Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = FluA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 260 KiB  
Article
Rapid Tests for Viral Upper Airway Respiratory Infections in the Workplace: A Pilot Study on a Professional Football Team
by Dimitrios Papagiannis, George D. Vavougios, Kyriakos Yiangou, Evangelos Latzourakis, Foteini Malli, Konstantinos I. Gourgoulianis and Georgios M. Hadjigeorgiou
Medicina 2025, 61(6), 1072; https://doi.org/10.3390/medicina61061072 - 11 Jun 2025
Viewed by 644
Abstract
Background and Objectives: Acute infections among elite athletes are predominantly attributed to upper respiratory tract pathogens. From a practical standpoint, medical personnel responsible for the healthcare of professional football players should be aware of this and develop infection prevention strategies. This pilot study [...] Read more.
Background and Objectives: Acute infections among elite athletes are predominantly attributed to upper respiratory tract pathogens. From a practical standpoint, medical personnel responsible for the healthcare of professional football players should be aware of this and develop infection prevention strategies. This pilot study aimed to investigate the prevalence of respiratory infections in football players using multiplex rapid diagnostic tests targeting four respiratory pathogens. Materials and Methods: The mean age of the participants was 32.76 ± 10.96 years. Among the participants, 32 were professional football players, with a mean age of 26.5 years, SD + 5.3, and 18 were members of staff, with a mean age of 44.3 years, SD + 8.6. In the present study, participants were followed up over a period of 6 months (from October 2024 to March 2025). Results: Among the participants and among a total of 1078 tests, 10 tests were found to be positive. We recorded a proportion of 0.46% for Flu-A, 0.27% for Flu-B, 0.18% for SARS-CoV-2, and 0 positive tests for RSV and adenovirus. There were six days of absence for players and staff and the proportion of total absenteeism was calculated as 3.7%. Univariate analysis revealed no statistically significant difference in infection risk between staff and players (odds ratio: 0.3795; 95% confidence interval: 0.07843–1.735). Conclusions: The multiplex rapid diagnostic test platform has a demonstrated ease of use and appears to be a reliable and safe method for distinguishing contagious symptomatic individuals from non-contagious individuals in occupational settings. Early identification of respiratory infections facilitates improved clinical management, thereby enhancing the quality of care for both athletes and supporting staff. Full article
(This article belongs to the Section Pulmonology)
10 pages, 1333 KiB  
Article
Proportions and Seasonal Patterns of Respiratory Viruses via Rapid Tests in Adults at a Greek Hospital (Oct. 2023–Mar. 2024)
by Eleni Rousogianni, Garyfallia Perlepe, Stylianos Boutlas, Georgia G. Rapti, Evdoxia Gouta, Eleni Mpaltopoulou, Giorgos Mpaltopoulos, Erasmia Rouka, Dimitrios Papagiannis and Konstantinos I. Gourgoulianis
J. Pers. Med. 2024, 14(8), 824; https://doi.org/10.3390/jpm14080824 - 3 Aug 2024
Cited by 3 | Viewed by 2547
Abstract
Background: Respiratory infections pose a major public health threat. The predominant viruses causing viral respiratory infections are influenza A and B (Flu-A, Flu-B), coronaviruses, respiratory syncytial virus (RSV), and adenovirus. This study aims to investigate the proportion of these cases via rapid antigen [...] Read more.
Background: Respiratory infections pose a major public health threat. The predominant viruses causing viral respiratory infections are influenza A and B (Flu-A, Flu-B), coronaviruses, respiratory syncytial virus (RSV), and adenovirus. This study aims to investigate the proportion of these cases via rapid antigen tests and assess seasonal patterns. Methods: Clinical samples were collected from symptomatic adults presenting to the Emergency and Respiratory Medicine Departments of the University Hospital of Larissa (UHL), Greece from 16 October 2023 to 31 March 2024. Nasal specimens were antigen-tested for Flu-A/B, SARS-CoV-2, RSV, and adenovirus. Results: The total sample of specimens collected was 1434, of which 739 (51.5%) were female and 695 were male (48.5%). The mean age of participants was 57 ± 5.5 years. Among the positive results, we recorded a proportion of 40.18% and 11.40% for influenza A and B, respectively, followed by 35.79% for SARS-CoV-2, 10.70% for RSV, and 1.93% for adenovirus. Conclusions: In Greece, surveillance systems in infection control are underutilized. Rapid tests via multiple antigens can quickly identify viral infections, making them a valuable tool with financial benefits for health systems. Early detection of respiratory infections helps allocate resources efficiently, ensures adequate staff and facilities are available, and improves patient care through refined clinical management. Full article
(This article belongs to the Special Issue Pathogenesis and Personalized Treatment of Respiratory Diseases)
Show Figures

Figure 1

13 pages, 1831 KiB  
Article
Serum Levels of Arachidonic Acid, Interleukin-6, and C-Reactive Protein as Potential Indicators of Pulmonary Viral Infections: Comparative Analysis of Influenza A, Respiratory Syncytial Virus Infection, and COVID-19
by Simona Iftimie, Xavier Gabaldó-Barrios, Joan Penadés-Nadal, Marta Canela-Capdevila, Rubén Piñana, Andrea Jiménez-Franco, Ana F. López-Azcona, Helena Castañé, María Cárcel, Jordi Camps, Antoni Castro and Jorge Joven
Viruses 2024, 16(7), 1065; https://doi.org/10.3390/v16071065 - 1 Jul 2024
Cited by 1 | Viewed by 2157
Abstract
Acute respiratory tract infections, including influenza A (FluA), respiratory syncytial virus (RSV) infection, and COVID-19, can aggravate to levels requiring hospitalization, increasing morbidity and mortality. Identifying biomarkers for an accurate diagnosis and prognosis of these infections is a clinical need. We performed a [...] Read more.
Acute respiratory tract infections, including influenza A (FluA), respiratory syncytial virus (RSV) infection, and COVID-19, can aggravate to levels requiring hospitalization, increasing morbidity and mortality. Identifying biomarkers for an accurate diagnosis and prognosis of these infections is a clinical need. We performed a cross-sectional study aimed to investigate the changes in circulating levels of arachidonic acid, interleukin 6 (IL-6), and C-reactive protein (CRP) in patients with FluA, RSV, or COVID-19, and to analyze the potential of these parameters as diagnosis or prognosis biomarkers. We analyzed serum samples from 172 FluA, 80 RSV, and 217 COVID-19 patients, and 104 healthy volunteers. Individuals with lung viral diseases showed reduced arachidonic acid concentrations compared to healthy people, with these differences being most pronounced in the order COVID-19 > RSV > FluA. Conversely, IL-6 and CRP levels were elevated across diseases, with IL-6 emerging as the most promising diagnostic biomarker, with areas under the curve (AUC) of the receiver operating characteristics plot higher than 0.85 and surpassing arachidonic acid and CRP. Moreover, IL-6 displayed notable efficacy in distinguishing between FluA patients who survived and those who did not (AUC = 0.80). These findings may provide useful tools for diagnosing and monitoring the severity of acute viral respiratory tract infections, ultimately improving patient outcomes. Full article
Show Figures

Figure 1

11 pages, 2508 KiB  
Article
A Portable Fluorescent Lateral Flow Immunoassay Platform for Rapid Detection of FluA
by Xu Chen, Xuhui Huang, Saima Kanwal, Jian Wang, Jing Wen and Dawei Zhang
Biosensors 2024, 14(6), 263; https://doi.org/10.3390/bios14060263 - 21 May 2024
Cited by 1 | Viewed by 3107
Abstract
The spread of the FluA virus poses significant public health concerns worldwide. Fluorescent lateral flow immunoassay (LFIA) test strips have emerged as vital tools for the early detection and monitoring of influenza infections. However, existing quantitative virus-detection methods, particularly those utilizing smartphone-based sensing [...] Read more.
The spread of the FluA virus poses significant public health concerns worldwide. Fluorescent lateral flow immunoassay (LFIA) test strips have emerged as vital tools for the early detection and monitoring of influenza infections. However, existing quantitative virus-detection methods, particularly those utilizing smartphone-based sensing platforms, encounter accessibility challenges in resource-limited areas and among the elderly population. Despite their advantages in speed and portability, these platforms often lack user-friendliness for these demographics, impeding their widespread utilization. To address these challenges, this study proposes leveraging the optical pick-up unit (OPU) sourced from commercial optical drives as a readily available fluorescence excitation module for the quantitative detection of antibodies labeled with quantum-dot fluorescent microspheres. Additionally, we utilize miniaturized and high-performance optical components and 3D-printed parts, along with a customized control system, to develop an affordable point-of-care testing (POCT) device. Within the system, a stepping motor scans the test strip from the T-line to the C-line, enabling the calculation of the fluorescence-intensity ratio between the two lines. This simple yet effective design facilitates rapid and straightforward field or at-home testing for FluA. The proposed prototype platform demonstrates promising performance, achieving a limit of detection (LOD) of 2.91 ng/mL, a total detection time of no more than 15 min, and dimensions of 151 mm × 11.2 mm × 10.8 mm3. We believe that the proposed approach holds great potential for improving access to an accurate influenza diagnosis. Full article
(This article belongs to the Special Issue Emerging Applications of Label-Free Optical Biosensors)
Show Figures

Figure 1

13 pages, 301 KiB  
Article
Proportion of Respiratory Syncytial Virus, SARS-CoV-2, Influenza A/B, and Adenovirus Cases via Rapid Tests in the Community during Winter 2023—A Cross Sectional Study
by Dimitrios Papagiannis, Garifallia Perlepe, Theodora Tendolouri, Polyxeni Karakitsiou, Georgia Damagka, Anna Kalaitzi, Sofia Alevra, Foteini Malli and Konstantinos I. Gourgoulianis
Diseases 2023, 11(3), 122; https://doi.org/10.3390/diseases11030122 - 15 Sep 2023
Cited by 10 | Viewed by 2496
Abstract
Respiratory infections constitute a major reason for infants and children seeking medical advice and visiting health facilities, thus remaining a significant public threat with high morbidity and mortality. The predominant viruses causing viral respiratory infections are influenza A and B viruses (Flu-A, Flu-B), [...] Read more.
Respiratory infections constitute a major reason for infants and children seeking medical advice and visiting health facilities, thus remaining a significant public threat with high morbidity and mortality. The predominant viruses causing viral respiratory infections are influenza A and B viruses (Flu-A, Flu-B), respiratory syncytial virus (RSV), adenovirus and coronaviruses. We aimed to record the proportion of RSV, SARS-CoV-2, influenza A/B and adenovirus cases with rapid antigen tests and validate the results with RT-PCR assays of upper respiratory specimens with a wide range of viral loads and (co)-infection patterns in children. Clinical samples were collected from early symptomatic children (presenting with fever and/or cough and/or headache within 5–7 days). The surveillance program was conducted in five private pediatric dispensaries and one pediatric care unit, from 10 January 2023 to 30 March 2023 in central Greece. The total sample of specimens collected was 784 young children and infants, of which 383 (48.8%) were female and 401 were male (51.2%). The mean age of participants was 7.3 + 5.5 years. The sensitivity of the FLU A & B test was 91.15% (95% CI: 84.33–95.67%), and the specificity was 98.96% (95% CI: 97.86–99.58%). The sensitivity and specificity of the adenovirus and RSV test was {92.45% (95% CI: 81.79–97.91%), 99.32% (95% CI: 98.41–99.78%)} and {92.59% (95% CI: 75.71–99.09%), 99.47% (95% CI: 98.65–99.86%)} respectively. Lastly, the sensitivity of the SARS-CoV-2 test was 100.00% (95% CI: 79.41–100.00%) and the specificity was 99.74% (95% CI: 99.06–99.97%). We recorded a proportion of 14.3% and 3.44% for influenza A and B, respectively, followed by a proportion of 6.9% for adenovirus, a proportion of 3.7% for RSV, and finally, a proportion of 2.3% for SARS-CoV-2. The combination of a new multiple rapid test with multiple antigens will probably be a useful tool with a financial impact for health systems targeting the early detection and appropriate treatment of respiratory infections in emergency departments in primary health care facilities. Full article
20 pages, 739 KiB  
Article
Finding Taint-Style Vulnerabilities in Lua Application of IoT Firmware with Progressive Static Analysis
by Xixing Li, Qiang Wei, Zehui Wu and Wei Guo
Appl. Sci. 2023, 13(17), 9710; https://doi.org/10.3390/app13179710 - 28 Aug 2023
Cited by 5 | Viewed by 2349
Abstract
With the rapid growth of IoT devices, ensuring the security of embedded firmware has become a critical concern. Despite advances in existing vulnerability discovery methods, previous research has been limited to vulnerabilities occurring in binary programs. Although an increasing number of vendors are [...] Read more.
With the rapid growth of IoT devices, ensuring the security of embedded firmware has become a critical concern. Despite advances in existing vulnerability discovery methods, previous research has been limited to vulnerabilities occurring in binary programs. Although an increasing number of vendors are utilizing Lua scripting language in firmware development, no automated method is currently available to discover vulnerabilities in Lua-based programs. To fill this gap, in this paper, we propose FLuaScan, a novel progressive static analysis approach specifically designed to detect taint-style vulnerabilities in Lua applications in IoT firmware. FLuaScan first heuristically locates the code that handles user input, then divides the code into different segments to conduct a progressive taint analysis. Finally, a graph-based search method is applied to identify vulnerable code that satisfies the conditions of taint propagation. To comprehensively compare FLuaScan with state-of-the-art tool Tscancode, we conducted various experiments on a dataset consisting of 13 real-world firmware samples from different vendors. The results demonstrate the superior performance of FLuaScan in terms of accuracy (increased TP rate from 0% to 42.50%), effectiveness (discovered 21 vulnerabilities, of which 7 are unknown), and practicality (acceptable time overhead and visual output to assist in manual analysis). Full article
(This article belongs to the Special Issue Security Challenges for the Internet of Things and Mobile Networks)
Show Figures

Figure 1

10 pages, 539 KiB  
Article
High Incidence of Respiratory Syncytial Virus in Children with Community-Acquired Pneumonia from a City in the Brazilian Pre-Amazon Region
by Valéria Fontes, Hivylla Ferreira, Marilene Ribeiro, Aruanã Pinheiro, Carlos Maramaldo, Eduardo Pereira, Luís Batista, Antonio Júnior, Luis Lobato, Fabiano Silva, Luis Sousa, Washington Lima, Claudia Lima, Suzany Soczek, Rafael Carvalho, Mirleide Santos, Elizabeth Fernandes, Eduardo Sousa and Lidio Neto
Viruses 2023, 15(6), 1306; https://doi.org/10.3390/v15061306 - 31 May 2023
Cited by 5 | Viewed by 2731
Abstract
Introduction: Although fewer children have been affected by the severe form of the coronavirus disease 2019 (COVID-19), community-acquired pneumonia (CAP) continues to be the leading global cause of child hospitalizations and deaths. Aim: This study investigated the incidence of respiratory syncytial virus (RSV) [...] Read more.
Introduction: Although fewer children have been affected by the severe form of the coronavirus disease 2019 (COVID-19), community-acquired pneumonia (CAP) continues to be the leading global cause of child hospitalizations and deaths. Aim: This study investigated the incidence of respiratory syncytial virus (RSV) as well its subtypes (RSV A and B), adenovirus (ADV), rhinovirus (HRV), metapneumovirus (HMPV), coronavirus (NL63, OC43, 229E and HKU1), parainfluenza virus subtypes (PI1, PI2 and PI3), bocavirus and influenza A and B viruses (FluA and FluB) in children diagnosed with CAP during the COVID-19 pandemic. Methods: A total of 200 children with clinically confirmed CAP were initially recruited, of whom 107 had negative qPCR results for SARS-CoV-2 and were included in this study. Viral subtypes were identified using a real-time polymerase chain reaction in the nasopharyngeal swab samples. Results: Viruses were identified in 69.2% of the patients. RSV infections were the most frequently identified (65.4%), with type RSV B being the most prevalent (63.5%). In addition, HCoV 229E and HRV were detected in 6.5% and 3.7% of the patients, respectively. RSV type B was associated with severe acute respiratory infection (ARI) and a younger age (less than 24 months). Conclusions: New strategies for preventing and treating viral respiratory infections, particularly RSV infections, are necessary. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

13 pages, 2169 KiB  
Article
A Digital Microfluidic RT-qPCR Platform for Multiple Detections of Respiratory Pathogens
by Huitao Huang, Kaisong Huang, Yun Sun, Dasheng Luo, Min Wang, Tianlan Chen, Mingzhong Li, Junwei Duan, Liqun Huang and Cheng Dong
Micromachines 2022, 13(10), 1650; https://doi.org/10.3390/mi13101650 - 30 Sep 2022
Cited by 12 | Viewed by 4183
Abstract
The coronavirus disease 2019 pandemic has spread worldwide and caused more than six million deaths globally. Therefore, a timely and accurate diagnosis method is of pivotal importance for controlling the dissemination and expansions. Nucleic acid detection by the reverse transcription-polymerase chain reaction (RT-PCR) [...] Read more.
The coronavirus disease 2019 pandemic has spread worldwide and caused more than six million deaths globally. Therefore, a timely and accurate diagnosis method is of pivotal importance for controlling the dissemination and expansions. Nucleic acid detection by the reverse transcription-polymerase chain reaction (RT-PCR) method generally requires centralized diagnosis laboratories and skilled operators, significantly restricting its use in rural areas and field settings. The digital microfluidic (DMF) technique provides a better option for simultaneous detections of multiple pathogens with fewer specimens and easy operation. In this study, we developed a novel digital microfluidic RT-qPCR platform for multiple detections of respiratory pathogens. This method can simultaneously detect eleven respiratory pathogens, namely, mycoplasma pneumoniae (MP), chlamydophila pneumoniae (CP), streptococcus pneumoniae (SP), human respiratory syncytial virus A (RSVA), human adenovirus (ADV), human coronavirus (HKU1), human coronavirus 229E (HCoV-229E), human metapneumovirus (HMPV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus (FLUA) and influenza B virus (FLUB). The diagnostic performance was evaluated using positive plasmids samples and clinical specimens compared with off-chip individual RT-PCR testing. The results showed that the limit of detections was around 12 to 150 copies per test. The true positive rate, true negative rate, positive predictive value, negative predictive value, and accuracy of DMF on-chip method were 93.33%, 100%, 100%, 99.56%, and 99.85%, respectively, as validated by the off-chip RT-qPCR counterpart. Collectively, this study reported a cost-effective, high sensitivity and specificity on-chip DMF RT-qPCR system for detecting multiple respiratory pathogens, which will greatly contribute to timely and effective clinical management of respiratory infections in medical resource-limited settings. Full article
Show Figures

Figure 1

11 pages, 2368 KiB  
Article
Assay System for Simultaneous Detection of SARS-CoV-2 and Other Respiratory Viruses
by Ho-Jae Lim, Jung-Eun Park, Min-Young Park, Joo-Hwan Baek, Sunkyung Jung, Nackmoon Sung, Jae-Hyun Yang, Min-Woo Lee, Sun-Hwa Lee and Yong-Jin Yang
Diagnostics 2021, 11(6), 1084; https://doi.org/10.3390/diagnostics11061084 - 13 Jun 2021
Cited by 13 | Viewed by 6458
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggers disease with nonspecific symptoms that overlap those of infections caused by other seasonal respiratory viruses (RVs), such as the influenza virus (Flu) or respiratory syncytial virus (RSV). A molecular assay for accurate and rapid detection [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggers disease with nonspecific symptoms that overlap those of infections caused by other seasonal respiratory viruses (RVs), such as the influenza virus (Flu) or respiratory syncytial virus (RSV). A molecular assay for accurate and rapid detection of RV and SARS-CoV-2 is crucial to manage these infections. Here, we compared the analytical performance and clinical reliability of Allplex™ SARS-CoV-2/FluA/FluB/RSV (SC2FabR; Seegene Inc., Seoul, South Korea) kit with those of four commercially available RV detection kits. Upon testing five target viral strains (SARS-CoV-2, FluA, FluB, RSV A, and RSV B), the analytical performance of SC2FabR was similar to that of the other kits, with no significant difference (p ≥ 0.78) in z-scores. The efficiency of SC2FabR (E-value, 81–104%) enabled reliable SARS-CoV-2 and seasonal RV detection in 888 nasopharyngeal swab specimens processed using a fully automated nucleic acid extraction platform. Bland–Altman analyses revealed an agreement value of 95.4% (SD ± 1.96) for the kits, indicating statistically similar results for all five. In conclusion, SC2FabR is a rapid and accurate diagnostic tool for both SARS-CoV-2 and seasonal RV detection, allowing for high-throughput RV analysis with efficiency comparable to that of commercially available kits. This can be used to help manage respiratory infections in patients during and after the coronavirus disease 2019 pandemic. Full article
Show Figures

Figure 1

9 pages, 256 KiB  
Article
Analytical Performances of the Panther Fusion System for the Detection of Respiratory Viruses in the French National Reference Centre of Lyon, France
by Maxime Pichon, Martine Valette, Isabelle Schuffenecker, Geneviève Billaud and Bruno Lina
Microorganisms 2020, 8(9), 1371; https://doi.org/10.3390/microorganisms8091371 - 7 Sep 2020
Cited by 2 | Viewed by 2847
Abstract
Respiratory infection are mainly caused by viral pathogens. During the 2017–2018 epidemic season, Panther Fusion® Respiratory kits (Influenza virus A&B (FluA&B), respiratory syncytial virus (RSV), adenovirus (ADV), metapneumovirus (MPV), rhinovirus (RV), parainfluenzae virus (PIV), were compared to the Respiratory MultiWells System r-gene. [...] Read more.
Respiratory infection are mainly caused by viral pathogens. During the 2017–2018 epidemic season, Panther Fusion® Respiratory kits (Influenza virus A&B (FluA&B), respiratory syncytial virus (RSV), adenovirus (ADV), metapneumovirus (MPV), rhinovirus (RV), parainfluenzae virus (PIV), were compared to the Respiratory MultiWells System r-gene. Respiratory clinical specimens were tested retrospectively (n = 268) and prospectively (n = 463). Analytical performances were determined (sensitivity –Sep-, specificity –Spe- and κ) considering concordances of ≥2 molecular testing specific to each viral target (discrepant results were verified at the National Reference Centres for Enteroviruses or Respiratory viruses, Lyon, France). After retrospective (and prospective) testing, Sep, Spe, and κ were 100% (97.7%), 100% (99%) and 100% (94%) for FluA: 100% (95.5%), 100% (99.3%) and 100% (94%) for FluB, and 100% (88.5%), 100% (98.7%) and 100% (89%) for RSV; 82.1% (41.7%), 100% (99.5%) and 86% (54%) for ADV; 94.7% (73.7%), 96.1% (98.0%) and 91% (65%) for MPV; 96.1% (94.6%), 90.2% (98.5%) and 86% (91%) for HRV; and 90% (72.7%), 100% (99.3%) and 91% (72%), respectively, for PIV. Analytical performances were above 85% for all viruses except for ADV, MPV and PIV, confirming the analytical performance of the Panther Fusion system, a high throughput system with reduced turn-around-time, when compared to non-automated systems. Full article
19 pages, 9384 KiB  
Article
Computational and Transcriptome Analyses Revealed Preferential Induction of Chemotaxis and Lipid Synthesis by SARS-CoV-2
by Hibah Shaath and Nehad M. Alajez
Biology 2020, 9(9), 260; https://doi.org/10.3390/biology9090260 - 1 Sep 2020
Cited by 10 | Viewed by 3986
Abstract
The continuous and rapid emergence of new viral strains calls for a better understanding of the fundamental changes occurring within the host cell upon viral infection. In this study, we analyzed RNA-seq transcriptome data from Calu-3 human lung epithelial cells infected with severe [...] Read more.
The continuous and rapid emergence of new viral strains calls for a better understanding of the fundamental changes occurring within the host cell upon viral infection. In this study, we analyzed RNA-seq transcriptome data from Calu-3 human lung epithelial cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) compared to five other viruses namely, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East Respiratory Syndrome (SARS-MERS), influenzavirus A (FLUA), influenzavirus B (FLUB), and rhinovirus (RHINO) compared to mock-infected cells and characterized their coding and noncoding RNA transcriptional portraits. The induction of interferon, inflammatory, and immune response was a hallmark of SARS-CoV-2 infection. Comprehensive bioinformatics revealed the activation of immune response and defense response to the virus as a common feature of viral infection. Interestingly however, the degree of functional categories and signaling pathways activation varied among different viruses. Ingenuity pathways analysis highlighted altered conical and casual pathways related to TNF, IL1A, and TLR7, which are seen more predominantly during SARS-CoV-2 infection. Nonetheless, the activation of chemotaxis and lipid synthesis was prominent in SARS-CoV-2-infected cells. Despite the commonality among all viruses, our data revealed the hyperactivation of chemotaxis and immune cell trafficking as well as the enhanced fatty acid synthesis as plausible mechanisms that could explain the inflammatory cytokine storms associated with severe cases of COVID-19 and the rapid spread of the virus, respectively. Full article
(This article belongs to the Special Issue Theories and Models on COVID-19 Epidemics)
Show Figures

Graphical abstract

17 pages, 755 KiB  
Article
Evaluation of Innate Immune Mediators Related to Respiratory Viruses in the Lung of Stable COPD Patients
by Silvestro E. D’Anna, Mauro Maniscalco, Vitina Carriero, Isabella Gnemmi, Gaetano Caramori, Francesco Nucera, Luisella Righi, Paola Brun, Bruno Balbi, Ian M Adcock, Maria Grazia Stella, Fabio L.M. Ricciardolo and Antonino Di Stefano
J. Clin. Med. 2020, 9(6), 1807; https://doi.org/10.3390/jcm9061807 - 10 Jun 2020
Cited by 7 | Viewed by 3542
Abstract
Background: Little is known about the innate immune response to viral infections in stable Chronic Obstructive Pulmonary Disease (COPD). Objectives: To evaluate the innate immune mediators related to respiratory viruses in the bronchial biopsies and lung parenchyma of stable COPD patients. Methods: We [...] Read more.
Background: Little is known about the innate immune response to viral infections in stable Chronic Obstructive Pulmonary Disease (COPD). Objectives: To evaluate the innate immune mediators related to respiratory viruses in the bronchial biopsies and lung parenchyma of stable COPD patients. Methods: We evaluated the immunohistochemical (IHC) expression of Toll-like receptors 3-7-8-9 (TLR-3-7-8-9), TIR domain-containing adaptor inducing IFNβ (TRIF), Interferon regulatory factor 3 (IRF3), Phospho interferon regulatory factor 3  ( pIRF3), Interferon regulatory factor 7 (IRF7), Phospho interferon regulatory factor 7 (pIRF7), retinoic acid-inducible gene I (RIG1), melanoma differentiation-associated protein 5 (MDA5), Probable ATP-dependent RNA helicase DHX58 ( LGP2), Mitochondrial antiviral-signaling protein (MAVS), Stimulator of interferon genes (STING), DNA-dependent activator of IFN regulatory factors (DAI), forkhead box protein A3(FOXA3), Interferon alfa (IFNα), and Interferon beta (IFNβ) in the bronchial mucosa of patients with mild/moderate (n = 16), severe/very severe (n = 18) stable COPD, control smokers (CS) (n = 12), and control non-smokers (CNS) (n = 12). We performed similar IHC analyses in peripheral lung from COPD (n = 12) and CS (n = 12). IFNα and IFNβ were assessed in bronchoalveolar lavage (BAL) supernatant from CNS (n = 8), CS (n = 9) and mild/moderate COPD (n = 12). Viral load, including adenovirus-B, -C, Bocavirus, Respiratory syncytial Virus (RSV),Human Rhinovirus (HRV), Coronavirus, Influenza virus A (FLU-A), Influenza virus B (FLU-B), and Parainfluenzae-1 were measured in bronchial rings and lung parenchyma of COPD patients and the related control group (CS). Results: Among the viral-related innate immune mediators, RIG1, LGP2, MAVS, STING, and DAI resulted well expressed in the bronchial and lung tissues of COPD patients, although not in a significantly different mode from control groups. Compared to CS, COPD patients showed no significant differences of viral load in bronchial rings and lung parenchyma. Conclusions: Some virus-related molecules are well-expressed in the lung tissue and bronchi of stable COPD patients independently of the disease severity, suggesting a “primed” tissue environment capable of sensing the potential viral infections occurring in these patients. Full article
(This article belongs to the Section Infectious Diseases)
Show Figures

Figure 1

13 pages, 1308 KiB  
Article
Increased Detection of Viruses in Children with Respiratory Tract Infection Using PCR
by Chien-Yu Lin, David Hwang, Nan-Chang Chiu, Li-Chuan Weng, Hsin-Fu Liu, Jung-Jung Mu, Chang-Pan Liu and Hsin Chi
Int. J. Environ. Res. Public Health 2020, 17(2), 564; https://doi.org/10.3390/ijerph17020564 - 15 Jan 2020
Cited by 88 | Viewed by 10195
Abstract
Respiratory viruses are a common cause of respiratory tract infection (RTI), particularly in neonates and children. Rapid and accurate diagnosis of viral infections could improve clinical outcomes and reduce the use of antibiotics and treatment sessions. Advances in diagnostic technology contribute to the [...] Read more.
Respiratory viruses are a common cause of respiratory tract infection (RTI), particularly in neonates and children. Rapid and accurate diagnosis of viral infections could improve clinical outcomes and reduce the use of antibiotics and treatment sessions. Advances in diagnostic technology contribute to the accurate detection of viruses. We performed a multiplex real-time polymerase chain reaction (PCR) to investigate the viral etiology in pediatric patients and compared the detection rates with those determined using traditional antigen tests and virus cultures. Fifteen respiratory viruses were included in our investigation: respiratory syncytial virus A/B (RSV), influenza virus A (FluA) and influenza virus B (FluB), human metapneumovirus (MPV), enterovirus (EV), human parainfluenza virus (PIV) types 1–4, human rhinovirus (RV), human coronavirus OC43, NL63, and 229E, human adenovirus (ADV), and human bocavirus (Boca). In total, 474 specimens were collected and tested. Respiratory viruses were detected more frequently by PCR (357, 75.3%) than they were by traditional tests (229, 49.3%). The leading pathogens were RSV (113, 23.8%), RV (72, 15.2%), PIV3 (53, 11.2%), FluA (51, 10.8%), and ADV (48, 10.1%). For children younger than 5 years, RSV and RV were most prevalent; for children older than 5 years, FluA and ADV were the most frequently detected. Of the specimens, 25.8% (92/357) were coinfected with two or more viruses. RV, Boca, PIV2, FluB, and PIV4 had higher rates of coinfection; MPV and PIV1 had the lowest rates of coinfection (9.1% and 5.3%). To conclude, the detection power of PCR was better than that of traditional antigen tests and virus cultures when considering the detection of respiratory viruses. RSV and RV were the leading viral pathogens identified in the respiratory specimens. One-quarter of the positive specimens were coinfected with two or more viruses. In the future, further application of PCR may contribute to the rapid and accurate diagnosis of respiratory viruses and could improve patient outcomes. Full article
(This article belongs to the Section Infectious Disease Epidemiology)
Show Figures

Figure 1

9 pages, 910 KiB  
Article
Seasonal Variations and Sources of Airborne Polycyclic Aromatic Hydrocarbons (PAHs) in Chengdu, China
by Ju Yang, Wenlai Xu and Huiyu Cheng
Atmosphere 2018, 9(2), 63; https://doi.org/10.3390/atmos9020063 - 11 Feb 2018
Cited by 33 | Viewed by 5313
Abstract
The concentrations of polycyclic aromatic hydrocarbons (PAHs) in the air of Chengdu, a southwest city of China, were determined from March 2015 to February 2016. Here, two diagnostic ratios (DR) were determined and a principal component analysis/multiple linear regression (PCA/MLR) analysis was performed [...] Read more.
The concentrations of polycyclic aromatic hydrocarbons (PAHs) in the air of Chengdu, a southwest city of China, were determined from March 2015 to February 2016. Here, two diagnostic ratios (DR) were determined and a principal component analysis/multiple linear regression (PCA/MLR) analysis was performed to identify the sources of PAHs during the four seasons. The gaseous and particle phase samples were analyzed separately. The sampled air had a gas-to particle ratio of 4.21, and between 18.7% and 31.3% of the total detected PAHs were found in the particulate phase. The total concentration of all 16-PAHs combined (gas + particles) varied from 176.94 in summer to 458.95 ng·m−3 in winter, with a mean of 300.35 ± 176.6 ng·m−3. In the gas phase, phenanthrene(Phe) was found at the highest concentrations in all four seasons, while benzo[b]fluoranthene(BbF) and (in winter) chrysene(Chr) were the highest in the particle phase. The DR of Fluroanthene (Flua)/(Flua + Pyrene (Pyr)) was higher in the gas phase than in the particle phase, while the Indeno[1,2,3-cd]pyrene(IcdP)/(IcdP + Benzo[ghi]perylene (BghiP)) ratio was more variable in the gas than that in the particle phase. The main sources for both phases were a mixture of liquid fossil fuel combustion and the burning of biomass and coal, with clear seasonal variation. Principal Component Analysis/Multiple Linear Regression (PCA/MLR) analysis identified the main PAH sources as coal burning (52%) with motor vehicle exhaust and coke (48%) in spring; coal (52%), coke (21%), and motor vehicle exhaust (27%) in summer; coal (47%), vehicle exhaust (34%), and coke (19%) in autumn; and coal (58%) and vehicle exhaust (42%) in winter. Full article
(This article belongs to the Special Issue Formation and Transformation of Organic Aerosol)
Show Figures

Figure 1

Back to TopTop