A Portable Fluorescent Lateral Flow Immunoassay Platform for Rapid Detection of FluA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Principle of the LFIA Detection Platform
2.2. Optical Pick-Up Unit (OPU)
2.3. Construction of the Platform
2.3.1. Fluorescence Excitation and Detection Module
2.3.2. Casing Construction
2.3.3. Electronic Module
2.3.4. Detection Procedure
2.4. Preparation of the QDFM-mAb Complex
2.5. Assembly of the Standard FluA ICTS
2.6. Reagents and Instruments
2.7. Data Acquisition
3. Results
3.1. Performance Testing
3.2. Specificity Testing
3.3. Repeatability and Stability Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nguyen, A.V.T.; Dao, T.D.; Trinh, T.T.T.; Choi, D.Y.; Yu, S.T.; Park, H.; Yeo, S.J. Sensitive detection of influenza a virus based on a CdSe/CdS/ZnS quantum dot-linked rapid fluorescent immunochromatographic test. Biosens. Bioelectron. 2020, 155, 112090. [Google Scholar] [CrossRef]
- Li, J.H.; Bai, Y.; Li, F.; Zhang, Y.; Xie, Q.Y.; Zhang, L.; Hua, L.Z.; Xiong, Q.Y.; Shan, Y.K.; Bu, Z.G.; et al. Rapid and ultra-sensitive detection of African swine fever virus antibody on site using QDM based-ASFV immunosensor (QAIS). Anal. Chim. Acta 2022, 1189, 339187. [Google Scholar] [CrossRef]
- Wang, K.; Qin, W.J.; Hou, Y.F.; Xiao, K.; Yan, W.Q. The application of lateral flow immunoassay in point of care testing: A review. Nano Biomed. Eng. 2016, 8, 172–183. [Google Scholar] [CrossRef]
- Jayamohan, H.; Lambert, C.J.; Sant, H.J.; Jafek, A.; Patel, D.; Feng, H.D.; Beeman, M.; Mahmood, T.; Nze, U.; Gale, B.K. SARS-CoV-2 pandemic: A review of molecular diagnostic tools including sample collection and commercial response with associated advantages and limitations. Anal. Bioanal. Chem. 2021, 413, 49–71. [Google Scholar] [CrossRef]
- Afzal, A. Molecular diagnostic technologies for COVID-19: Limitations and challenges. J. Adv. Res. 2020, 26, 149–159. [Google Scholar] [CrossRef]
- Berlanda, S.F.; Breitfeld, M.; Dietsche, C.L.; Dittrich, P.S. Recent advances in microfluidic technology for bioanalysis and diagnostics. Anal. Chem. 2021, 93, 311–331. [Google Scholar] [CrossRef]
- Zhang, N.R.; Wang, L.L.; Deng, X.Q.; Liang, R.Y.; Su, M.; He, C.; Hu, L.F.; Su, Y.D.; Ren, J.; Yu, F.; et al. Recent advances in the detection of respiratory virus infection in humans. J. Med. Virol. 2020, 92, 408–417. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Song, S.R.; Park, S.K.; Joo, C.M. Recent advances in high-sensitivity detection methods for paper-based lateral-flow assay. Biosens. Bioelectron. 2020, 152, 112015. [Google Scholar] [CrossRef]
- Rong, Z.; Xiao, R.; Peng, Y.J.; Zhang, A.Y.; Wei, H.J.; Ma, Q.L.; Wang, D.F.; Wang, Q.; Bai, Z.K.; Wang, F.; et al. Integrated fluorescent lateral flow assay platform for point-of-care diagnosis of infectious diseases by using a multichannel test cartridge. Sens. Actuators B-Chem. 2021, 329, 129193. [Google Scholar] [CrossRef]
- Qriouet, Z.; Cherrah, Y.; Sefrioui, H.; Qmichou, Z. Monoclonal antibodies application in lateral flow immunochromatographic assays for drugs of abuse detection. Molecules 2021, 26, 1058. [Google Scholar] [CrossRef]
- Wu, Y.H.; Sun, J.Y.; Huang, X.L.; Lai, W.H.; Xiong, Y.H. Ensuring food safety using fluorescent nanoparticles-based immunochromatographic test strips. Trends Food Sci. Technol. 2021, 118, 658–678. [Google Scholar] [CrossRef]
- Zhang, Q.; Fang, L.; Jia, B.Y.; Long, N.; Shi, L.C.; Zhou, L.D.; Zhao, H.P.; Kong, W.J. Optical lateral flow test strip biosensors for pesticides: Recent advances and future trends. TrAC Trend Anal. Chem. 2021, 144, 116427. [Google Scholar] [CrossRef]
- Li, X.; Li, W.B.; Yang, Q.H.; Gong, X.Q.; Guo, W.S.; Dong, C.H.; Liu, J.Q.; Xuan, L.X.; Chang, J. Rapid and quantitative detection of prostate specific antigen with a quantum dot nanobeads-based immunochromatography test strip. ACS Appl. Mater. Interfaces 2014, 6, 6406–6414. [Google Scholar] [CrossRef]
- Yang, Z.J.; Xue, Z.W.; Zheng, K.J.; Zhang, Y.L.; Sui, G.R.; Yang, H.M.; Zhuang, S.L.; Zheng, L.L.; Zhang, D.W. A Novel Strategy for Rapid Fluorescence Detection of FluB and SARS-CoV-2. Molecules 2023, 28, 2104. [Google Scholar] [CrossRef]
- Hou, Y.F.; Wang, K.; Xiao, K.; Qin, W.J.; Lu, W.T.; Tao, W.; Cui, D.X. Smartphone-based dual-modality imaging system for quantitative detection of color or fluorescent lateral flow immunochromatographic strips. Nanoscale Res. Lett. 2017, 12, 291. [Google Scholar] [CrossRef]
- Zheng, Q.; Wu, H.H.; Jiang, H.Y.; Yang, J.J.; Gao, Y.M. Development of a smartphone-based fluorescent immunochromatographic assay strip reader. Sensors 2020, 20, 4521. [Google Scholar] [CrossRef]
- Rong, Z.; Wang, Q.; Sun, N.X.; Jia, X.F.; Wang, K.L.; Xiao, R.; Wang, S.Q. Smartphone-based fluorescent lateral flow immunoassay platform for highly sensitive point-of-care detection of Zika virus nonstructural protein 1. Anal. Chim. Acta 2019, 1055, 140–147. [Google Scholar] [CrossRef]
- Wang, Y.H.; Deng, C.; Qian, S.H.; Li, H.; Fu, P.; Zhou, H.L.; Zheng, J.P. An ultrasensitive lateral flow immunoassay platform for foodborne biotoxins and pathogenic bacteria based on carbon-dots embedded mesoporous silicon nanoparticles fluorescent reporter probes. Food Chem. 2023, 399, 133970. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, B.; Chen, E.J.; Yu, X.P.; Sun, C.X.; Zhang, M.Z. Functional up-conversion nanoparticle-based immunochromatography assay for simultaneous and sensitive detection of residues of four tetracycline antibiotics in milk. Front. Chem. 2020, 8, 759. [Google Scholar] [CrossRef]
- Sun, J.D.; Wang, L.Z.; Shao, J.D.; Yang, D.D.; Fu, X.R.; Sun, X.L. One-step time-resolved fluorescence microsphere immunochromatographic test strip for quantitative and simultaneous detection of DON and ZEN. Anal. Bioanal. Chem. 2021, 413, 6489–6502. [Google Scholar] [CrossRef]
- Yang, J.C.; Wang, K.; Xu, H.; Yan, W.Q.; Jin, Q.H.; Cui, D.X. Detection platforms for point-of-care testing based on colorimetric, luminescent and magnetic assays: A review. Talanta 2019, 202, 96–110. [Google Scholar] [CrossRef]
- Mikheikin, A.; Olsen, A.; Leslie, K.; Russell, P.F.; Yacoot, A.; Picco, L.; Payton, O.; Toor, A.; Chesney, A.; Gimzewski, J.K.; et al. DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle. Nat. Commun. 2017, 8, 1665. [Google Scholar] [CrossRef]
- Tsai, R.Y.; Chen, J.P.; Lee, Y.C.; Huang, C.C.; Huang, T.T.; Chiang, H.C.; Cheng, C.M.; Lo, F.H.; Chang, S.L.; Weng, K.Y.; et al. Position-addressable digital laser scanning point fluorescence microscopy with a Blu-ray disk pickup head. Biomed. Opt. Express 2014, 5, 427–438. [Google Scholar] [CrossRef]
- Ramachandraiah, H.; Amasia, M.; Cole, J.; Sheard, P.; Pickhaver, S.; Walker, C.; Wirta, V.; Lexow, P.; Lione, R.; Russom, A. Lab-on-DVD: Standard DVD drives as a novel laser scanning microscope for image based point of care diagnostics. Lab Chip 2013, 13, 1578–1585. [Google Scholar] [CrossRef]
- Rothenbach, C.A.; Gupta, M.C. High-resolution, low-cost laser lithography using a Blu-ray optical head assembly. Opt. Laser Eng. 2012, 50, 900–904. [Google Scholar] [CrossRef]
- Hautefeuille, M.; Cabriales, L.; Pimentel, D.R.; Velázquez, V.; Hernández, C.J.; Oropeza, R.L.; Rivera, M.; Carreon, C.M.P.; Grether, M.; López, M.E. New perspectives for direct PDMS microfabrication using a CD-DVD laser. Lab Chip 2013, 13, 4848–4854. [Google Scholar] [CrossRef]
- Cruz, R.A.; Sánchez, O.R.; Zamarrón, H.D.; Hautefeuille, M.; Cabriales, L.; Jiménez, D.E.; Díaz, B.B.; López, A.J.; Pérez, C.D.; Cano, J.M. Progress on the Use of Commercial Digital Optical Disc Units for Low-Power Laser Micromachining in Biomedical Applications. Micromachines 2018, 9, 187. [Google Scholar] [CrossRef]
- Kostner, S.; Vellekoop, M.J. Cell analysis in a microfluidic cytometer applying a DVD pickup head. Sens. Actuators B-Chem. 2008, 132, 512–517. [Google Scholar] [CrossRef]
- Kasukurti, A.; Eggleton, C.D.; Desai, S.A.; Disharoon, D.I.; Marr, D.W.M. A simple microfluidic dispenser for single-microparticle and cell samples. Lab Chip 2014, 14, 4673–4679. [Google Scholar] [CrossRef]
- Mezger, A.; Fock, J.; Antunes, P.; Osterberg, F.W.; Boisen, A.; Nilsson, M.; Hansen, M.F.; Ahlford, A.; Donolato, M. Scalable DNA Based Magnetic Nanoparticle Agglutination Assay for Bacterial Detection in Patient Samples. ACS Nano 2015, 9, 7374–7382. [Google Scholar] [CrossRef]
- Kabe, Y.; Suematsu, M.; Sakamoto, S.; Hirai, M.; Koike, I.; Hishiki, T.; Matsuda, A.; Hasegawa, Y.; Tsujita, K.; Ono, M.; et al. Development of a highly sensitive device for counting the number of disease-specific exosomes in human sera. Clin. Chem. 2018, 64, 1463–1473. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Du, J.; Kanwal, S.; Yang, Z.J.; Zheng, L.L.; Wang, J.; Wen, J.; Zhang, D.W. A low-cost and portable fluorometer based on an optical pick-up unit for chlorophyll-a detection. Talanta 2024, 269, 125447. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Peng, T.; Jiao, X.; Zhao, Y.; Xie, J.; Jiang, Y.; Meng, B.; Fang, X.; Yu, X.; Dai, X. Latex Microsphere-Based Bicolor Immunochromatography for Qualitative Detection of Neutralizing Antibody against SARS-CoV-2. Biosensor 2022, 12, 103. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Huang, X.; Kanwal, S.; Wang, J.; Wen, J.; Zhang, D. A Portable Fluorescent Lateral Flow Immunoassay Platform for Rapid Detection of FluA. Biosensors 2024, 14, 263. https://doi.org/10.3390/bios14060263
Chen X, Huang X, Kanwal S, Wang J, Wen J, Zhang D. A Portable Fluorescent Lateral Flow Immunoassay Platform for Rapid Detection of FluA. Biosensors. 2024; 14(6):263. https://doi.org/10.3390/bios14060263
Chicago/Turabian StyleChen, Xu, Xuhui Huang, Saima Kanwal, Jian Wang, Jing Wen, and Dawei Zhang. 2024. "A Portable Fluorescent Lateral Flow Immunoassay Platform for Rapid Detection of FluA" Biosensors 14, no. 6: 263. https://doi.org/10.3390/bios14060263
APA StyleChen, X., Huang, X., Kanwal, S., Wang, J., Wen, J., & Zhang, D. (2024). A Portable Fluorescent Lateral Flow Immunoassay Platform for Rapid Detection of FluA. Biosensors, 14(6), 263. https://doi.org/10.3390/bios14060263