Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (137)

Search Parameters:
Keywords = Fifth Generation (5G) cellular

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5781 KiB  
Article
Performance Evaluation of Uplink Cell-Free Massive MIMO Network Under Weichselberger Rician Fading Channel
by Birhanu Dessie, Javed Shaikh, Georgi Iliev, Maria Nenova, Umar Syed and K. Kiran Kumar
Mathematics 2025, 13(14), 2283; https://doi.org/10.3390/math13142283 - 16 Jul 2025
Viewed by 335
Abstract
Cell-free massive multiple-input multiple-output (CF M-MIMO) is one of the most promising technologies for future wireless communication such as 5G and beyond fifth-generation (B5G) networks. It is a type of network technology that uses a massive number of distributed antennas to serve a [...] Read more.
Cell-free massive multiple-input multiple-output (CF M-MIMO) is one of the most promising technologies for future wireless communication such as 5G and beyond fifth-generation (B5G) networks. It is a type of network technology that uses a massive number of distributed antennas to serve a large number of users at the same time. It has the ability to provide high spectral efficiency (SE) as well as improved coverage and interference management, compared to traditional cellular networks. However, estimating the channel with high-performance, low-cost computational methods is still a problem. Different algorithms have been developed to address these challenges in channel estimation. One of the high-performance channel estimators is a phase-aware minimum mean square error (MMSE) estimator. This channel estimator has high computational complexity. To address the shortcomings of the existing estimator, this paper proposed an efficient phase-aware element-wise minimum mean square error (PA-EW-MMSE) channel estimator with QR decomposition and a precoding matrix at the user side. The closed form uplink (UL) SE with the phase MMSE and proposed estimators are evaluated using MMSE combining. The energy efficiency and area throughput are also calculated from the SE. The simulation results show that the proposed estimator achieved the best SE, EE, and area throughput performance with a substantial reduction in the complexity of the computation. Full article
Show Figures

Figure 1

21 pages, 1334 KiB  
Review
A Survey of 5G Core Network User Identity Protections, Concerns, and Proposed Enhancements for Future 6G Technologies
by Paul Scalise, Michael Hempel and Hamid Sharif
Future Internet 2025, 17(4), 142; https://doi.org/10.3390/fi17040142 - 25 Mar 2025
Viewed by 1173
Abstract
Fifth-Generation (5G) cellular networks extensively utilize subscriber identifiers throughout the protocol stack, thereby linking subscribers to their activities on the network. With the inherent use of linked identifiers comes the potential capability to track subscribers’ location and behavior, which poses critical challenges for [...] Read more.
Fifth-Generation (5G) cellular networks extensively utilize subscriber identifiers throughout the protocol stack, thereby linking subscribers to their activities on the network. With the inherent use of linked identifiers comes the potential capability to track subscribers’ location and behavior, which poses critical challenges for user identity protections and privacy in sensitive applications like military or healthcare operating over public 5G infrastructure. The reliance on such personal identifiers threatens a user’s right to privacy and brings to light the importance of proper mechanisms to mitigate these risks for current and future cellular network technologies. In this paper, we explore the 5G specifications to understand the most important list of identifiers and their use across Virtual Network Functions (VNF), and points of exposure within the Core Network (CN). We also examine the existing literature regarding identity protections and efforts to mitigate privacy concerns targeted in the CN. Findings include the need for a trust relationship between users and their network providers to protect and safeguard their identity. While 5G technology has greater user identity protections compared to previous cellular generations, our analysis shows that several areas of concern remain, particularly in the exchange of subscriber metadata. This work also finds that new technologies adopted in 5G networks add further complexity to maintaining a strict posture for safeguarding user identity and privacy protections. This paper also reviews the scientific community’s proposed enhancements for future 6G networks’ user identity and privacy protections, with a focus on emerging Artificial Intelligence (AI) and Machine Learning (ML) applications. The ethical implications of private or anonymous communications are also carefully weighed and examined to understand the multifaceted nature of this topic. Our work is concluded by proposing important further research to reduce the prevalence and reliance on personal identifiers such as the SUPI (Subscription Permanent Identifier) within 5G Core operations to help better protect user identity. We also propose replacing the widespread use of the SUPI between VNFs with ephemeral identifiers, building upon efforts by 3GPP aiming for 5G to protect the SUPI from eavesdroppers. Full article
(This article belongs to the Special Issue Moving Towards 6G Wireless Technologies—2nd Edition)
Show Figures

Figure 1

32 pages, 2442 KiB  
Article
Federated Learning System for Dynamic Radio/MEC Resource Allocation and Slicing Control in Open Radio Access Network
by Mario Martínez-Morfa, Carlos Ruiz de Mendoza, Cristina Cervelló-Pastor and Sebastia Sallent-Ribes
Future Internet 2025, 17(3), 106; https://doi.org/10.3390/fi17030106 - 26 Feb 2025
Viewed by 1343
Abstract
The evolution of cellular networks from fifth-generation (5G) architectures to beyond 5G (B5G) and sixth-generation (6G) systems necessitates innovative solutions to overcome the limitations of traditional Radio Access Network (RAN) infrastructures. Existing monolithic and proprietary RAN components restrict adaptability, interoperability, and optimal resource [...] Read more.
The evolution of cellular networks from fifth-generation (5G) architectures to beyond 5G (B5G) and sixth-generation (6G) systems necessitates innovative solutions to overcome the limitations of traditional Radio Access Network (RAN) infrastructures. Existing monolithic and proprietary RAN components restrict adaptability, interoperability, and optimal resource utilization, posing challenges in meeting the stringent requirements of next-generation applications. The Open Radio Access Network (O-RAN) and Multi-Access Edge Computing (MEC) have emerged as transformative paradigms, enabling disaggregation, virtualization, and real-time adaptability—which are key to achieving ultra-low latency, enhanced bandwidth efficiency, and intelligent resource management in future cellular systems. This paper presents a Federated Deep Reinforcement Learning (FDRL) framework for dynamic radio and edge computing resource allocation and slicing management in O-RAN environments. An Integer Linear Programming (ILP) model has also been developed, resulting in the proposed FDRL solution drastically reducing the system response time. On the other hand, unlike centralized Reinforcement Learning (RL) approaches, the proposed FDRL solution leverages Federated Learning (FL) to optimize performance while preserving data privacy and reducing communication overhead. Comparative evaluations against centralized models demonstrate that the federated approach improves learning efficiency and reduces bandwidth consumption. The system has been rigorously tested across multiple scenarios, including multi-client O-RAN environments and loss-of-synchronization conditions, confirming its resilience in distributed deployments. Additionally, a case study simulating realistic traffic profiles validates the proposed framework’s ability to dynamically manage radio and computational resources, ensuring efficient and adaptive O-RAN slicing for diverse and high-mobility scenarios. Full article
(This article belongs to the Special Issue AI and Security in 5G Cooperative Cognitive Radio Networks)
Show Figures

Figure 1

17 pages, 991 KiB  
Article
Collision Probabilities Between User Equipment Using 5G NR Sidelink Time-Domain-Based Resource Allocation in C-V2X
by Mehnaz Tabassum and Aurenice Oliveira
Electronics 2025, 14(4), 751; https://doi.org/10.3390/electronics14040751 - 14 Feb 2025
Viewed by 856
Abstract
Efficient resource allocation is a critical factor in ensuring reliable and low-latency communication in the fifth-generation New Radio (5G NR) sidelink-based Cellular Vehicle to Everything (C-V2X) networks. One of the critical challenges in adopting C-V2X systems is the potential for packet collisions between [...] Read more.
Efficient resource allocation is a critical factor in ensuring reliable and low-latency communication in the fifth-generation New Radio (5G NR) sidelink-based Cellular Vehicle to Everything (C-V2X) networks. One of the critical challenges in adopting C-V2X systems is the potential for packet collisions between User Equipment (UE) when they share resources in the sidelink channel. For reliable and low-latency communication, especially in safety-critical applications, efficient resource allocation is essential. This paper explores collision-related issues that may arise in the 5G NR sidelink and the probability of collisions on resource blocks. To address these challenges, we propose an experimental time-domain resource allocation strategy leveraging dynamic reselection intervals and adaptive reservation mechanisms. Unlike existing approaches, which primarily rely on static or semi-persistent scheduling, our strategy optimizes resource allocation based on real-time variations in generation time, speed and distance between UEs. The proposed approach significantly reduces collision probabilities, enhances communication reliability and ensures efficient resource utilization, even in high-density vehicular networks. Addressing packet collisions in resource allocation becomes crucial for the viability of vehicular communication systems. The goal of this paper is to analyze the dynamics and causes of packet collisions in C-V2X scenarios using 5G NR sidelink technology and to evaluate how our time-domain optimization techniques can enhance system performance in rapidly evolving vehicular communication networks. Full article
(This article belongs to the Special Issue Feature Papers in Electrical and Autonomous Vehicles)
Show Figures

Figure 1

25 pages, 6196 KiB  
Article
A Semi-Distributed Scheme for Mode Selection and Resource Allocation in Device-to-Device-Enabled Cellular Networks Using Matching Game and Reinforcement Learning
by Ibrahim Sami Attar, Nor Muzlifah Mahyuddin and M. H. D. Nour Hindia
Telecom 2025, 6(1), 12; https://doi.org/10.3390/telecom6010012 - 13 Feb 2025
Cited by 1 | Viewed by 810
Abstract
Device-to-Device (D2D) communication is a promising technological innovation that is significantly considered to have a substantial impact on the next generation of wireless communication systems. Modern wireless networks of the fifth generation (5G) and beyond (B5G) handle an increasing number of connected devices [...] Read more.
Device-to-Device (D2D) communication is a promising technological innovation that is significantly considered to have a substantial impact on the next generation of wireless communication systems. Modern wireless networks of the fifth generation (5G) and beyond (B5G) handle an increasing number of connected devices that require greater data rates while utilizing relatively low power consumption. In this study, we present joint mode selection, channel assignment, and power allocation issues in a semi-distributed D2D scheme (SD-scheme) that underlays cellular networks. The objective of this study is to enhance the data rate, Spectrum Efficiency (SE), and Energy Efficiency (EE) of the network while maintaining the performance of cellular users (CUs) by creating a threshold of data rate for each CU in the network. Practically, we propose a centralized approach to address the mode selection and channel assignment problems, employing greedy and matching algorithms, respectively. Moreover, we employed a State-Action-Reward-State-Action (SARSA)-based reinforcement learning (RL) algorithm for a distributed power allocation scheme. Furthermore, we suggest that the sub-channel of the CU is shared among several D2D pairs, and the optimum power is determined for each D2D pair sharing the same sub-channel, taking into consideration all types of interferences in the network. The simulation findings illustrate the enhancement in the performance of the proposed scheme in comparison to the benchmark schemes in terms of data rate, SE, and EE. Full article
(This article belongs to the Special Issue Advances in Wireless Communication: Applications and Developments)
Show Figures

Figure 1

22 pages, 8673 KiB  
Article
A Dual-Polarized and Broadband Multiple-Antenna System for 5G Cellular Communications
by Haleh Jahanbakhsh Basherlou, Naser Ojaroudi Parchin and Chan Hwang See
Sensors 2025, 25(4), 1032; https://doi.org/10.3390/s25041032 - 9 Feb 2025
Viewed by 1405
Abstract
This study presents a new multiple-input multiple-output (MIMO) antenna array system designed for sub-6 GHz fifth generation (5G) cellular applications. The design features eight compact trapezoid slot elements with L-shaped CPW (Coplanar Waveguide) feedlines, providing broad bandwidth and radiation/polarization diversity. The antenna elements [...] Read more.
This study presents a new multiple-input multiple-output (MIMO) antenna array system designed for sub-6 GHz fifth generation (5G) cellular applications. The design features eight compact trapezoid slot elements with L-shaped CPW (Coplanar Waveguide) feedlines, providing broad bandwidth and radiation/polarization diversity. The antenna elements are compact in size and function within the frequency spectrum spanning from 3.2 to 6 GHz. They have been strategically positioned at the peripheral corners of the smartphone mainboard, resulting in a compact overall footprint of 75 mm × 150 mm FR4. Within this design framework, there are four pairs of antennas, each aligned to offer both horizontal and vertical polarization options. In addition, despite the absence of decoupling structures, the adjacent elements in the array exhibit high isolation. The array demonstrates a good bandwidth of 2800 MHz, essential for 5G applications requiring high data rates and reliable connectivity, high radiation efficiency, and dual-polarized/full-coverage radiation. Furthermore, it achieves low ECC (Envelope Correlation Coefficient) and TARC (Total Active Reflection Coefficient) values, measuring better than 0.005 and −20 dB, respectively. With its compact and planar configuration, quite broad bandwidth, acceptable SAR (Specific Absorption Rate) and excellent radiation characteristics, this suggested MIMO antenna array design shows good promise for integration into 5G hand-portable devices. Furthermore, a compact phased-array millimeter-wave (mmWave) antenna with broad bandwidth is introduced as a proof of concept for higher frequency antenna integration. This design underscores the potential to support future 5G and 6G applications, enabling advanced connectivity in smartphones. Full article
(This article belongs to the Special Issue Antenna Design and Optimization for 5G, 6G, and IoT)
Show Figures

Figure 1

32 pages, 4386 KiB  
Article
Multi-Source, Fault-Tolerant, and Robust Navigation Method for Tightly Coupled GNSS/5G/IMU System
by Zhongliang Deng, Zhichao Zhang, Zhenke Ding and Bingxun Liu
Sensors 2025, 25(3), 965; https://doi.org/10.3390/s25030965 - 5 Feb 2025
Viewed by 1327
Abstract
The global navigation satellite system (GNSS) struggles to deliver the precision and reliability required for positioning, navigation, and timing (PNT) services in environments with severe interference. Fifth-generation (5G) cellular networks, with their low latency, high bandwidth, and large capacity, offer a robust communication [...] Read more.
The global navigation satellite system (GNSS) struggles to deliver the precision and reliability required for positioning, navigation, and timing (PNT) services in environments with severe interference. Fifth-generation (5G) cellular networks, with their low latency, high bandwidth, and large capacity, offer a robust communication infrastructure, enabling 5G base stations (BSs) to extend coverage into regions where traditional GNSSs face significant challenges. However, frequent multi-sensor faults, including missing alarm thresholds, uncontrolled error accumulation, and delayed warnings, hinder the adaptability of navigation systems to the dynamic multi-source information of complex scenarios. This study introduces an advanced, tightly coupled GNSS/5G/IMU integration framework designed for distributed PNT systems, providing all-source fault detection with weighted, robust adaptive filtering. A weighted, robust adaptive filter (MCC-WRAF), grounded in the maximum correntropy criterion, was developed to suppress fault propagation, relax Gaussian noise constraints, and improve the efficiency of observational weight distribution in multi-source fusion scenarios. Moreover, we derived the intrinsic relationships of filtering innovations within wireless measurement models and proposed a time-sequential, observation-driven full-source FDE and sensor recovery validation strategy. This approach employs a sliding window which expands innovation vectors temporally based on source encoding, enabling real-time validation of isolated faulty sensors and adaptive adjustment of observational data in integrated navigation solutions. Additionally, a covariance-optimal, inflation-based integrity protection mechanism was introduced, offering rigorous evaluations of distributed PNT service availability. The experimental validation was carried out in a typical outdoor scenario, and the results highlight the proposed method’s ability to mitigate undetected fault impacts, improve detection sensitivity, and significantly reduce alarm response times across step, ramp, and multi-fault mixed scenarios. Additionally, the dynamic positioning accuracy of the fusion navigation system improved to 0.83 m (1σ). Compared with standard Kalman filtering (EKF) and advanced multi-rate Kalman filtering (MRAKF), the proposed algorithm achieved 28.3% and 53.1% improvements in its 1σ error, respectively, significantly enhancing the accuracy and reliability of the multi-source fusion navigation system. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

17 pages, 3907 KiB  
Article
Empirical Performance Evaluation of 5G Millimeter Wave System for Industrial-Use Cases in Real Production Environment
by Jordi Biosca Caro, Junaid Ansari, Bengt-Erik Olsson, Niklas Beckmann, Niels König, Robert H. Schmitt, Falko Popp and Daniel Scheike-Momberg
Electronics 2025, 14(3), 607; https://doi.org/10.3390/electronics14030607 - 4 Feb 2025
Viewed by 1460
Abstract
Wireless communication plays an important role in the digitization of industries. A 5G cellular communication system enables several industrial automation use cases. Fifth-generation deployments in industrial use cases have mainly been carried out in the sub-7 GHz frequency range. In this work, we [...] Read more.
Wireless communication plays an important role in the digitization of industries. A 5G cellular communication system enables several industrial automation use cases. Fifth-generation deployments in industrial use cases have mainly been carried out in the sub-7 GHz frequency range. In this work, we empirically study 5G system performance in the millimeter wavelength (mmW) range for industrial use cases: additive manufacturing processes and precision manufacturing robotics. We carry out an experimental performance evaluation of a commercially available non-public 5G mmW system to assess its latency, reliability and throughput for uplink and downlink data traffic in a real industrial environment. We also investigate the impact of various 5G configurations on 5G performance characteristics with insights from the baseband log information as well as unidirectional latency measurements. Our empirical results indicate that 5G mmW system can achieve low latency with high reliability in both one-way traffic directions. The throughput is observed to be high for line-of-sight (LOS) scenarios, making the use of the 5G mmW system appealing especially for data rate-intensive and time-critical industrial use cases. We also observe that industrial environments with lots of metal and reflective surfaces provide favorable propagation conditions for non-LOS transmissions. Our results indicate that static industrial use cases with low mobility can leverage the performance benefits of 5G mmW systems. Full article
(This article belongs to the Section Industrial Electronics)
Show Figures

Figure 1

8 pages, 3081 KiB  
Proceeding Paper
The Analysis of Service Convergence in an Optical Access Network
by Erick Cifuentes, David Mosquera, Christian Tipantuña, Berenice Arguero and Germán V. Arevalo
Eng. Proc. 2024, 77(1), 27; https://doi.org/10.3390/engproc2024077027 - 18 Nov 2024
Viewed by 556
Abstract
In recent years, the increasing number of internet-connected devices has exceeded the capacity of fourth-generation (4G) cellular networks, leading to the development of fifth-generation (5G) technology, designed to offer higher speeds, greater bandwidth, and lower latency. In this context, this study evaluated Universal [...] Read more.
In recent years, the increasing number of internet-connected devices has exceeded the capacity of fourth-generation (4G) cellular networks, leading to the development of fifth-generation (5G) technology, designed to offer higher speeds, greater bandwidth, and lower latency. In this context, this study evaluated Universal Filtered Multi-Carrier (UFMC) and Generalized Frequency Division Multiplexing (GFDM) techniques, implementing them in a radio-over-fiber (RoF) system and a Next-Generation Radio Access Network (NG-RAN) fronthaul link, and compared the results using communication quality metrics such as bit error rate (BER). Additionally, through signal generation and processing in Matlab, the performance of UFMC and LTE signals was analyzed, confirming that simultaneous transmission over an RoF channel allows for efficient signal separation in the frequency domain, with the UFMC giving power to LTE. Full article
(This article belongs to the Proceedings of The XXXII Conference on Electrical and Electronic Engineering)
Show Figures

Figure 1

22 pages, 3454 KiB  
Article
An Applied Analysis of Securing 5G/6G Core Networks with Post-Quantum Key Encapsulation Methods
by Paul Scalise, Robert Garcia, Matthew Boeding, Michael Hempel and Hamid Sharif
Electronics 2024, 13(21), 4258; https://doi.org/10.3390/electronics13214258 - 30 Oct 2024
Cited by 3 | Viewed by 3474
Abstract
Fifth Generation (5G) cellular networks have been adopted worldwide since the rollout began around 2019. It brought with it many innovations and new services, such as Enhanced Mobile Broadband (eMBB), Ultra Reliable and Low-Latency Communications (URLLC), and Massive Internet of Things (mIoT). Furthermore, [...] Read more.
Fifth Generation (5G) cellular networks have been adopted worldwide since the rollout began around 2019. It brought with it many innovations and new services, such as Enhanced Mobile Broadband (eMBB), Ultra Reliable and Low-Latency Communications (URLLC), and Massive Internet of Things (mIoT). Furthermore, 5G introduced a more scalable approach to network operations using fully software-based Virtualized Network Functions (VNF) in Core Networks (CN) rather than the prior hardware-based approach. However, while this shift towards a fully software-based system design provides numerous significant benefits, such as increased interoperability, scalability, and cost-effectiveness, it also brings with it an increased cybersecurity risk. Security is crucial to maintaining trust between vendors, operators, and consumers. Cyberattacks are rapidly increasing in number and sophistication, and we are seeing a shift towards zero-trust approaches. This means that even communications between VNFs inside a 5G core must be scrutinized and hardened against attacks, especially with the advent of quantum computers. The National Institute of Standards and Technology (NIST), over the past 10 years, has led efforts to standardize post-quantum cryptography (PQC) to protect against quantum attacks. This paper covers a custom implementation of the open-source free5GC CN, to expand its HTTPS capabilities for VNFs by introducing PQC Key Encapsulation Methods (KEM) for Transport Layer Security (TLS) v1.3. This paper provides the details of this integration with a focus on the latency of different PQC KEMs in initial handshakes between VNFs, on packet size, and the implications in a 5G environment. This work also conducts a security comparison between the PQC-equipped free5GC and other open-source 5G CNs. The presented results indicate a negligible increase in UE connection setup duration and a small increase in connection setup data requirements, strongly indicating that PQC KEM’s benefits far outweigh any downsides when integrated into 5G and 6G core services. To the best of our knowledge, this is the first work incorporating PQC into an open-source 5G core. Furthermore, the results from this effort demonstrate that employing PQC ciphers for securing VNF communications results in only a negligible impact on latency and bandwidth usage, thus demonstrating significant benefits to 5G cybersecurity. Full article
Show Figures

Figure 1

13 pages, 9350 KiB  
Article
Research on Mobile Network Parameters Using Unmanned Aerial Vehicles
by Jan Warczek, Jarosław Kozuba, Marek Marcisz, Wiesław Pamuła and Krzysztof Dyl
Sensors 2024, 24(17), 5526; https://doi.org/10.3390/s24175526 - 26 Aug 2024
Viewed by 1000
Abstract
The study of phenomena related to the propagation of electromagnetic waves is a necessity with the development of mobile telephony networks. This paper deals with the problem of the quality of mobile telephony signals. The study uses a BTS scanner, dedicated to scanning [...] Read more.
The study of phenomena related to the propagation of electromagnetic waves is a necessity with the development of mobile telephony networks. This paper deals with the problem of the quality of mobile telephony signals. The study uses a BTS scanner, dedicated to scanning the frequency spectrum and decoding information from base stations. The device is capable of scanning mobile networks from the second, third, fourth, and fifth generation (2G/3G/4G/5G) using a passive sensor. The article presents preliminary results of monitoring cellular network signals using a scanner mounted on an unmanned aircraft. The collected data call for the need to evaluate the signal parameters of the cellular network depending on the altitude of signal reception. This property emerges as very important in the case of areas with a high level of urbanization. Full article
Show Figures

Figure 1

21 pages, 1059 KiB  
Review
A Comprehensive Survey on Machine Learning Methods for Handover Optimization in 5G Networks
by Senthil Kumar Thillaigovindhan, Mardeni Roslee, Sufian Mousa Ibrahim Mitani, Anwar Faizd Osman and Fatimah Zaharah Ali
Electronics 2024, 13(16), 3223; https://doi.org/10.3390/electronics13163223 - 14 Aug 2024
Cited by 8 | Viewed by 4700
Abstract
One of the key features of mobile networks in this age of mobile communication is seamless communication. Handover (HO) is a critical component of next-generation (NG) cellular communication networks, which requires careful management since it poses several risks to quality-of-service (QoS), including a [...] Read more.
One of the key features of mobile networks in this age of mobile communication is seamless communication. Handover (HO) is a critical component of next-generation (NG) cellular communication networks, which requires careful management since it poses several risks to quality-of-service (QoS), including a decrease in average throughput and service disruptions. Due to the dramatic rise in base stations (BSs) and connections per unit area brought about by new fifth-generation (5G) network enablers, such as Internet of things (IoT), network densification, and mm-wave communications, HO management has become more challenging. The degree of difficulty is increased in light of the strict criteria that were recently published in the specifications of 5G networks. In order to address these issues more successfully and efficiently, this study has explored and examined intelligent HO optimization strategies using machine learning models. Furthermore, the significant goal of this review is to present the state of cellular networks as they are now, as well as to talk about mobility and home office administration in 5G alongside the overall features of 5G networks. This work presents an overview of machine learning methods in handover optimization and of the various data availability for evaluations. In the final section, the challenges and future research directions are also detailed. Full article
(This article belongs to the Special Issue 5G and 6G Wireless Systems: Challenges, Insights, and Opportunities)
Show Figures

Figure 1

34 pages, 14611 KiB  
Article
Microservice-Based Vehicular Network for Seamless and Ultra-Reliable Communications of Connected Vehicles
by Mira M. Zarie, Abdelhamied A. Ateya, Mohammed S. Sayed, Mohammed ElAffendi and Mohammad Mahmoud Abdellatif
Future Internet 2024, 16(7), 257; https://doi.org/10.3390/fi16070257 - 19 Jul 2024
Cited by 1 | Viewed by 1811
Abstract
The fifth-generation (5G) cellular infrastructure is expected to bring about the widespread use of connected vehicles. This technological progress marks the beginning of a new era in vehicular networks, which includes a range of different types and services of self-driving cars and the [...] Read more.
The fifth-generation (5G) cellular infrastructure is expected to bring about the widespread use of connected vehicles. This technological progress marks the beginning of a new era in vehicular networks, which includes a range of different types and services of self-driving cars and the smooth sharing of information between vehicles. Connected vehicles have also been announced as a main use case of the sixth-generation (6G) cellular, with ultimate requirements beyond the 5G (B5G) and 6G eras. These networks require full coverage, extremely high reliability and availability, very low latency, and significant system adaptability. The significant specifications set for vehicular networks pose considerable design and development challenges. The goals of establishing a latency of 1 millisecond, effectively handling large amounts of data traffic, and facilitating high-speed mobility are of utmost importance. To address these difficulties and meet the demands of upcoming networks, e.g., 6G, it is necessary to improve the performance of vehicle networks by incorporating innovative technology into existing network structures. This work presents significant enhancements to vehicular networks to fulfill the demanding specifications by utilizing state-of-the-art technologies, including distributed edge computing, e.g., mobile edge computing (MEC) and fog computing, software-defined networking (SDN), and microservice. The work provides a novel vehicular network structure based on micro-services architecture that meets the requirements of 6G networks. The required offloading scheme is introduced, and a handover algorithm is presented to provide seamless communication over the network. Moreover, a migration scheme for migrating data between edge servers was developed. The work was evaluated in terms of latency, availability, and reliability. The results outperformed existing traditional approaches, demonstrating the potential of our approach to meet the demanding requirements of next-generation vehicular networks. Full article
(This article belongs to the Special Issue Moving towards 6G Wireless Technologies)
Show Figures

Figure 1

15 pages, 2972 KiB  
Article
Robust Bluetooth AoA Estimation for Indoor Localization Using Particle Filter Fusion
by Kaiyue Qiu, Ruizhi Chen, Guangyi Guo, Yuan Wu and Wei Li
Appl. Sci. 2024, 14(14), 6208; https://doi.org/10.3390/app14146208 - 17 Jul 2024
Cited by 2 | Viewed by 2063
Abstract
With the growing demand for positioning services, angle-of-arrival (AoA) estimation or direction-finding (DF) has been widely investigated for applications in fifth-generation (5G) technologies. Many existing AoA estimation algorithms only require the measurement of the direction of the incident wave at the transmitter to [...] Read more.
With the growing demand for positioning services, angle-of-arrival (AoA) estimation or direction-finding (DF) has been widely investigated for applications in fifth-generation (5G) technologies. Many existing AoA estimation algorithms only require the measurement of the direction of the incident wave at the transmitter to obtain correct results. However, for most cellular systems, such as Bluetooth indoor positioning systems, due to multipath and non-line-of-sight (NLOS) propagation, indoor positioning accuracy is severely affected. In this paper, a comprehensive algorithm that combines radio measurements from Bluetooth AoA local navigation systems with indoor position estimates is investigated, which is obtained using particle filtering. This algorithm allows us to explore new optimized methods to reduce estimation errors in indoor positioning. First, particle filtering is used to predict the rough position of a moving target. Then, an algorithm with robust beam weighting is used to estimate the AoA of the multipath components. Based on this, a system of pseudo-linear equations for target positioning based on the probabilistic framework of PF and AoA measurement is derived. Theoretical analysis and simulation results show that the algorithm can improve the positioning accuracy by approximately 25.7% on average. Full article
(This article belongs to the Special Issue Future Information & Communication Engineering 2024)
Show Figures

Figure 1

20 pages, 3983 KiB  
Article
Performance Impact of Nested Congestion Control on Transport-Layer Multipath Tunneling
by Marcus Pieska, Andreas Kassler, Anna Brunstrom, Veselin Rakocevic and Markus Amend
Future Internet 2024, 16(7), 233; https://doi.org/10.3390/fi16070233 - 28 Jun 2024
Cited by 1 | Viewed by 1824
Abstract
Multipath wireless access aims to seamlessly aggregate multiple access networks to increase data rates and decrease latency. It is currently being standardized through the ATSSS architectural framework as part of the fifth-generation (5G) cellular networks. However, facilitating efficient multi-access communication in next-generation wireless [...] Read more.
Multipath wireless access aims to seamlessly aggregate multiple access networks to increase data rates and decrease latency. It is currently being standardized through the ATSSS architectural framework as part of the fifth-generation (5G) cellular networks. However, facilitating efficient multi-access communication in next-generation wireless networks poses several challenges due to the complex interplay between congestion control (CC) and packet scheduling. Given that enhanced ATSSS steering functions for traffic splitting advocate the utilization of multi-access tunnels using congestion-controlled multipath network protocols between user equipment and a proxy, addressing the issue of nested CC becomes imperative. In this paper, we evaluate the impact of such nested congestion control loops on throughput over multi-access tunnels using the recently introduced Multipath DCCP (MP-DCCP) tunneling framework. We evaluate different combinations of endpoint and tunnel CC algorithms, including BBR, BBRv2, CUBIC, and NewReno. Using the Cheapest Path First scheduler, we quantify and analyze the impact of the following on the performance of tunnel-based multipath: (1) the location of the multi-access proxy relative to the user; (2) the bottleneck buffer size, and (3) the choice of the congestion control algorithms. Furthermore, our findings demonstrate the superior performance of BBRv2 as a tunnel CC algorithm. Full article
Show Figures

Figure 1

Back to TopTop