107533. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Chen, W.; Fu, Y.; Zhou, W.; Mo, L.; Jian, Y.; Wen, Q.; Liu, D.; He, J. Back Propagation Neural Network-Based Predictive Model for Magnetorheological–Chemical Polishing of Silicon Carbide. Micromachines 2025, 16, 271. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Liu, X.; Jin, X.; Li, C.; Ma, Y.; Xu, D.; Guo, S. Comprehensive Performance-Oriented Multi-Objective Optimization of Hemispherical Resonator Structural Parameters. Micromachines 2025, 16, 287. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Guyette, A.; Naglich, E.J.; Peroulis, D. Coupling-matrix-based SAW filter design. In Proceedings of the 2014 IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, FL, USA, 1–6 June 2014; pp. 1–4. [Google Scholar]
- Morgan, D.P. Surface Acoustic Wave Filters, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 169–176. [Google Scholar]
- Campbell, C.K. Surface Acoustic Wave Devices and Their Signal Processing Applications; Elsevier: Amsterdam, The Netherlands, 1989; pp. 59–65. [Google Scholar]
- Taran, N.; Ionel, D.M.; Rallabandi, V.; Heins, G.; Patterson, D. An overview of methods and a new three-dimensional FEA and analytical hybrid technique for calculating AC winding losses in PM machines. IEEE Trans. Ind. Appl. 2021, 57, 352–362. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; Xie, L.; Huang, B.; Zhang, A.; Du, J.; Wu, R.; Wang, J.; Yong, Y.-K. Novel Quartz Crystal Cuts for SAW Substrates with Cubic Frequency-Temperature Relations. In Proceedings of the 2018 `IEEE International Ultrasonics Symposium (IUS), Kobe, Japan, 22–25 October 2018; pp. 1–4. [Google Scholar]
- Feng, Y.; Lu, Z.; Lu, W. Study of the Doubly Clamped Beam Yarn Tension Sensor Based on the Surface Acoustic Wave. IEEE Trans. Ind. Electron. 2019, 66, 3256–3264. [Google Scholar] [CrossRef]
- Qureshi, S.; Hanif, M.; Jeoti, V.; Stojanović, G.M.; Khan, M.T. Review of fabrication of SAW sensors on flexible substrates: Challenges and future. Results Eng. 2024, 22, 102323. [Google Scholar] [CrossRef]
Symbol | Parameter Description |
---|---|
weighted input | |
weight | |
biase | |
activation value | |
actual output | |
predicted output | |
error | |
the derivative of the activation function | |
learning rate |
Symbol | Parameter Description |
---|---|
dimension | |
number of nodes in input layer of the neural network | |
number of nodes in hidden layer of the neural network | |
number of nodes in output layer of the neural network | |
inertia weight | |
learning factor | |
random numbers within the range of 0 to 1 |
Symbol | Parameter Description |
---|---|
the time length of the input transducer | |
input frequency response of IDT | |
output frequency response of IDT | |
maximum aperture of IDT | |
m finger pair of the output overlap | |
bandwidth | |
output IDT finger pairs | |
input IDT finger pairs | |
random numbers within the range of 0 to 1 |
Center Frequency ) | Band Width ) | Aperture Width of IDT ) | Electrode Width ) | Spacing Between Electrodes ) | Width of Junction Bridge ) | Number of Electrodes | |
---|---|---|---|---|---|---|---|
Input IDT | Output IDT | ||||||
60 | 1.2288 | 3588.7333 | a = 3.2896 c = 9.8687 | b = 6.5791 d = 6.5791 | 0.5 | 59 | 24 |
Parameters | Value |
---|---|
3.9 | |
Elastic matrix ) | |
2.2 | |
30 | |
5.0 | |
0.5 |
F(N) | T (°C) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 | 36 | 38 | 40 | |
(Hz) | |||||||||||
0.0 | 121 | 134 | 142 | 155 | 169 | 183 | 199 | 213 | 231 | 253 | 276 |
0.1 | 1128 | 1155 | 1187 | 1214 | 1253 | 1288 | 1316 | 1345 | 1378 | 1413 | 1446 |
0.2 | 2246 | 2298 | 2363 | 2419 | 2486 | 2553 | 2608 | 2672 | 2726 | 2795 | 2868 |
0.3 | 3325 | 3403 | 3499 | 3575 | 3658 | 3762 | 3837 | 3941 | 4027 | 4114 | 4217 |
0.4 | 4461 | 4559 | 4678 | 4796 | 4901 | 5046 | 5140 | 5288 | 5406 | 5531 | 5663 |
0.5 | 5430 | 5657 | 5804 | 5958 | 6083 | 6261 | 6387 | 6561 | 6711 | 6876 | 7037 |
0.6 | 6629 | 6774 | 6942 | 7135 | 7294 | 7514 | 7653 | 7869 | 8056 | 8241 | 8440 |
0.7 | 7755 | 7921 | 8119 | 8339 | 8540 | 8799 | 8965 | 9202 | 9439 | 9659 | 9906 |
0.8 | 8888 | 9063 | 9300 | 9550 | 9791 | 10,082 | 10,283 | 10,562 | 10,818 | 11,094 | 11,603 |
0.9 | 10,125 | 10,318 | 10,598 | 10,883 | 11,134 | 11,466 | 11,703 | 12,032 | 12,306 | 12,613 | 13,132 |
1.0 | 11,127 | 11,472 | 11,748 | 12,118 | 12,368 | 12,934 | 13,295 | 13,601 | 13,918 | 14,235 | 14,678 |
F(N) | T (°C) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 | 36 | 38 | 40 | |
(Hz) | |||||||||||
0.0 | 128 | 130 | 133 | 135 | 137 | 138 | 139 | 142 | 144 | 145 | 148 |
0.1 | 1275 | 1281 | 1285 | 1287 | 1289 | 1291 | 1293 | 1295 | 1296 | 1299 | 1300 |
0.2 | 2429 | 2440 | 2453 | 2466 | 2474 | 2484 | 2489 | 2500 | 2512 | 2520 | 2533 |
0.3 | 3579 | 3601 | 3625 | 3649 | 3666 | 3683 | 3693 | 3728 | 3764 | 3782 | 3812 |
0.4 | 4843 | 4883 | 4905 | 4926 | 4944 | 4962 | 4970 | 5016 | 5033 | 5082 | 5152 |
0.5 | 5949 | 5998 | 6009 | 6037 | 6073 | 6103 | 6152 | 6160 | 6188 | 6227 | 6261 |
0.6 | 7138 | 7151 | 7198 | 7215 | 7248 | 7284 | 7297 | 7326 | 7355 | 7384 | 7403 |
0.7 | 8198 | 8249 | 8293 | 8331 | 8443 | 8450 | 8459 | 8491 | 8530 | 8539 | 8572 |
0.8 | 9498 | 9531 | 9574 | 9618 | 9679 | 9699 | 9714 | 9743 | 9751 | 9776 | 9792 |
0.9 | 10,742 | 10,781 | 10,812 | 10,854 | 10,914 | 10,942 | 10,955 | 10,971 | 11,002 | 11,057 | 11,091 |
1.0 | 12,003 | 12,025 | 12,075 | 12,144 | 12,164 | 12,182 | 12,233 | 12,251 | 12,264 | 12,307 | 12,323 |
Error (%) | F (N) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | Avg | |
Sensor measurement data (experiment) | 6.83 | 6.64 | 6.48 | 6.56 | 6.76 | 6.66 | 6.73 | 7.01 | 6.92 | 7.75 | 6.834 |
BP neural network | 4.85 | 3.53 | 3.57 | 3.63 | 3.66 | 3.68 | 3.59 | 3.49 | 3.48 | 3.48 | 3.696 |
PSO-BP algorithm | 3.26 | 2.52 | 2.59 | 2.71 | 2.72 | 2.71 | 2.53 | 2.30 | 2.31 | 1.94 | 2.559 |
GA-PSO-BP algorithm | 0.5 | 1.08 | 1.64 | 1.41 | 1.38 | 1.03 | 1.47 | 0.69 | 0.87 | 0.79 | 1.086 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; Zhang, B.; Chen, Y.; Wang, B.; Xia, H.; Yu, H.; Yu, X.; Yang, P. Research on Cantilever Beam Roller Tension Sensor Based on Surface Acoustic Wave. Micromachines 2025, 16, 1044. https://doi.org/10.3390/mi16091044
Feng Y, Zhang B, Chen Y, Wang B, Xia H, Yu H, Yu X, Yang P. Research on Cantilever Beam Roller Tension Sensor Based on Surface Acoustic Wave. Micromachines. 2025; 16(9):1044. https://doi.org/10.3390/mi16091044
Chicago/Turabian StyleFeng, Yang, Bingkun Zhang, Yang Chen, Ben Wang, Hua Xia, Haoda Yu, Xulehan Yu, and Pengfei Yang. 2025. "Research on Cantilever Beam Roller Tension Sensor Based on Surface Acoustic Wave" Micromachines 16, no. 9: 1044. https://doi.org/10.3390/mi16091044
APA StyleFeng, Y., Zhang, B., Chen, Y., Wang, B., Xia, H., Yu, H., Yu, X., & Yang, P. (2025). Research on Cantilever Beam Roller Tension Sensor Based on Surface Acoustic Wave. Micromachines, 16(9), 1044. https://doi.org/10.3390/mi16091044