Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (34,767)

Search Parameters:
Keywords = G0S2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 789 KiB  
Article
Effectiveness and Safety of Sacituzumab Govitecan in Real-World Clinical Practice in Patients with Metastatic Triple-Negative and HR+/HER2-Negative Breast Cancer
by Fernando Lago-Ballester, Adrián Martínez-Orea, Ana Laorden-Carrasco, María Sacramento Díaz-Carrasco, José Carlos Titos-Arcos, María Carmen Mira-Sirvent, Ginés Luengo-Gil and Mónica Martínez-Penella
Biomedicines 2025, 13(9), 2059; https://doi.org/10.3390/biomedicines13092059 (registering DOI) - 23 Aug 2025
Abstract
Background/Objectives: Sacituzumab govitecan (SG) is an antibody–drug conjugate targeting Trop-2 that has demonstrated clinical benefits in randomised trials for patients with metastatic triple-negative breast cancer (mTNBC) and metastatic hormone receptor-positive/HER2-negative (HR+/HER2− mBC) disease. However, real-world data on its effectiveness and safety are limited, [...] Read more.
Background/Objectives: Sacituzumab govitecan (SG) is an antibody–drug conjugate targeting Trop-2 that has demonstrated clinical benefits in randomised trials for patients with metastatic triple-negative breast cancer (mTNBC) and metastatic hormone receptor-positive/HER2-negative (HR+/HER2− mBC) disease. However, real-world data on its effectiveness and safety are limited, especially in patients with poor performance status or central nervous system (CNS) involvement. This study aimed to evaluate the real-world outcomes of SG in these two subtypes. Methods: We conducted a retrospective, multicentre, observational study across three tertiary hospitals in Spain. Patients with mTNBC or HR+/HER2− mBC treated with SG between June 2022 and March 2025 were included. Clinical data, treatment history, adverse events (AEs), and survival outcomes were also recorded. The median progression-free survival (mPFS) and median overall survival (mOS) were estimated using Kaplan–Meier analysis. Univariate and multivariate analyses were performed to identify the factors influencing outcomes. The association between granulocyte colony-stimulating factor (G-CSF) prophylaxis and neutropenia was assessed using Fisher’s exact test. Results: A total of 56 patients were included in this study (33 with mTNBC and 23 with HR+/HER2− mBC). In the mTNBC group, mPFS was 4.0 months (95% CI: 1.94–5.98) and mOS was 11.0 months (95% CI: 4.80–17.12). In the HR+/HER2− mBC group, mPFS was 3.7 months (95% CI: 2.02–5.44) and mOS was 20.2 months (95% CI: 3.9–36.5). Fatigue, neutropenia, and gastrointestinal toxicity were the most common AEs. Primary G-CSF prophylaxis was not associated with a reduced incidence of neutropenia (p = 0.434). Conclusions: In routine practice, SG shows effectiveness comparable to that of randomised trials across both subtypes, with a safety profile consistent with pivotal studies. The observed toxicity profile was consistent with that described in pivotal clinical trials and other studies. The prophylactic use of G-CSF was not associated with an impact on the occurrence of neutropenia, but the incidence of neutropenia was lower than that in clinical trials and other studies that did not administer G-CSF prophylactically. Full article
(This article belongs to the Section Drug Discovery, Development and Delivery)
28 pages, 621 KiB  
Article
Can Registration System Reform Promote Corporate Sustainability? Evidence from China’s ESG Practices
by Jie Han, Runchang Liu, Yao Xu and Yaoyao Liu
Sustainability 2025, 17(17), 7624; https://doi.org/10.3390/su17177624 (registering DOI) - 23 Aug 2025
Abstract
The registration system reform (RSR) represents a landmark innovation in China’s IPO system, aiming to promote a more transparent, competitive, and sustainable market. Exploiting the staggered implementation of RSR as a quasi-natural experiment, we employ a difference-in-differences (DID) model using a sample of [...] Read more.
The registration system reform (RSR) represents a landmark innovation in China’s IPO system, aiming to promote a more transparent, competitive, and sustainable market. Exploiting the staggered implementation of RSR as a quasi-natural experiment, we employ a difference-in-differences (DID) model using a sample of Chinese A-share IPO firms from 2016 to 2022 to investigate its impact on corporate sustainability, as proxied by environmental, social, and governance (ESG) performance. Our findings indicate that RSR significantly enhances corporate ESG performance, especially the governance (G) performance. Mechanism analysis suggests that market competition, investor rationality, and sponsor reputation are potential channels through which the reform facilitates corporate sustainability. Furthermore, the above relationship is more pronounced in regions with a higher degree of marketization, among non-state-owned enterprises, and those with weaker profitability. Moreover, the reform not only exhibits long-term effects but also demonstrates positive spillover effects on peer firms originally listed under the approval-based system. Overall, our study extends the understanding of how capital market institutional reforms promote corporate sustainability in the era of the digital economy and provides valuable insights for regulators to standardize and enhance RSR, thereby establishing a resilient and sustainable financial ecosystem. Full article
24 pages, 1543 KiB  
Article
Intelligent Fault Diagnosis for Rotating Machinery via Transfer Learning and Attention Mechanisms: A Lightweight and Adaptive Approach
by Zhengjie Wang, Xing Yang, Tongjie Li, Lei She, Xuanchen Guo and Fan Yang
Actuators 2025, 14(9), 415; https://doi.org/10.3390/act14090415 (registering DOI) - 23 Aug 2025
Abstract
Fault diagnosis under variable operating conditions remains challenging due to the limited adaptability of traditional methods. This paper proposes a transfer learning-based approach for bearing fault diagnosis across different rotational speeds, addressing the critical need for reliable detection in changing industrial environments. The [...] Read more.
Fault diagnosis under variable operating conditions remains challenging due to the limited adaptability of traditional methods. This paper proposes a transfer learning-based approach for bearing fault diagnosis across different rotational speeds, addressing the critical need for reliable detection in changing industrial environments. The method trains a diagnostic model on labeled source-domain data and transfers them to unlabeled target domains through a two-stage adaptation strategy. First, only the source-domain data are labeled to reflect real-world scenarios where target-domain labels are unavailable. The model architecture combines a convolutional neural network (CNN) for feature extraction with a self-attention mechanism for classification. During source-domain training, the feature extractor parameters are frozen to focus on classifier optimization. When transferring to target domains, the classifier parameters are frozen instead, allowing the feature extractor to adapt to new speed conditions. Experimental validation on the Case Western Reserve University bearing dataset (CWRU), Jiangnan University bearing dataset (JNU), and Southeast University gear and bearing dataset (SEU) demonstrates the method’s effectiveness, achieving accuracies of 99.95%, 99.99%, and 100%, respectively. The proposed method achieves significant model size reduction compared to conventional TL approaches (e.g., DANN and CDAN), with reductions of up to 91.97% and 64%, respectively. Furthermore, we observed a maximum reduction of 61.86% in FLOPs consumption. The results show significant improvement over conventional approaches in maintaining diagnostic performance across varying operational conditions. This study provides a practical solution for industrial applications where equipment operates under non-stationary speeds, offering both computational efficiency and reliable fault detection capabilities. Full article
(This article belongs to the Section Actuators for Manufacturing Systems)
11 pages, 1305 KiB  
Case Report
First Case in Lithuania of an Autosomal Recessive Mutation in the DNAJC30 Gene as a Cause of Leber’s Hereditary Optic Neuropathy
by Liveta Sereikaite, Alvita Vilkeviciute, Brigita Glebauskiene, Rasa Traberg, Arvydas Gelzinis, Raimonda Piskiniene, Reda Zemaitiene, Rasa Ugenskiene and Rasa Liutkeviciene
Genes 2025, 16(9), 993; https://doi.org/10.3390/genes16090993 (registering DOI) - 23 Aug 2025
Abstract
Background: Leber’s hereditary optic neuropathy (LHON) is the most common mitochondrial disorder and an inherited optic neuropathy. Recently, two different LHON inheritance types have been discovered: mitochondrially inherited LHON (mtLHON) and autosomal recessive LHON (arLHON). Our case report is the first diagnosed case [...] Read more.
Background: Leber’s hereditary optic neuropathy (LHON) is the most common mitochondrial disorder and an inherited optic neuropathy. Recently, two different LHON inheritance types have been discovered: mitochondrially inherited LHON (mtLHON) and autosomal recessive LHON (arLHON). Our case report is the first diagnosed case of arLHON in a patient of Lithuanian descent and confirms the DnaJ Heat Shock Protein Family (Hsp40) Member C30 (DNAJC30) c.152A>G p.(Tyr51Cys) founder variant. Case Presentation: A 34-year-old Lithuanian man complained of headache and sudden, painless loss of central vision in his right eye. On examination, the visual acuity of the right and left eyes was 0.1 and 1.0, respectively. Visual-field examination revealed a central scotoma in the right eye, and visual evoked potentials (VEPs) showed prolonged latency in both eyes. Optical coherence tomography showed thickening of the retinal nerve fiber layer in the upper quadrant of the optic disk in the left eye. Magnetic resonance imaging of the head showed evidence of optic nerve inflammation in the right eye. Blood tests were within normal range and showed no signs of inflammation. Retrobulbar neuritis of the right eye was suspected, and the patient was treated with steroids, which did not improve visual acuity. He later developed visual loss in the left eye as well. A genetic origin of the optic neuropathy was suspected, and a complete mitochondrial DNA analysis was performed, but it did not reveal any pathologic mutations. Over time, the visual acuity of both eyes slowly deteriorated, and the retinal nerve fiber layer (RNFL) thinning of the optic disks progressed. A multidisciplinary team of specialists concluded that vasculitis or infectious disease was unlikely to be the cause of the vision loss, and a genetic cause for the disease was still suspected, although a first-stage genetic test did not yield the diagnosis. Thirty-three months after disease onset, whole-exome sequencing revealed a pathogenic variant in the DNAJC30 gene, leading to the diagnosis of arLHON. Treatment with Idebenone was started 35 months after the onset of the disease, resulting in no significant worsening of the patient’s condition. Conclusion: This case highlights the importance of considering arLHON as a possible diagnosis for patients with optic neuropathy, because the phenotype of arLHON appears to be identical to that of mtLHON and cannot be distinguished by clinicians. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
22 pages, 4283 KiB  
Article
Characterization of Envira Fibers Endemic to the Amazon Rainforest and Their Potential for Reinforcement in Polymer Composites
by Miriane Alexandrino Pinheiro, Leoncio Soares Galvao Neto, Alisson Clay Rios da Silva, Sérgio Neves Monteiro, Felipe Perisse Duarte Lopes, Marcos Allan Leite dos Reis and Verônica Scarpini Candido
Polymers 2025, 17(17), 2284; https://doi.org/10.3390/polym17172284 (registering DOI) - 23 Aug 2025
Abstract
Natural lignocellulosic fibers (NLFs) replacing synthetic fibers have been used as reinforcement in polymer matrix composites. In this work, a lesser-known NLF endemic to the Amazon region, the envira fiber (Bocageopsis multiflora), was analyzed for its basic physical, thermochemical, morphological, and [...] Read more.
Natural lignocellulosic fibers (NLFs) replacing synthetic fibers have been used as reinforcement in polymer matrix composites. In this work, a lesser-known NLF endemic to the Amazon region, the envira fiber (Bocageopsis multiflora), was analyzed for its basic physical, thermochemical, morphological, and mechanical characteristics. In addition, epoxy matrix composites with 10, 20, 30, and 40 vol% of continuous and aligned envira fibers were evaluated by Fourier transform infrared spectroscopy (FTIR) and tensile tests. The results were statistically compared by ANOVA and Tukey’s test. The density found for the envira fiber was 0.23 g/cm3. The crystallinity index and microfibrilar angle obtained were 69.5% and 7.07°, respectively. Fiber thermal stability was found up to around 210 °C. FTIR confirmed the presence of functional groups characteristic of NLFs. Morphological analysis by SEM revealed that the envira fiber displayed fine bundles of fibrils and a rough surface along its length. The average strength value of the envira fiber was found to be 62 MPa. FTIR analysis of the composites confirmed the presence of the main constituents of the epoxy resin and NLFs. The tensile strength results indicated that the envira fiber addition increased the strength of the composites up to 40 vol%. The analysis of the fracture region revealed brittle aspects. These results indicate that envira fibers present potential reinforcement for polymer matrix composites and can be used in engineering applications, favored by their lightness and cost-effectiveness. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

30 pages, 1456 KiB  
Article
Adaptive Stochastic GERT Modeling of UAV Video Transmission for Urban Monitoring Systems
by Serhii Semenov, Magdalena Krupska-Klimczak, Michał Frontczak, Jian Yu, Jiang He and Olena Chernykh
Appl. Sci. 2025, 15(17), 9277; https://doi.org/10.3390/app15179277 (registering DOI) - 23 Aug 2025
Abstract
The growing use of unmanned aerial vehicles (UAVs) for real-time video surveillance in smart city and smart region infrastructures requires reliable and delay-aware data transmission models. In urban environments, UAV communication links are subject to stochastic variability, leading to jitter, packet loss, and [...] Read more.
The growing use of unmanned aerial vehicles (UAVs) for real-time video surveillance in smart city and smart region infrastructures requires reliable and delay-aware data transmission models. In urban environments, UAV communication links are subject to stochastic variability, leading to jitter, packet loss, and unstable video delivery. This paper presents a novel approach based on the Graphical Evaluation and Review Technique (GERT) for modeling the transmission of video frames from UAVs over uncertain network paths with probabilistic feedback loops and lognormally distributed delays. The proposed model enables both analytical and numerical evaluation of key Quality-of-Service (QoS) metrics, including mean transmission time and jitter, under varying levels of channel variability. Additionally, the structure of the GERT-based framework allows integration with artificial intelligence mechanisms, particularly for adaptive routing and delay prediction in urban conditions. Spectral analysis of the system’s characteristic function is also performed to identify instability zones and guide buffer design. The results demonstrate that the approach supports flexible, parameterized modeling of UAV video transmission and can be extended to intelligent, learning-based control strategies in complex smart city environments. This makes it suitable for a wide range of applications, including traffic monitoring, infrastructure inspection, and emergency response. Beyond QoS optimization, the framework explicitly accommodates security and privacy preserving operations (e.g., encryption, authentication, on-board redaction), enabling secure UAV video transmission in urban networks. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

13 pages, 1260 KiB  
Article
Seasonal Uptake and Partitioning of Macro- and Micronutrients in Yellow-Fleshed Kiwifruit (Actinidia chinensis var. chinensis)
by Elena Baldi, Maurizio Quartieri, Giovambattista Sorrenti, Marco Mastroleo, Evangelos Xylogiannis and Moreno Toselli
Horticulturae 2025, 11(9), 1003; https://doi.org/10.3390/horticulturae11091003 (registering DOI) - 23 Aug 2025
Abstract
Little information is available on the yellow-fleshed Zespri Zesy002 kiwifruit dynamic of mineral nutrient uptake and partitioning within organs. The aim of the present experiment was to find nutrient requirements and supply data for a specific nutrient management plan for Zesy002. The trial [...] Read more.
Little information is available on the yellow-fleshed Zespri Zesy002 kiwifruit dynamic of mineral nutrient uptake and partitioning within organs. The aim of the present experiment was to find nutrient requirements and supply data for a specific nutrient management plan for Zesy002. The trial was conducted, for three years, in northern Italy, on a six-year-old kiwifruit orchard of the variety Zespri Zesy002. During the experiment organs were periodically sampled and analyzed for macro- and micronutrient concentration. A yearly nutrient uptake of 175 g N plant−1, 16 g P plant−1, 138 g K plant−1, 235 g Ca plant−1, 48 g Mg plant−1, 17 g S plant−1, 247 mg B plant−1, 673 mg Cu plant−1, 5.20 g Fe plant−1, 473 mg Mn plant−1, and 263 mg Zn plant−1 was calculated, confirming that kiwifruit is a high-nutrient-demanding species. The nutrients found in the tree organs were divided in two factions: removed (not returned into the soil) and recycled (returned into the soil during and at the end of the growing cycle). The two fractions were similar for N, P, K, S, and Mn. The fraction recycled of Ca, Mg, Cu, and Zn was higher than the fraction removed, and the reverse was observed for Fe. These data created the basis for the determination of the correct nutritional plans that take into consideration not only nutrient requirements but also the dynamics of uptake during the season. Full article
(This article belongs to the Special Issue Mineral Nutrition of Plants)
Show Figures

Figure 1

13 pages, 923 KiB  
Article
Production Technology of Fermented Distiller’s Grains and Its Effect on Production Performance and Egg Quality of Laying Hens
by Ru Jia, Simeng Lu, Tao Li, Meng Li, Guohua Zhang, Lan Wang and Shimeng Huang
Fermentation 2025, 11(9), 492; https://doi.org/10.3390/fermentation11090492 (registering DOI) - 23 Aug 2025
Abstract
The high acidity, alcohol, and mycotoxin levels in distiller’s grains (DGs) limit its application in practical production. To address these issues, a new DG fermentation technique was developed in this research. Firstly, four strains were selected and the fermentation conditions were optimized to [...] Read more.
The high acidity, alcohol, and mycotoxin levels in distiller’s grains (DGs) limit its application in practical production. To address these issues, a new DG fermentation technique was developed in this research. Firstly, four strains were selected and the fermentation conditions were optimized to ferment the fresh DGs. When the inoculum was set at 8%, the fermentation temperature was maintained at 35 °C, the fermentation time lasted for 48 h, the bacterial mixture ratio (Bacillus subtilis ASAG 216: Lactobacillus acidophilus G1: Saccharomyces cerevisiae ANP 101: Streptococcus thermophilus EFR 046) was 1:1:2:1, and the contents of crude protein in fermented DGs (FDGs) were the highest, so we chose these fermentation conditions to ferment the DGs. In addition, under these fermentation conditions, the amino acids were significantly (p < 0.05) increased while the concentrations of crude fiber and mycotoxins contents were significantly (p < 0.05) decreased in FDGs than in DGs. Subsequently, the nutritional value of DGs and FDGs were evaluated using a two-step in vitro digestion method. The digestibility of dry matter, protein, and crude fiber increased by 16.23%, 13.54%, and 64.09%, respectively, in FDGs compared to that in DGs. Finally, laying hens were treated by adding 0%, 1%, 2%, and 4% FDG to the basal diet for 4 weeks. The results demonstrated that addition of 2% FDG in the diet could significantly (p < 0.05) increase the laying rate of hens compared to that fed the control diet, while addition of 4% FDG in the diet could remarkably (p < 0.05) reduce the rate of broken eggs compared to the other groups. There were no significant (p > 0.05) differences in other indices. These indicates that FDG has potential as a functional feed additive to enhance animal productivity. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

15 pages, 3750 KiB  
Article
Hydroxyl Group-Dependent Effects of Alkanolamine Additives on Rheology, Hydration, and Performance of Early-Strength Cement Slurries
by Yifei Zhao, Ya Shi, Longjiang Wang, Yan Zhuang, Yongfei Li and Gang Chen
Processes 2025, 13(9), 2681; https://doi.org/10.3390/pr13092681 (registering DOI) - 23 Aug 2025
Abstract
Alkanolamine additives play a critical role in enhancing the early process performance of cement slurries, thereby improving construction efficiency and structural durability. This study systematically evaluates the effects of ethanolamine (EA), diethanolamine (DEA), and triethanolamine (TEA) on cement slurry properties, including the thickening [...] Read more.
Alkanolamine additives play a critical role in enhancing the early process performance of cement slurries, thereby improving construction efficiency and structural durability. This study systematically evaluates the effects of ethanolamine (EA), diethanolamine (DEA), and triethanolamine (TEA) on cement slurry properties, including the thickening time, rheology, density, shrinkage, and hydration kinetics. Clear structure–activity relationships are established based on the findings. The experimental analysis demonstrated that increasing the hydroxyl group count in the alkanolamines significantly accelerated cement hydration. At a dosage of 1.0%, the thickening time of the cement slurry was significantly shortened to 125 min (EA), 15 min (DEA), and 12 min (TEA), respectively. Concomitantly, a reduction in fluidity was observed, with flow diameters measuring 15.8 cm (EA), 14.6 cm (DEA), and 14.1 cm (TEA). The rheological analysis revealed that the alkanolamine additives significantly increased the consistency coefficient (K) and decreased the flowability index (n) of the slurry, with TEA exhibiting the most pronounced effect. The density measurements confirmed the enhanced settlement stability, as the density differences diminished to 0.1 g/cm3 at the optimal dosages (0.6% TEA and 0.8% DEA). The hydration degree analysis indicated a hydration rate acceleration of up to 32% relative to plain slurry, attributed to the hydroxyl-facilitated promotion of Ca(OH)2 formation and C3S dissolution. The XRD analysis confirmed that the alkanolamines modified the reaction kinetics without inducing phase transformation in the hydration products. Crucially, the hydroxyl group count governed the performance: a higher hydroxyl density intensified Ca2+/Al3+ complexation, thereby reducing ion mobility and accelerating setting. These findings establish a molecular design framework for alkanolamine-based additives that balances early process performance development with practical workability. The study advances sustainable cement technology by enabling targeted optimization of rheological and mechanical properties in high-demand engineering applications. Full article
Show Figures

Figure 1

19 pages, 6194 KiB  
Article
Effect of Polylactic Acid (PLA) Blends on Cellulose Degradable Plastics from the Lotus Stem (Nelumbo nucifera)
by Rozanna Dewi, Novi Sylvia, Muhammad Subhan, Budhi Santri Kusuma, Aldila Ananda, Medyan Riza, Januar Parlaungan Siregar, Choon Kit Chan, Tezara Cionita and Elsherif Emad Ahmed Abdelrahman
Polymers 2025, 17(17), 2281; https://doi.org/10.3390/polym17172281 (registering DOI) - 23 Aug 2025
Abstract
Lotus stems contain cellulose, which can be utilized as a base material for producing green products, specifically degradable plastics. This research investigates the effect of polylactic acid (PLA) blends on cellulose degradable plastics from the lotus stem (Nelumbo nucifera). The mechanical [...] Read more.
Lotus stems contain cellulose, which can be utilized as a base material for producing green products, specifically degradable plastics. This research investigates the effect of polylactic acid (PLA) blends on cellulose degradable plastics from the lotus stem (Nelumbo nucifera). The mechanical characteristics are as follows: tensile strength of 0.7703–3.3212 MPa, elongation of 0.58–1.16%, Young’s modulus of 78.7894–364.6118 MPa. Compound analysis showed the presence of O-H, C-C, and C=O groups, and the presence of microbial activity in the soil can also lead to the degradation of these groups due to their hydrophilic nature, which allows them to bind water. Thermal analysis within a temperature range of 413.24 °C to 519.80 °C, shows that significant weight loss begins with the formation of crystalline structures. The degradable plastic exhibiting the lowest degree of swelling consists of 1 g of cellulose and 8 g of PLA, resulting in a swelling value of 6.25%. The degradable plastic is anticipated to decompose most rapidly after 52 days, utilizing 2 g of PLA and 7 g of cellulose. This complies with standard requirement, which sets a maximum degradation period of 180 days for polymers. Full article
(This article belongs to the Special Issue Advanced Cellulose Polymers and Derivatives)
Show Figures

Figure 1

28 pages, 639 KiB  
Review
Cancer Risk in Autoimmune and Immune-Mediated Diseases: A Narrative Review for Practising Clinicians
by David Bernal-Bello, Begoña Frutos-Pérez, Miguel Ángel Duarte-Millán, María Toledano-Macías, Beatriz Jaenes-Barrios and Alejandro Morales-Ortega
J. Clin. Med. 2025, 14(17), 5954; https://doi.org/10.3390/jcm14175954 (registering DOI) - 23 Aug 2025
Abstract
Background: Autoimmune diseases and other immune-mediated disorders are associated with an increased risk of malignancy, influenced by chronic inflammation, immune dysregulation, and treatment-related factors. Clarifying cancer risk patterns across specific conditions is essential to improve clinical vigilance and inform screening practices. Objective [...] Read more.
Background: Autoimmune diseases and other immune-mediated disorders are associated with an increased risk of malignancy, influenced by chronic inflammation, immune dysregulation, and treatment-related factors. Clarifying cancer risk patterns across specific conditions is essential to improve clinical vigilance and inform screening practices. Objective: The aim of this study was to synthesise current evidence on the association between autoimmune and immune-mediated diseases and cancer, with a focus on practical implications for clinicians. Methods: Recent cohort studies, meta-analyses, and expert consensus documents were analysed to describe cancer epidemiology, pathogenic mechanisms, high-risk phenotypes, and treatment considerations across major autoimmune diseases and other immune-mediated conditions. The review covers idiopathic inflammatory myopathies, Sjögren’s syndrome, systemic sclerosis, systemic lupus erythematosus, rheumatoid arthritis, antiphospholipid syndrome, ANCA-associated vasculitis, giant cell arteritis, polymyalgia rheumatica, sarcoidosis, mixed connective tissue disease, IgG4-related disease, VEXAS syndrome, and eosinophilic fasciitis. Special attention was given to identifying warning features for underlying malignancy and evaluating cancer screening strategies. Results: The magnitude and distribution of cancer risk vary across diseases. In some conditions such as dermatomyositis, systemic sclerosis or Sjögren’s syndrome, increased risk is well established, particularly for haematological and certain solid tumours. However, tumour patterns may differ across populations, and findings are not always consistent. Distinct clinical and serological features help stratify individual cancer risk and may guide the intensity of screening. The first years after disease onset often represent a window of higher vulnerability, during which intensified surveillance may be warranted in selected patients. Conclusions: Cancer risk in autoimmune diseases should be assessed on an individual basis. Awareness of disease-specific risk factors and clinical warning signs supports early recognition of malignancy and informs screening decisions in routine practice. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

30 pages, 1887 KiB  
Article
Laser-Induced Graphene on Biocompatible PDMS/PEG Composites for Limb Motion Sensing
by Anđela Gavran, Marija V. Pergal, Teodora Vićentić, Milena Rašljić Rafajilović, Igor A. Pašti, Marko V. Bošković and Marko Spasenović
Sensors 2025, 25(17), 5238; https://doi.org/10.3390/s25175238 - 22 Aug 2025
Abstract
The advancement of laser-induced graphene (LIG) has significantly enhanced the development of wearable and flexible electronic devices. Due to its exceptional physical, chemical, and electronic properties, LIG has emerged as a highly effective active material for wearable sensors. However, despite the wide range [...] Read more.
The advancement of laser-induced graphene (LIG) has significantly enhanced the development of wearable and flexible electronic devices. Due to its exceptional physical, chemical, and electronic properties, LIG has emerged as a highly effective active material for wearable sensors. However, despite the wide range of materials suitable as precursors for LIG, the scarcity of stretchable and biocompatible polymers amenable to laser graphenization has remained a persistent challenge. In this study, laser-induced graphene (LIG) was fabricated directly on biocompatible and flexible cross-linked PDMS/PEG (with Mn (PEG) = 400 g/mol) composites for the first time, enabling their application in wearable sensors. The addition of PEG compensates for the low carbon content in PDMS, enabling efficient laser graphenization. Laser parameters were systematically optimized to achieve high-quality graphene, and a comprehensive characterization with varying PEG content (10–40 wt.%) was conducted using multiple analytical techniques. Tensile tests revealed that incorporating PEG significantly enhanced elongation at break, reaching 237% for PDMS/40 wt.% PEG while reducing Young’s modulus to 0.25 MPa, highlighting the excellent flexibility of the substrate material. Surface analysis using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and Raman spectroscopy demonstrated the formation of high-quality few-layer graphene with the fewest defects in PDMS/40 wt.% PEG composites. Nevertheless, the adhesion of electrical contacts to LIG that was directly induced on PDMS/PEG proved to be challenging. To overcome this challenge, we produced devices by means of laser induction on polyimide and transfer to PDMS/PEG. We demonstrate the practical utility of such devices by applying them to monitor limb motion in real time. The sensor showed a stable and repeatable piezoresistive response under multiple bending cycles. These results provide valuable insights into the fabrication of biocompatible LIG-based flexible sensors, paving the way for their broader implementation in medical and sports technologies. Full article
(This article belongs to the Special Issue Materials and Devices for Flexible Electronics in Sensor Applications)
27 pages, 4358 KiB  
Article
Study on the Performance of Copper(II) Sorption Using Natural and Fe(III)-Modified Natural Zeolite–Sorption Parameters Optimization and Mechanism Elucidation
by Marin Ugrina, Ivona Nuić and Jelena Milojković
Processes 2025, 13(9), 2672; https://doi.org/10.3390/pr13092672 - 22 Aug 2025
Abstract
This study evaluates and compares the sorption performance of natural zeolite (NZ) and Fe(III)-modified zeolite (FeZ) in removing Cu(II) ions from aqueous solutions, with the goal of assessing their potential for environmental remediation. NZ was modified with Fe(NO3)3, NaOH [...] Read more.
This study evaluates and compares the sorption performance of natural zeolite (NZ) and Fe(III)-modified zeolite (FeZ) in removing Cu(II) ions from aqueous solutions, with the goal of assessing their potential for environmental remediation. NZ was modified with Fe(NO3)3, NaOH and NaNO3 solutions to improve its sorption properties. The modification led to a slight decrease in crystallinity (XRD), increase in pore volume (BET), functional groups (FTIR) and negative surface charge (zeta potential), thereby improving the affinity of FeZ towards Cu(II). Batch sorption experiments were conducted to optimize key parameters including pH, solid/liquid ratio (S/L), contact time, and initial Cu(II) concentration. The pHo and S/L ratio were identified as key factors significantly influencing Cu(II) sorption on both zeolites, with a particularly pronounced effect observed for FeZ. The optimal conditions determined were pHo = 3–5 for NZ, pHo = 3 for FeZ, S/L = 10 g/L and a contact time of 600 min. Experimental results confirmed that FeZ has almost twice the sorption capacity for Cu(II) compared to NZ (0.271 mmol/g vs. 0.156 mmol/g), as further supported by elemental analysis, SEM-EDS and mapping analysis of saturated samples. The sorption of Cu(II) followed a mechanism of physical nature driven by ion exchange, dominated by intraparticle diffusion as the rate-controlling step. Leaching of copper-saturated zeolites according to the standard leaching method, DIN 38414 S4, demonstrated the ability of both zeolites to fully retain Cu(II) within their structure over a wide pH range, 4.01 ≤ pHo ≤ 10.06. These findings highlight the superior performance of FeZ and its potential as an effective material for the remediation of copper-contaminated environments. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

27 pages, 3575 KiB  
Article
Preparation of High-Strength and High-Rigidity Carbon Layer on Si/C Material Surface Using Solid–Liquid Coating Method
by Xiaoguang Zhang, Wei Wang and Juan Zhang
Nanomaterials 2025, 15(17), 1300; https://doi.org/10.3390/nano15171300 - 22 Aug 2025
Abstract
The application of silicon–carbon (Si/C) composite materials in lithium-ion batteries faces problems regarding volume expansion and surface defects. Although coating is a popular modification scheme in the market, the influence of carbon layer quality on the electrochemical performance of Si/C still needs to [...] Read more.
The application of silicon–carbon (Si/C) composite materials in lithium-ion batteries faces problems regarding volume expansion and surface defects. Although coating is a popular modification scheme in the market, the influence of carbon layer quality on the electrochemical performance of Si/C still needs to be studied. By comparing the carbon layers produced by solid-phase and liquid-phase coating methods, an innovative solid–liquid coating technology was proposed to prepare high-strength and high-stiffness carbon layers, and the effects of different coating processes on the physical, mechanical, and electrochemical properties of the materials were systematically studied. Through physical properties and electrochemical testing, it was found that the solid–liquid coating method (Si/C@Pitch+RGFQ) can form a carbon layer with the least defects and the highest density. Compared with solid-phase coating and liquid-phase coating, its specific surface area (SSA) and carbon increment are the lowest, and the surface carbon content and oxygen content are significantly reduced after solid–liquid coating. Mechanical performance tests show that the Young’s modulus of the carbon layer prepared by this method reaches 30.3 GPa, demonstrating excellent structural strength and elastic deformation ability. The first coulombic efficiency (ICE) of Si/C@Pitch+RGFQ reached 88.17%, the interface impedance (23.2 Ω) was the lowest, and the lithium-ion diffusion coefficient was significantly improved. At a rate of 0.1 C to 2 C, the capacity retention rate is excellent. After one hundred and a half-cell cycles, the remaining capacity is 1420.5 mAh/g, and the capacity retention rate reaches 92.4%. The full-cell test further proves that the material has a capacity retention rate of 82.3% and 81.3% after 1000 cycles at room temperature and high temperature (45 °C), respectively. At the same time, it has good rate performance and high-/low-temperature performance, demonstrating good commercial application potential. The research results provide a key basis for the optimized preparation of the surface carbon layer of Si/C composite materials and promote the practical application of high-performance silicon-based negative electrode materials. Full article
Show Figures

Figure 1

20 pages, 1257 KiB  
Article
Effects of Nitrogen–Phosphorus Co-Application on Biomass Allocation and Accumulation in Two-Year-Old Pinus yunnanensis Seedlings
by Jianzhen Liao, Yaqi Li, Boning Yang, Chiyu Zhou, Zixing Pan, Lin Chen, Nianhui Cai and Yulan Xu
Biology 2025, 14(9), 1115; https://doi.org/10.3390/biology14091115 - 22 Aug 2025
Abstract
Pinus yunnanensis is a significant native tree species in southwestern China, contributing substantially to the area’s ecological stability and economic growth. However, its growth rate tends to be relatively slow during the seedling stage, and fertilization is crucial to promote seedling growth. This [...] Read more.
Pinus yunnanensis is a significant native tree species in southwestern China, contributing substantially to the area’s ecological stability and economic growth. However, its growth rate tends to be relatively slow during the seedling stage, and fertilization is crucial to promote seedling growth. This study used two-year-old P. yunnanensis seedlings as experimental materials and applied a 3 × 3 factorial design, combining three nitrogen (N) levels (0, 0.4, and 0.8 g·plant−1) supplied in the form of urea with three levels of phosphorus (P) (0, 0.8, and 1.6 g·plant−1) supplied in the form of superphosphate to form nine treatments, denoted as T1 to T9. This study was carried out in the open-air nursery of Southwest Forestry University, with fertilization beginning in July and observations continuing until December of the same year. Using allometric growth analysis and constructing the fertilizer response regression equation, we investigated the effects of fertilization on biomass accumulation in P. yunnanensis. The findings revealed that fertilization significantly increased the biomass allocation ratio to roots but decreased the allocation to needles and aboveground parts (p < 0.05). Allometric growth analysis showed that root growth was more rapid than stem and needle growth, and the growth rate of belowground parts exceeded that of aboveground parts. Allometric growth between organs differed among treatments, whereas the allometric growth relationship between aboveground and belowground biomass showed no significant difference across treatments. Moderate N and P fertilizer application promoted biomass accumulation in all organs, with T5 (N: 0.4 g·plant−1; P: 0.8 g·plant−1) exhibiting the highest biomass accumulation. Based on the comprehensive analysis of optimal N and P fertilizer requirements for biomass accumulation across different organs, the recommended fertilizer application rates are as follows: N 0.5–0.6 g·plant−1 and P 0.5–0.9 g·plant−1, with an optimal N:P ratio ranging from 1:0.8 to 1:1.8. The results establish a scientific rationale for enhancing fertilization methods in P. yunnanensis seedling cultivation, contributing to the slow growth issue during the seedling stage. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Back to TopTop