Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (342)

Search Parameters:
Keywords = Frontotemporal dementia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 902 KiB  
Review
Neuroaxonal Degeneration as a Converging Mechanism in Motor Neuron Diseases (MNDs): Molecular Insights into RNA Dysregulation and Emerging Therapeutic Targets
by Minoo Sharbafshaaer, Roberta Pepe, Rosaria Notariale, Fabrizio Canale, Alessandro Tessitore, Gioacchino Tedeschi and Francesca Trojsi
Int. J. Mol. Sci. 2025, 26(15), 7644; https://doi.org/10.3390/ijms26157644 - 7 Aug 2025
Abstract
Motor Neuron Diseases (MNDs) such as Amyotrophic Lateral Sclerosis (ALS), Primary Lateral Sclerosis (PLS), Hereditary Spastic Paraplegia (HSP), Spinal Muscular Atrophy with Respiratory Distress Type 1 (SMARD1), Multisystem Proteinopathy (MSP), Spinal and Bulbar Muscular Atrophy (SBMA), and ALS associated to Frontotemporal Dementia (ALS-FTD), [...] Read more.
Motor Neuron Diseases (MNDs) such as Amyotrophic Lateral Sclerosis (ALS), Primary Lateral Sclerosis (PLS), Hereditary Spastic Paraplegia (HSP), Spinal Muscular Atrophy with Respiratory Distress Type 1 (SMARD1), Multisystem Proteinopathy (MSP), Spinal and Bulbar Muscular Atrophy (SBMA), and ALS associated to Frontotemporal Dementia (ALS-FTD), have traditionally been studied as distinct entities, each one with unique genetic and clinical characteristics. However, emerging research reveals that these seemingly disparate conditions converge on shared molecular mechanisms that drive progressive neuroaxonal degeneration. This narrative review addresses a critical gap in the field by synthesizing the most recent findings into a comprehensive, cross-disease mechanisms framework. By integrating insights into RNA dysregulation, protein misfolding, mitochondrial dysfunction, DNA damage, kinase signaling, axonal transport failure, and immune activation, we highlight how these converging pathways create a common pathogenic landscape across MNDs. Importantly, this perspective not only reframes MNDs as interconnected neurodegenerative models but also identifies shared therapeutic targets and emerging strategies, including antisense oligonucleotides, autophagy modulators, kinase inhibitors, and immunotherapies that transcend individual disease boundaries. The diagnostic and prognostic potential of Neurofilament Light Chain (NfL) biomarkers is also emphasized. By shifting focus from gene-specific to mechanism-based approaches, this paper offers a much-needed roadmap for advancing both research and clinical management in MNDs, paving the way for cross-disease therapeutic innovations. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Neurobiology 2025)
Show Figures

Figure 1

11 pages, 215 KiB  
Article
Personalised Prevention of Falls in Persons with Dementia—A Registry-Based Study
by Per G. Farup, Knut Hestad and Knut Engedal
Geriatrics 2025, 10(4), 106; https://doi.org/10.3390/geriatrics10040106 - 6 Aug 2025
Abstract
Background/Objectives: Multifactorial prevention of falls in persons with dementia has minimal or non-significant effects. Personalised prevention is recommended. We have previously shown that gait speed, basic activities of daily living (ADL), and depression (high Cornell scores) were independent predictors of falls in persons [...] Read more.
Background/Objectives: Multifactorial prevention of falls in persons with dementia has minimal or non-significant effects. Personalised prevention is recommended. We have previously shown that gait speed, basic activities of daily living (ADL), and depression (high Cornell scores) were independent predictors of falls in persons with mild and moderate cognitive impairment. This study explored person-specific risks of falls related to physical, mental, and cognitive functions and types of dementia: Alzheimer’s disease (AD), vascular dementia (VD), mixed Alzheimer’s disease/vascular dementia (MixADVD), frontotemporal dementia (FTD), and dementia with Lewy bodies (DLB). Methods: The study used data from “The Norwegian Registry of Persons Assessed for Cognitive Symptoms” (NorCog). Differences between the dementia groups and predictors of falls, gait speed, ADL, and Cornell scores were analysed. Results: Among study participants, 537/1321 (40.7%) reported a fall in the past year, with significant variations between dementia diagnoses. Fall incidence increased with age, comorbidity/polypharmacy, depression, and MAYO fluctuation score and with reduced physical activity, gait speed, and ADL. Persons with VD and MixADVD had high fall incidences and impaired gait speed and ADL. Training of physical fitness, endurance, muscular strength, coordination, and balance and optimising treatment of comorbidities and medication enhance gait speed. Improving ADL necessitates, in addition, relief of cognitive impairment and fluctuations. Relief of depression and fluctuations by psychological and pharmacological interventions is necessary to reduce the high fall risk in persons with DLB. Conclusions: The fall incidence and fall predictors varied significantly. Personalised interventions presuppose knowledge of each individual’s fall risk factors. Full article
21 pages, 570 KiB  
Review
Healthcare Complexities in Neurodegenerative Proteinopathies: A Narrative Review
by Seyed-Mohammad Fereshtehnejad and Johan Lökk
Healthcare 2025, 13(15), 1873; https://doi.org/10.3390/healthcare13151873 - 31 Jul 2025
Viewed by 298
Abstract
Background/Objectives: Neurodegenerative proteinopathies, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and dementia with Lewy bodies (DLB), are increasingly prevalent worldwide mainly due to population aging. These conditions are marked by complex etiologies, overlapping pathologies, and progressive clinical decline, with significant consequences [...] Read more.
Background/Objectives: Neurodegenerative proteinopathies, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and dementia with Lewy bodies (DLB), are increasingly prevalent worldwide mainly due to population aging. These conditions are marked by complex etiologies, overlapping pathologies, and progressive clinical decline, with significant consequences for patients, caregivers, and healthcare systems. This review aims to synthesize evidence on the healthcare complexities of major neurodegenerative proteinopathies to highlight current knowledge gaps, and to inform future care models, policies, and research directions. Methods: We conducted a comprehensive literature search in PubMed/MEDLINE using combinations of MeSH terms and keywords related to neurodegenerative diseases, proteinopathies, diagnosis, sex, management, treatment, caregiver burden, and healthcare delivery. Studies were included if they addressed the clinical, pathophysiological, economic, or care-related complexities of aging-related neurodegenerative proteinopathies. Results: Key themes identified include the following: (1) multifactorial and unclear etiologies with frequent co-pathologies; (2) long prodromal phases with emerging biomarkers; (3) lack of effective disease-modifying therapies; (4) progressive nature requiring ongoing and individualized care; (5) high caregiver burden; (6) escalating healthcare and societal costs; and (7) the critical role of multidisciplinary and multi-domain care models involving specialists, primary care, and allied health professionals. Conclusions: The complexity and cost of neurodegenerative proteinopathies highlight the urgent need for prevention-focused strategies, innovative care models, early interventions, and integrated policies that support patients and caregivers. Prevention through the early identification of risk factors and prodromal signs is critical. Investing in research to develop effective disease-modifying therapies and improve early detection will be essential to reducing the long-term burden of these disorders. Full article
Show Figures

Figure 1

27 pages, 464 KiB  
Review
Caffeine in Aging Brains: Cognitive Enhancement, Neurodegeneration, and Emerging Concerns About Addiction
by Manuel Glauco Carbone, Giovanni Pagni, Claudia Tagliarini, Icro Maremmani and Angelo Giovanni Icro Maremmani
Int. J. Environ. Res. Public Health 2025, 22(8), 1171; https://doi.org/10.3390/ijerph22081171 - 24 Jul 2025
Viewed by 630
Abstract
This narrative review examines the effects of caffeine on brain health in older adults, with particular attention to its potential for dependence—an often-overlooked issue in geriatric care. Caffeine acts on central adenosine, dopamine, and glutamate systems, producing both stimulating and rewarding effects that [...] Read more.
This narrative review examines the effects of caffeine on brain health in older adults, with particular attention to its potential for dependence—an often-overlooked issue in geriatric care. Caffeine acts on central adenosine, dopamine, and glutamate systems, producing both stimulating and rewarding effects that can foster tolerance and habitual use. Age-related pharmacokinetic and pharmacodynamic changes prolong caffeine’s half-life and increase physiological sensitivity in the elderly. While moderate consumption may enhance alertness, attention, and possibly offer neuroprotective effects—especially in Parkinson’s disease and Lewy body dementia—excessive or prolonged use may lead to anxiety, sleep disturbances, and cognitive or motor impairment. Chronic exposure induces neuroadaptive changes, such as adenosine receptor down-regulation, resulting in tolerance and withdrawal symptoms, including headache, irritability, and fatigue. These symptoms, often mistaken for typical aging complaints, may reflect a substance use disorder yet remain under-recognized due to caffeine’s cultural acceptance. The review explores caffeine’s mixed role in neurological disorders, being beneficial in some and potentially harmful in others, such as restless legs syndrome and frontotemporal dementia. Given the variability in individual responses and the underestimated risk of dependence, personalized caffeine intake guidelines are warranted. Future research should focus on the long-term cognitive effects and the clinical significance of caffeine use disorder in older populations. Full article
(This article belongs to the Section Behavioral and Mental Health)
28 pages, 3099 KiB  
Review
TREM2 in Neurodegenerative Disorders: Mutation Spectrum, Pathophysiology, and Therapeutic Targeting
by Hyewon Yang, Danyeong Kim, YoungSoon Yang, Eva Bagyinszky and Seong Soo A. An
Int. J. Mol. Sci. 2025, 26(15), 7057; https://doi.org/10.3390/ijms26157057 - 22 Jul 2025
Viewed by 331
Abstract
TREM2 (triggering receptor expressed on myeloid cells 2) is a membrane-bound receptor primarily expressed on microglia in the central nervous system (CNS). TREM2 plays a crucial role in regulating immune responses, phagocytosis, lipid metabolism, and inflammation. Mutations in the TREM2 gene have been [...] Read more.
TREM2 (triggering receptor expressed on myeloid cells 2) is a membrane-bound receptor primarily expressed on microglia in the central nervous system (CNS). TREM2 plays a crucial role in regulating immune responses, phagocytosis, lipid metabolism, and inflammation. Mutations in the TREM2 gene have been linked to various neurodegenerative diseases, including Alzheimer’s disease (AD), frontotemporal dementia (FTD), Parkinson’s disease (PD), and Nasu–Hakola disease (NHD). These mutations are suggested to impair microglial activation and reduce the ability to clear amyloid aggregates, leading to exacerbated neuroinflammatory responses and accelerating disease progression. This review provides an overview of TREM2 structure, functions, and known pathogenic variants—including Arg47His, Arg62His, His157Tyr, Tyr38Cys, and Thr66Met. Furthermore, the molecular and cellular consequences of TREM2 mutations are introduced, such as impaired ligand binding, altered protein folding and trafficking, enhanced TREM2 shedding, and dysregulated inflammatory signaling. We also highlight recent advances in therapeutic strategies aimed at modulating TREM2 signaling. These include monoclonal antibodies (e.g., AL002, CGX101), small molecule agonists, and gene/cell-based therapies that seek to restore microglial homeostasis, enhance phagocytosis, and reduce neuroinflammation. While these approaches show promise in in vivo/in vitro studies, their clinical translation may be challenged by disease heterogeneity and mutation-specific responses. Additionally, determining the appropriate timing and precise dosing will be essential. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

23 pages, 356 KiB  
Review
Cognitive Decline in Parkinsonism: From Clinical Phenotypes to the Genetic Background
by Christos Koros, Evangelia Stanitsa, Efthalia Angelopoulou, Sokratis G. Papageorgiou and Leonidas Stefanis
Biomedicines 2025, 13(7), 1624; https://doi.org/10.3390/biomedicines13071624 - 2 Jul 2025
Viewed by 1072
Abstract
Background/Objectives: Cognitive impairment often occurs in various parkinsonian syndromes. The course of deficits in cognitive functions ranges from mild cognitive decline to severe deterioration. Affected cognitive domains are also variable. The genetic background of patients exhibiting parkinsonism with concomitant cognitive decline is [...] Read more.
Background/Objectives: Cognitive impairment often occurs in various parkinsonian syndromes. The course of deficits in cognitive functions ranges from mild cognitive decline to severe deterioration. Affected cognitive domains are also variable. The genetic background of patients exhibiting parkinsonism with concomitant cognitive decline is still elusive. A significant part of current research in Parkinson’s disease and other parkinsonian syndromes is targeted towards the genetic aspects of these disorders. The aim of the present review was to summarize existing studies focusing on the investigation of the interplay between genetic data in parkinsonism and associated cognitive symptoms. Methods: A review of English-language articles published between 2000 and 2024 was conducted, focusing on genetic studies of Parkinson’s disease and atypical parkinsonian syndromes with cognitive decline, using the databases PUBMED, SCOPUS, and EMBASE. Results: We have selected a clinical phenotype-wise assessment of parkinsonian conditions with cognitive deficits, including typical or early-onset Parkinson’s disease, dementia with Lewy bodies, Corticobasal Syndrome, Progressive Supranuclear Palsy, and frontotemporal dementia with parkinsonism. Both typical and atypical parkinsonian syndromes with concomitant cognitive decline were explored. Conclusions: Genetic background likely contributes to the heterogeneity of cognitive impairment in parkinsonian syndromes, with specific mutations linked to distinct cognitive symptoms. The integration of genetic data and a more thorough neuropsychological assessment with clinical, imaging, and biomarkers may enhance diagnosis and enable personalized therapies. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
69 pages, 1871 KiB  
Review
The Differential Effects of Genetic Mutations in ALS and FTD Genes on Behavioural and Cognitive Changes: A Systematic Review and Meta-Analysis
by Ana Maria Jiménez-García, Maria Eduarda Tortorella, Agnes Lumi Nishimura and Natalia Arias
Int. J. Mol. Sci. 2025, 26(13), 6199; https://doi.org/10.3390/ijms26136199 - 27 Jun 2025
Viewed by 663
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are linked by shared genetic mutations and overlapping clinical features, forming a clinical spectrum. This systematic review and meta-analysis analysed 97 studies, including 3212 patients with key ALS/FTD gene mutations, to identify gene-specific behavioural profiles. [...] Read more.
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are linked by shared genetic mutations and overlapping clinical features, forming a clinical spectrum. This systematic review and meta-analysis analysed 97 studies, including 3212 patients with key ALS/FTD gene mutations, to identify gene-specific behavioural profiles. Chromosome 9 open reading frame 72 (C9orf72) mutations were strongly associated with psychotic symptoms and aggression, while superoxide dismutase 1 (SOD1) mutations had minimal cognitive effects. Progranulin (PGRN) mutations correlated with apathy and hallucinations, microtubule-associated protein tau (MAPT) mutations with disinhibition, and charged multivesicular body protein 2B (CHMP2B) with social impairments. Fused in sarcoma (FUS) mutations caused early sleep disturbances, TANK-binding kinase 1 (TBK1) led to disinhibition, and presenilin 1 and 2 (PSEN1/2) was linked to severe aggression. Prodromal cognitive changes in PGRN, MAPT, and CHMP2B mutations suggested early disease onset. Despite overlapping symptoms and clinical heterogeneity, understanding gene-specific patterns could inform tailored care strategies to enhance the quality of life for ALS and FTD patients. This study calls for refined guidelines integrating genetic behavioural profiles to improve patient and family support. Full article
(This article belongs to the Special Issue Amyotrophic Lateral Sclerosis: From Molecular Basis to Therapies)
Show Figures

Figure 1

21 pages, 1561 KiB  
Article
A Multimodal Multi-Stage Deep Learning Model for the Diagnosis of Alzheimer’s Disease Using EEG Measurements
by Tuan Vo, Ali K. Ibrahim and Hanqi Zhuang
Neurol. Int. 2025, 17(6), 91; https://doi.org/10.3390/neurolint17060091 - 13 Jun 2025
Viewed by 601
Abstract
Background/Objectives: Alzheimer’s disease (AD) is a progressively debilitating neurodegenerative disorder characterized by the accumulation of abnormal proteins, such as amyloid-beta plaques and tau tangles, leading to disruptions in memory storage and neuronal degeneration. Despite its portability, non-invasiveness, and cost-effectiveness, electroencephalography (EEG) as a [...] Read more.
Background/Objectives: Alzheimer’s disease (AD) is a progressively debilitating neurodegenerative disorder characterized by the accumulation of abnormal proteins, such as amyloid-beta plaques and tau tangles, leading to disruptions in memory storage and neuronal degeneration. Despite its portability, non-invasiveness, and cost-effectiveness, electroencephalography (EEG) as a diagnostic tool for AD faces challenges due to its susceptibility to noise and the complexity involved in the analysis. Methods: This study introduces a novel methodology employing three distinct stages for data-driven AD diagnosis: signal pre-processing, frame-level classification, and subject-level classification. At the frame level, convolutional neural networks (CNNs) are employed to extract features from spectrograms, scalograms, and Hilbert spectra. These features undergo fusion and are then fed into another CNN for feature selection and subsequent frame-level classification. After each frame for a subject is classified, a procedure is devised to determine if the subject has AD or not. Results: The proposed model demonstrates commendable performance, achieving over 80% accuracy, 82.5% sensitivity, and 81.3% specificity in distinguishing AD patients from healthy individuals at the subject level. Conclusions: This performance enables early and accurate diagnosis with significant clinical implications, offering substantial benefits over the existing methods through reduced misdiagnosis rates and improved patient outcomes, potentially revolutionizing AD screening and diagnostic practices. However, the model’s efficacy diminishes when presented with data from frontotemporal dementia (FTD) patients, emphasizing the need for further model refinement to address the intricate nuances associated with the simultaneous detection of various neurodegenerative disorders alongside AD. Full article
Show Figures

Figure 1

13 pages, 281 KiB  
Review
The Role of TDP-43 in SARS-CoV-2-Related Neurodegenerative Changes
by Dong-Hwi Kim, Jae-Hyeong Kim, Min-Tae Jeon, Kyu-Sung Kim, Do-Geun Kim and In-Soo Choi
Viruses 2025, 17(5), 724; https://doi.org/10.3390/v17050724 - 19 May 2025
Viewed by 1041
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has been linked to long-term neurological effects with multifaceted complications of neurodegenerative diseases. Several studies have found that pathological changes in transactive response DNA-binding protein of 43 kDa (TDP-43) are involved in these cases. This review explores [...] Read more.
The coronavirus disease 2019 (COVID-19) pandemic has been linked to long-term neurological effects with multifaceted complications of neurodegenerative diseases. Several studies have found that pathological changes in transactive response DNA-binding protein of 43 kDa (TDP-43) are involved in these cases. This review explores the causal interactions between severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and TDP-43 from multiple perspectives. Some viral proteins of SARS-CoV-2 have been shown to induce pathological changes in TDP-43 through its cleavage, aggregation, and mislocalization. SARS-CoV-2 infection can cause liquid−liquid phase separation and stress granule formation, which accelerate the condensation of TDP-43, resulting in host RNA metabolism disruption. TDP-43 has been proposed to interact with SARS-CoV-2 RNA, though its role in viral replication remains to be fully elucidated. This interaction potentially facilitates viral replication, while viral-induced oxidative stress and protease activity accelerate TDP-43 pathology. Evidence from both clinical and experimental studies indicates that SARS-CoV-2 infection may contribute to long-term neurological sequelae, including amyotrophic lateral sclerosis-like and frontotemporal dementia-like features, as well as increased phosphorylated TDP-43 deposition in the central nervous system. Biomarker studies further support the link between TDP-43 dysregulation and neurological complications of long-term effects of COVID-19 (long COVID). In this review, we presented a novel integrative framework of TDP-43 pathology, bridging a gap between SARS-CoV-2 infection and mechanisms of neurodegeneration. These findings underscore the need for further research to clarify the TDP-43-related neurodegeneration underlying SARS-CoV-2 infection and to develop therapeutic strategies aimed at mitigating long-term neurological effects in patients with long COVID. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Graphical abstract

48 pages, 6778 KiB  
Review
A Review of Neuro-ML Breakthroughs in Addressing Neurological Disorders
by Cosmina-Mihaela Rosca and Adrian Stancu
Appl. Sci. 2025, 15(10), 5442; https://doi.org/10.3390/app15105442 - 13 May 2025
Cited by 2 | Viewed by 1394
Abstract
This research aims to explore the interdisciplinary connection between the field of neurology and artificial intelligence (AI) through machine learning (ML) algorithms. The central objective is to evaluate the current state of research in the Neuro-ML field and identify gaps in the literature [...] Read more.
This research aims to explore the interdisciplinary connection between the field of neurology and artificial intelligence (AI) through machine learning (ML) algorithms. The central objective is to evaluate the current state of research in the Neuro-ML field and identify gaps in the literature that require additional approaches. To achieve this objective, 10 analyses were introduced that analyze the distribution of articles based on keywords, countries, years, publishers, and ML algorithms used in the context of neurological diseases. Surveys were also conducted to identify the diseases most frequently studied through ML algorithms. Thus, it was found that Alzheimer’s disease (37 articles for Support Vector Regression—SVR; 31 for Random Forest—RF), Parkinson’s disease (46 articles for SVM and 48 for RF), and multiple sclerosis (9 articles for SVM) are the most studied diseases in the field of Neuro-ML. The study analyzes Alzheimer’s, Parkinson’s, and multiple sclerosis in detail by focusing on diagnosis. The overall results highlight an increase in researchers’ interest in applying ML in neurology, with models such as SVM (597 articles), Artificial Neural Network (525 articles), and RF (457 articles) being the most used. The results highlighted three major gaps: the underrepresentation of rare diseases, the lack of standardization in evaluating the performance of ML models, and the lack of exploration of algorithms with greater implementation difficulty, such as Extreme Gradient Boosting and Multilayer Perceptron. The value analysis of the performance metrics of ML models demonstrates the ability to correctly classify neuro-degenerative diseases, with high accuracy in some cases (for example, 97.46% accuracy in Alzheimer’s diagnosis), but there may still be improvements. Future directions include exploring rare diseases, investigating underutilized algorithms, and developing standardized protocols for evaluating the performance of ML models, which will facilitate the comparison of results across different studies. Full article
(This article belongs to the Special Issue Feature Review Papers in Theoretical and Applied Neuroscience)
Show Figures

Figure 1

18 pages, 319 KiB  
Review
The Role of Tau in Neuronal Function and Neurodegeneration
by Gonzalo Emiliano Aranda-Abreu, Fausto Rojas-Durán, María Elena Hernández-Aguilar, Deissy Herrera-Covarrubias, Luis Isauro García-Hernández, María Rebeca Toledo-Cárdenas and Donají Chi-Castañeda
Neurol. Int. 2025, 17(5), 75; https://doi.org/10.3390/neurolint17050075 - 13 May 2025
Viewed by 1729
Abstract
Tau protein plays a pivotal role in maintaining neuronal structure and function through its regulation of microtubule stability and neuronal polarity. Encoded by the MAPT gene, Tau exists in multiple isoforms due to alternative mRNA splicing, with differential expression in the central and [...] Read more.
Tau protein plays a pivotal role in maintaining neuronal structure and function through its regulation of microtubule stability and neuronal polarity. Encoded by the MAPT gene, Tau exists in multiple isoforms due to alternative mRNA splicing, with differential expression in the central and peripheral nervous systems. In healthy neurons, tau mRNA is selectively localized and translated in axons, a process tightly regulated by untranslated regions (UTRs) and RNA-binding proteins such as HuD and FMRP. Pathologically, Tau undergoes hyperphosphorylation, misfolding, and aggregation, which contribute to neurodegeneration in a range of disorders collectively known as tauopathies. Alzheimer’s disease (AD) is the most prevalent tauopathy, where abnormal Tau accumulation in the temporal and frontal lobes correlates with cognitive decline and behavioral symptoms. Other tauopathies, including Progressive Supranuclear Palsy (PSP), Corticobasal Degeneration (CBD), Frontotemporal Dementia with Parkinsonism (FTDP-17), and Pick’s disease, are distinguished by the predominance of specific Tau isoforms (3R or 4R), cellular distribution, and affected brain regions. Notably, astroglial tauopathies highlight the pathological role of Tau accumulation in glial cells, expanding the understanding of neurodegeneration beyond neurons. Despite advances in imaging biomarkers (e.g., Tau-PET) and molecular diagnostics, effective disease-modifying therapies for tauopathies remain elusive. Ongoing research targets Tau through immunotherapies, splicing modulators, kinase inhibitors, and antisense oligonucleotides, aiming to mitigate Tau pathology and its deleterious effects. Understanding the multifaceted roles of Tau in neuronal and glial contexts is critical for developing future therapeutic strategies against tauopathies. Full article
5 pages, 173 KiB  
Editorial
Amyotrophic Lateral Sclerosis: Recent Considerations for Diagnosis, Pathogenesis and Therapy
by Andrew Eisen
Brain Sci. 2025, 15(5), 498; https://doi.org/10.3390/brainsci15050498 - 13 May 2025
Viewed by 667
Abstract
Amyotrophic lateral sclerosis (ALS/MND) is considered a uniquely human complex neurodegenerative disorder, presenting with a variety of clinical phenotypes, which include frontotemporal dementia [...] Full article
34 pages, 1647 KiB  
Review
Molecular Mechanisms of Protein Aggregation in ALS-FTD: Focus on TDP-43 and Cellular Protective Responses
by Enza Maria Verde, Valentina Secco, Andrea Ghezzi, Jessica Mandrioli and Serena Carra
Cells 2025, 14(10), 680; https://doi.org/10.3390/cells14100680 - 8 May 2025
Cited by 1 | Viewed by 2313
Abstract
Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are two neurodegenerative disorders that share common genes and pathomechanisms and are referred to as the ALS-FTD spectrum. A hallmark of ALS-FTD pathology is the abnormal aggregation of proteins, including Cu/Zn superoxide dismutase (SOD1), transactive [...] Read more.
Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are two neurodegenerative disorders that share common genes and pathomechanisms and are referred to as the ALS-FTD spectrum. A hallmark of ALS-FTD pathology is the abnormal aggregation of proteins, including Cu/Zn superoxide dismutase (SOD1), transactive response DNA-binding protein 43 (TDP-43), fused in sarcoma/translocated in liposarcoma (FUS/TLS), and dipeptide repeat proteins resulting from C9orf72 hexanucleotide expansions. Genetic mutations linked to ALS-FTD disrupt protein stability, phase separation, and interaction networks, promoting misfolding and insolubility. This review explores the molecular mechanisms underlying protein aggregation in ALS-FTD, with a particular focus on TDP-43, as it represents the main aggregated species inside pathological inclusions and can also aggregate in its wild-type form. Moreover, this review describes the protective mechanisms activated by the cells to prevent protein aggregation, including molecular chaperones and post-translational modifications (PTMs). Understanding these regulatory pathways could offer new insights into targeted interventions aimed at mitigating cell toxicity and restoring cellular function. Full article
Show Figures

Graphical abstract

24 pages, 2232 KiB  
Review
Nanoplatforms Targeting Intrinsically Disordered Protein Aggregation for Translational Neuroscience Applications
by Chih Hung Lo, Lenny Yi Tong Cheong and Jialiu Zeng
Nanomaterials 2025, 15(10), 704; https://doi.org/10.3390/nano15100704 - 8 May 2025
Viewed by 1000
Abstract
Intrinsically disordered proteins (IDPs), such as tau, beta-amyloid (Aβ), and alpha-synuclein (αSyn), are prone to misfolding, resulting in pathological aggregation and propagation that drive neurodegenerative diseases, including Alzheimer’s disease (AD), frontotemporal dementia (FTD), and Parkinson’s disease (PD). Misfolded IDPs are prone to aggregate [...] Read more.
Intrinsically disordered proteins (IDPs), such as tau, beta-amyloid (Aβ), and alpha-synuclein (αSyn), are prone to misfolding, resulting in pathological aggregation and propagation that drive neurodegenerative diseases, including Alzheimer’s disease (AD), frontotemporal dementia (FTD), and Parkinson’s disease (PD). Misfolded IDPs are prone to aggregate into oligomers and fibrils, exacerbating disease progression by disrupting cellular functions in the central nervous system, triggering neuroinflammation and neurodegeneration. Furthermore, aggregated IDPs exhibit prion-like behavior, acting as seeds that are released into the extracellular space, taken up by neighboring cells, and have a propagating pathology across different regions of the brain. Conventional inhibitors, such as small molecules, peptides, and antibodies, face challenges in stability and blood–brain barrier penetration, limiting their efficacy. In recent years, nanotechnology-based strategies, such as multifunctional nanoplatforms or nanoparticles, have emerged as promising tools to address these challenges. These nanoplatforms leverage tailored designs to prevent or remodel the aggregation of IDPs and reduce associated neurotoxicity. This review discusses recent advances in nanoplatforms designed to target tau, Aβ, and αSyn aggregation, with a focus on their roles in reducing neuroinflammation and neurodegeneration. We examine critical aspects of nanoplatform design, including the choice of material backbone and targeting moieties, which influence interactions with IDPs. We also highlight key mechanisms including the interaction between nanoplatforms and IDPs to inhibit their aggregation, redirect aggregation cascade towards nontoxic, off-pathway species, and disrupt fibrillar structures into soluble forms. We further outline future directions for enhancing IDP clearance, achieving spatiotemporal control, and improving cell-specific targeting. These nanomedicine strategies offer compelling paths forward for developing more effective and targeted therapies for neurodegenerative diseases. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

35 pages, 1485 KiB  
Review
Role and Functions of Irisin: A Perspective on Recent Developments and Neurodegenerative Diseases
by Aurelio Minuti, Ivana Raffaele, Michele Scuruchi, Maria Lui, Claudia Muscarà and Marco Calabrò
Antioxidants 2025, 14(5), 554; https://doi.org/10.3390/antiox14050554 - 7 May 2025
Cited by 1 | Viewed by 1374
Abstract
Irisin is a peptide derived from fibronectin type III domain-containing protein 5 (FNDC5) and is primarily produced by muscle fibers under the regulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) during exercise. Irisin has been the subject of extensive research due to [...] Read more.
Irisin is a peptide derived from fibronectin type III domain-containing protein 5 (FNDC5) and is primarily produced by muscle fibers under the regulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) during exercise. Irisin has been the subject of extensive research due to its potential as a metabolic regulator and its antioxidant properties. Notably, it has been associated with protective actions within the brain. Despite growing interest, many questions remain regarding the molecular mechanisms underlying its effects. This review summarizes recent findings on irisin, highlighting its pleiotropic functions and the biological processes and molecular cascades involved in its action, with a particular focus on the central nervous system. Irisin plays a crucial role in neuron survival, differentiation, growth, and development, while also promoting mitochondrial homeostasis, regulating apoptosis, and facilitating autophagy—processes essential for normal neuronal function. Emerging evidence suggests that irisin may improve conditions associated with non-communicable neurological diseases, including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, frontotemporal dementia, and multiple sclerosis. Given its diverse benefits, irisin holds promise as a novel therapeutic agent for preventing and treating neurological diseases. Full article
Show Figures

Figure 1

Back to TopTop