Proportion of Respiratory Syncytial Virus, SARS-CoV-2, Influenza A/B, and Adenovirus Cases via Rapid Tests in the Community during Winter 2023—A Cross Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Principle of Assay
- Rapid Test FLU_COVID for the detection of influenza A/B and SARS-CoV-2 antigens in nasal or nasopharyngeal specimen (V16XX).
- Rapid Test FLU A_B for the detection of influenza A/B antigens in nasal or nasopharyngeal specimen (V17XX).
- Rapid Test RSV for the detection of respiratory syncytial virus antigen in nasal or nasopharyngeal specimen (V15XX).
- Rapid Test ADENOVIRUS for the detection of adenovirus antigens in nasal or nasopharyngeal specimen (V18XX).
2.2. Positive and Negative Predictive Values
2.3. Rapid Test Validation
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peeling, R.W.; Olliaro, P.L.; Boeras, D.I.; Fongwen, N. Scaling up COVID-19 rapid antigen tests: Promises and challenges. Lancet Infect. Dis. 2021, 21, E290–E295. [Google Scholar] [CrossRef] [PubMed]
- Yamayoshi, S.; Sakai-Tagawa, Y.; Koga, M.; Akasaka, O.; Nakachi, I.; Koh, H.; Maeda, K.; Adachi, E.; Saito, M.; Nagai, H.; et al. Comparison of Rapid Antigen Tests for COVID-19. Viruses 2020, 12, 1420. [Google Scholar] [CrossRef] [PubMed]
- Miller, T.E.; Beltran, W.F.G.; Bard, A.Z.; Gogakos, T.; Anahtar, M.N.; Astudillo, M.G.; Yang, D.; Thierauf, J.; Fisch, A.S.; Mahowald, G.K.; et al. Clinical sensitivity and interpretation of PCR and serological COVID-19 diagnostics for patients presenting to the hospital. FASEB J. 2020, 34, 13877–13884. [Google Scholar] [CrossRef] [PubMed]
- Scohy, A.; Anantharajah, A.; Bodéus, M.; Kabamba-Mukadi, B.; Verroken, A.; Rodriguez-Villalobos, H. Low performance of rapid antigen detection test as frontline testing for COVID-19 diagnosis. J. Clin. Virol. 2020, 129, 104455. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; McAllister, D.A.; O’Brien, K.L.; Simoes, E.A.; Madhi, S.A.; Gessner, B.D.; Nair, H. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: A systematic review and modelling study. Lancet 2017, 390, 946–958. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Blau, D.M.; Caballero, M.T.; Feikin, D.R.; Gill, C.J.; Madhi, S.A.; Omer, S.B.; Simões, E.A.F.; Campbell, H.; et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in children younger than 5 years in 2019: A systematic analysis. Lancet 2022, 399, 2047–2064. [Google Scholar] [CrossRef]
- Del Riccio, M.; Spreeuwenberg, P.; Osei-Yeboah, R.; Johannesen, C.K.; Vazquez Fernandez, L.; Teirlinck, A.C.; Wang, X.; Heikkinen, T.; Bangert, M.; Caini, S.; et al. Defining the Burden of Disease of RSV in the European Union: Estimates of RSV-associated hospitalisations in children under 5 years of age. A systematic review and modelling study. J. Infect. Dis. 2023, 29, jiad188. [Google Scholar] [CrossRef]
- Shieh, W.J. Human adenovirus infections in pediatric population—An update on clinico-pathologic correlation. Biomed. J. 2022, 45, 38–49. [Google Scholar] [CrossRef]
- Van Dongen, J.A.P.; Rouers, E.D.M.; Schuurman, R.; Bonten, M.J.M.; Bruijning-Verhagen, P.; RIVAR Study Group. Acute Gastroenteritis Disease Burden in Infants with Medical Risk Conditions in the Netherlands. Pediatr. Infect. Dis. J. 2021, 40, 300–305. [Google Scholar] [CrossRef]
- Brandt, C.D.; Kim, H.W.; Vargosko, A.J.; Jeffries, B.C.; Arrobio, J.O.; Rindge, B.; Parrott, R.H.; Chanock, R.M. Infections in 18,000 infants and children in a controlled study of respiratory tract disease. I. Adenovirus pathogenicity in relation to serologic type and illness syndrome. Am. J. Epidemiol. 1969, 90, 484–500. [Google Scholar] [CrossRef]
- Edwards, K.M.; Thompson, J.; Paolini, J.; Wright, P.F. Adenovirus infections in young children. Pediatrics 1985, 76, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Mennechet, F.J.; Paris, O.; Ouoba, A.R.; Salazar Arenas, S.; Sirima, S.B.; Takoudjou Dzomo, G.R.; Kremer, E.J. A review of 65 years of human adenovirus seroprevalence. Expert Rev. Vaccines 2019, 18, 597–613. [Google Scholar] [CrossRef] [PubMed]
- Canadian Pediatric Society. Influenza in children. Paediatr. Child Health 2005, 10, 485–487. [Google Scholar] [CrossRef] [PubMed]
- Troeger, C. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect. Dis. 2018, 18, 1191–1210. [Google Scholar] [CrossRef]
- Dunn, F.L.; Carey, D.E.; Cohen, A.; Martin, J.D. Epidemiologic studies of Asian influenza in a Louisiana parish. Am. J. Hyg. 1959, 70, 351–371. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). Hospitalized patients with novel influenza A (H1N1) virus infection—California, April–May, 2009. MMWR Morb. Mortal Wkly. Rep. 2009, 58, 536–541. [Google Scholar]
- Paiva, I.A.; Badolato-Corrêa, J.; Familiar-Macedo, D.; de-Oliveira-Pinto, L.M. Th17 Cells in Viral Infections-Friend or Foe? Cells 2021, 10, 1159. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Surveillance for pediatric deaths associated with 2009 pandemic influenza A (H1N1) virus infection—United States, April–August 2009. MMWR Morb. Mortal Wkly. Rep. 2009, 58, 941–947. [Google Scholar]
- O’Riordan, S.; Barton, M.; Yau, Y.; Read, S.E.; Allen, U.; Tran, D. Risk factors and outcomes among children admitted to hospital with pandemic H1N1 influenza. CMAJ 2010, 182, 39–44. [Google Scholar] [CrossRef]
- Borrelli, M.; Corcione, A.; Castellano, F.; Fiori Nastro, F.; Santamaria, F. Coronavirus Disease 2019 in Children. Front. Pediatr. 2021, 9, 668484. [Google Scholar] [CrossRef]
- Howard-Jones, A.R.; Burgner, D.P.; Crawford, N.W.; Goeman, E.; Gray, P.E.; Hsu, P.; Kuek, S.; McMullan, B.J.; Tosif, S.; Wurzel, D.; et al. COVID-19 in children. II: Pathogenesis, disease spectrum and management. J. Paediatr. Child Health 2022, 58, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Rebnord, I.K.; Sandvik, H.; Mjelle, A.B.; Hunskaar, S. Out-of-hours antibiotic prescription after screening with C reactive protein: A randomized controlled study. BMJ Open 2016, 6, e011231. [Google Scholar] [CrossRef] [PubMed]
- Havasi, A.; Visan, S.; Cainap, C.; Cainap, S.S.; Mihaila, A.A.; Pop, L.A. Influenza A, Influenza B, and SARS-CoV-2 Similarities and Differences—A Focus on Diagnosis. Front. Microbiol. 2022, 13, 908525. [Google Scholar] [CrossRef] [PubMed]
- Harris, E. CDC: RSV Vaccine Recommended for Older People. JAMA 2023, 330, 401. [Google Scholar] [CrossRef] [PubMed]
- Mena-Vázquez, N.; García-Studer, A.; Rojas-Gimenez, M.; Romero-Barco, C.M.; Manrique-Arija, S.; Mucientes, A.; Velloso-Feijoo, M.L.; Godoy-Navarrete, F.J.; Morales-Garrido, P.; Redondo-Rodríguez, R.; et al. Importance of Vaccination against SARS-CoV-2 in Patients with Interstitial Lung Disease Associated with Systemic Autoimmune Disease. J. Clin. Med. 2022, 11, 2437. [Google Scholar] [CrossRef]
- Altman, D.G.; Machin, D.; Bryant, T.N.; Gardner, M.J. (Eds.) Statistics with Confidence: Confidence Intervals and Statistical Guidelines, 2nd ed.; BMJ Books: London, UK, 2000; pp. 105–108. [Google Scholar]
- Wee, L.E.; Fua, T.; Chua, Y.Y.; Ho, A.F.W.; Sim, X.Y.J.; Conceicao, E.P.; Venkatachalam, I.; Tan, K.B.; Tan, B.H. Containing COVID-19 in the Emergency Department: The Role of Improved Case Detection and Segregation of Suspect Cases. Acad. Emerg. Med. 2020, 27, 379–387. [Google Scholar] [CrossRef]
- World Health Organization. In Vitro Diagnostics Detecting SARS-CoV-2 Nucleic Acid and Rapid Diagnostics Tests Detecting SARS-CoV-2 Antigen. 2020. Available online: https://www.who.int/diagnostics_laboratory/EUL/en/ (accessed on 12 July 2023).
- Boehme, C.; Hannay, E.; Sampath, R. SARS-CoV-2 testing for public health use: Core principles and considerations for defined use settings. Lancet Glob. Health 2021, 9, e247–e249. [Google Scholar] [CrossRef]
- Goldstein, N.; Burstyn, I. On the importance of early testing even when imperfect in a pandemic such as COVID-19. Glob. Epidemiol. 2020, 2, 100031. [Google Scholar] [CrossRef]
- Adalja, A.A.; Toner, E.; Inglesby, T.V. Priorities for the US health community responding to COVID-19. JAMA 2020, 323, 1343–1344. [Google Scholar] [CrossRef]
- Artika, I.M.; Dewi, Y.P.; Nainggolan, I.M.; Siregar, J.E.; Antonjaya, U. Real-Time Polymerase Chain Reaction: Current Techniques, Applications, and Role in COVID-19 Diagnosis. Genes 2022, 13, 2387. [Google Scholar] [CrossRef]
- ECDC. Options for the Use of Rapid Antigen Detection Tests for COVID-19 in the EU/EEA—First Update. Available online: https://www.ecdc.europa.eu/en/publications-data/options-use-rapid-antigen-tests-covid-19-eueea-first-update (accessed on 14 July 2023).
- Papagiannis, D.; Kotsiou, O.S.; Fradelos, E.C.; Perlepe, G.; Miziou, A.; Siachpazidou, D.S.; Gourgoulianis, K.I. Work place and prevalence of COVID-19 in a rural population in Greece. Rural Remote Health 2022, 22, 6751. [Google Scholar] [CrossRef] [PubMed]
- Kotsiou, O.S.; Papagiannis, D.; Fradelos, E.C.; Perlepe, G.; Miziou, A.; Siachpazidou, D.S.; Gourgoulianis, K.I. Understanding COVID-19 Epidemiology and Implications for Control: The Experience from a Greek Semi-Closed Community. J. Clin. Med. 2021, 10, 2765. [Google Scholar] [CrossRef] [PubMed]
- Zachari, S.; Papagiannis, D.; Kotsiou, O.; Malli, F.; Fradelos, E.C.; Gourgoulianis, K.I. Factors of Compliance of Dental Patients in Primary Health Care Services during the Pandemic. Vaccines 2023, 11, 844. [Google Scholar] [CrossRef] [PubMed]
- Papagiannis, D.; Laios, T.; Tryposkiadis, K.; Kouriotis, K.; Roussis, X.; Basdekis, G.; Boudouris, P.; Cholevas, C.; Karakitsios, S.; Kakavas, P.; et al. COVID-19 Infection among Elite Football Players: A Nationwide Prospective Cohort Study. Vaccines 2022, 10, 634. [Google Scholar] [CrossRef]
- WHO. The Seventy-Sixth World Health Assembly is Being Held in Geneva, Switzerland, on 21–30 May 2023. Available online: https://www.who.int/about/governance/world-health-assembly/seventy-sixth-world-health-assembly (accessed on 14 July 2023).
- Paltiel, A.D.; Zheng, A.; Sax, P.E. Clinical and Economic Effects of Widespread Rapid Testing to Decrease SARS-CoV-2 Transmission. Ann. Intern Med. 2021, 174, 803–810. [Google Scholar] [CrossRef]
- Tsolia, M.N.; Kafetzis, D.; Danelatou, K.; Astral, H.; Kallergi, K.; Spyridis, P.; Karpathios, T.E. Epidemiology of respiratory syncytial virus bronchiolitis in hospitalized infants in Greece. Eur. J. Epidemiol. 2003, 18, 55–61. [Google Scholar] [CrossRef]
- Kouni, S.; Karakitsos, P.; Chranioti, A.; Theodoridou, M.; Chrousos, G.; Michos, A. Evaluation of viral co-infections in hospitalized and non-hospitalized children with respiratory infections using microarrays. Clin. Microbiol. Infect. 2013, 19, 772–777. [Google Scholar] [CrossRef]
- Tsergouli, K.; Pappa, S.; Haidopoulou, K.; Gogou, M.; Giannopoulos, A.; Papa, A. Respiratory Syncytial Virus in Greece, 2016–2018. Intervirology 2019, 62, 210–215. [Google Scholar] [CrossRef]
- Tsagarakis, N.J.; Sideri, A.; Makridis, P.; Triantafyllou, A.; Stamoulakatou, A.; Papadogeorgaki, E. Age-related prevalence of common upper respiratory pathogens, based on the application of the Film Array Respiratory panel in a tertiary hospital in Greece. Medicine 2018, 97, e10903. [Google Scholar] [CrossRef]
- Papachristou, E.; Rokka, C.; Sotiriadou, T.; Maneka, L.; Vassilakis, A.; Sapounas, S. Low circulation of respiratory syncytial and influenza viruses during autumn-winter 2021 in the industrial workplace and long-term healthcare facilities in Athens, Greece. Front. Med. 2023, 9, 1025147. [Google Scholar] [CrossRef]
- Sirimi, N.; Miligkos, M.; Koutouzi, F.; Petridou, E.; Siahanidou, T.; Michos, A. Respiratory syncytial virus activity and climate parameters during a 12-year period. J. Med. Virol. 2016, 88, 931–937. [Google Scholar] [CrossRef] [PubMed]
- Almasri, M.; Papa, A.; Souliou, E.; Haidopoulou, K.; Eboriadou, M. Respiratory syncytial virus infection in hospitalized children older than 2 years with community-acquired pneumonia. Hippokratia 2013, 17, 146–149. [Google Scholar] [PubMed]
- Hall, C.B. The burden of respiratory syncytial virus infection in young children. N. Engl. J. Med. 2009, 360, 588–598. [Google Scholar] [CrossRef]
- Nair, H. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: A systematic review and meta-analysis. Lancet 2010, 375, 1545–1555. [Google Scholar] [CrossRef] [PubMed]
- WHO. Principles and Considerations for Adding a Vaccine to a National Immunization Program: From Decision to Implementation and Monitoring. Available online: https://www.who.int/publications/i/item/9789241506892 (accessed on 15 July 2023).
- Pogka, V.; Kossivakis, A.; Kalliaropoulos, A.; Moutousi, A.; Sgouras, D.; Panagiotopoulos, T.; Chrousos, G.P.; Theodoridou, M.; Syriopoulou, V.P.; Mentis, A.F. Respiratory viruses involved in influenza-like illness in a Greek pediatric population during the winter period of the years 2005–2008. J. Med. Virol. 2011, 83, 1841–1848. [Google Scholar] [CrossRef] [PubMed]
- WHO. Joint Statement—Influenza Season Epidemic Kicks Off Early in Europe as Concerns over RSV Rise and COVID-19 Is Still a Threat. Available online: https://www.who.int/europe/news/item/01-12-2022-joint-statement---influenza-season-epidemic-kicks-off-early-in-europe-as-concerns-over-rsv-rise-and-covid-19-is-still-a-threat (accessed on 16 July 2023).
- Winter Modelling 2022 to 2023 Update—Gov. Wales. Available online: https://www.gov.wales/sites/default/files/publications/2023-01/science-evidence-advice-winter-modelling-update-december-2022.pdf (accessed on 16 July 2023).
- Curatola, A.; Ferretti, S.; Graglia, B.; Capossela, L.; Menchinelli, G.; Fiori, B.; Chiaretti, A.; Sanguinetti, M.; Gatto, A. COVID-19 increased in Italian children in the autumn and winter 2021-2022 period when Omicron was the dominant variant. Acta Paediatr. 2023, 112, 290–295. [Google Scholar] [CrossRef] [PubMed]
Rapid Test | Real Time—Gold Standard Method | ||
---|---|---|---|
Positive (+) | Negative (−) | Total | |
Positive (+) | a | b | a + b |
Negative (−) | c | d | c + d |
Total | a + c | b + d | a + b + c + d |
Rapid Test Flu A_B | Real-Time PCR Influenza A | ||
---|---|---|---|
Positive | Negative | Total | |
Positive | 103 | 7 | 110 |
Negative | 10 | 664 | 674 |
Total | 113 | 671 | 784 |
Rapid Test Flu A_B | Real-Time PCRInfluenza B | ||
Positive | Negative | Total | |
Positive | 22 | 5 | 27 |
Negative | 2 | 755 | 757 |
Total | 24 | 760 | 784 |
Rapid Test FLU A | Mean Value | 95% Confidence Interval |
---|---|---|
Sensitivity | 91.15% | 84.33–95.67% |
Specificity | 98.96% | 97.86–99.58% |
PPV | 93.64% | 87.54–96.86% |
NPV | 98.52% | 97.35–99.17% |
Rapid Test FLU B | Mean Value | 95% Confidence Interval |
Sensitivity | 91.67% | 73.00–98.97% |
Specificity | 99.34% | 98.47–99.79% |
PPV | 81.48% | 64.56–91.40% |
NPV | 99.74% | 99.01–99.93% |
Rapid ADE Test | Real-Time PCR | ||
---|---|---|---|
Positive | Negative | Total | |
Positive | 49 | 5 | 54 |
Negative | 4 | 726 | 730 |
Total | 53 | 731 | 784 |
Rapid ADE Test | Mean Value | 95% Confidence Interval | |
Sensitivity | 92.45% | 81.79–97.91% | |
Specificity | 99.32% | 98.41–99.78% | |
PPV | 90.74% | 80.30–95.93% | |
NPV | 99.45% | 98.61–99.79% |
Rapid RSV Test | Real-Time PCR | ||
---|---|---|---|
Positive | Negative | Total | |
Positive | 25 | 4 | 29 |
Negative | 2 | 753 | 755 |
Total | 27 | 757 | 784 |
Rapid RSV Test | Mean Value | 95% Confidence Interval | |
Sensitivity | 92.59% | 75.71–99.09% | |
Specificity | 99.47% | 98.65–99.86% | |
PPV | 86.21% | 70.04–94.35% | |
NPV | 99.74% | 99.00–99.93% |
Rapid SARS-CoV-2 Test | Real-Time PCR | ||
---|---|---|---|
Positive | Negative | Total | |
Positive | 16 | 2 | 18 |
Negative | 0 | 766 | 766 |
Total | 16 | 768 | 784 |
Rapid SARS-CoV-2Test | Mean Value | 95% Confidence Interval | |
Sensitivity | 100.00% | 79.41–100.00% | |
Specificity | 99.74% | 99.06–99.97% | |
PPV | 88.89% | 66.71–96.96% | |
NPV | 98.52% | 97.35–99.17% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papagiannis, D.; Perlepe, G.; Tendolouri, T.; Karakitsiou, P.; Damagka, G.; Kalaitzi, A.; Alevra, S.; Malli, F.; Gourgoulianis, K.I. Proportion of Respiratory Syncytial Virus, SARS-CoV-2, Influenza A/B, and Adenovirus Cases via Rapid Tests in the Community during Winter 2023—A Cross Sectional Study. Diseases 2023, 11, 122. https://doi.org/10.3390/diseases11030122
Papagiannis D, Perlepe G, Tendolouri T, Karakitsiou P, Damagka G, Kalaitzi A, Alevra S, Malli F, Gourgoulianis KI. Proportion of Respiratory Syncytial Virus, SARS-CoV-2, Influenza A/B, and Adenovirus Cases via Rapid Tests in the Community during Winter 2023—A Cross Sectional Study. Diseases. 2023; 11(3):122. https://doi.org/10.3390/diseases11030122
Chicago/Turabian StylePapagiannis, Dimitrios, Garifallia Perlepe, Theodora Tendolouri, Polyxeni Karakitsiou, Georgia Damagka, Anna Kalaitzi, Sofia Alevra, Foteini Malli, and Konstantinos I. Gourgoulianis. 2023. "Proportion of Respiratory Syncytial Virus, SARS-CoV-2, Influenza A/B, and Adenovirus Cases via Rapid Tests in the Community during Winter 2023—A Cross Sectional Study" Diseases 11, no. 3: 122. https://doi.org/10.3390/diseases11030122
APA StylePapagiannis, D., Perlepe, G., Tendolouri, T., Karakitsiou, P., Damagka, G., Kalaitzi, A., Alevra, S., Malli, F., & Gourgoulianis, K. I. (2023). Proportion of Respiratory Syncytial Virus, SARS-CoV-2, Influenza A/B, and Adenovirus Cases via Rapid Tests in the Community during Winter 2023—A Cross Sectional Study. Diseases, 11(3), 122. https://doi.org/10.3390/diseases11030122