A Comprehensive Survey on Machine Learning Methods for Handover Optimization in 5G Networks
Abstract
:1. Introduction
- i.
- The need for additional bandwidth as a result of more sophisticated smartphones with greater processing power and the growth of data-hungry apps, such as augmented reality and online gaming [12].
- ii.
- The rapidly expanding number of cellular connections, mostly as a result of Internet of Things technologies. To address these problems, a number of solutions have already been put forward, and two of the most significant options for increasing network capacity are millimeter-wave (mm-wave) communications and network densification [13].
- i.
- MIMO technology
- ii.
- Improved bandwidth availability.
- Current state of cellular networks
- Mobility and handover management in 5G
- Machine learning methods for handover optimization
- Data availability for evaluations
- Challenges and future research directions.
2. Handover Classifications
2.1. HO Classification Based on Techniques
2.1.1. Connect Before Break (CBB) or Soft HO
2.1.2. Break Before Connect (BBC) or Hard HO
2.2. HO Classification Based on Networks
3. Contributions of Machine Learning Models in HO Management
4. Handover Management in 5G Networks
- i.
- Inter–intra-frequency-based HO management
- ii.
- Inter–intra-radio access technology (RAT)-based HO management.
4.1. Inter–Intra-Frequency-Based HO Management
4.2. Inter–Intra-Radio Access Technology (RAT)-Based HO Management
5. HO Optimization and Challenges with Machine Learning Models
6. HO Optimization and Challenges
6.1. Ultra-Dense Network
6.2. Interoperability
6.3. Ultra-High Mobility
6.4. Fast and Seamless Handover
6.5. Huge Number of Devices
6.6. High Accuracy of Packet Transmission
7. Challenges and Directions for Future Enhancements
7.1. Dataset Availability
7.2. Privacy and Security
7.3. Generalization of the Machine Learning (ML) Model
7.4. Centralized vs. Distributed Deployment
7.5. Frequent Handover
7.6. Load Balancing
8. Conclusions and Future Research Scope
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Letaief, K.B. Mobile Edge Intelligence and Computing for the Internet of Vehicles. arXiv 2019. [Google Scholar] [CrossRef]
- Ericsson. Ericsson Mobility Report; Technical report; Ericsson: Stockholm, Sweden, 2020. [Google Scholar]
- Agiwal, M.; Roy, A.; Saxena, N. Next Generation 5G Wireless Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2016, 18, 1617–1655. [Google Scholar] [CrossRef]
- Busari, S.A.; Mumtaz, S.; Al-Rubaye, S.; Rodriguez, J. 5G Millimeter-Wave Mobile Broadband: Performance and Challenges. IEEE Commun. Mag. 2018, 56, 137–143. [Google Scholar] [CrossRef]
- ETSI. ETSI TR 138 913 V15.0.0 (2018-09)-5G. Study on Scenarios and Requirements for Next Generation. Available online: https://standards.iteh.ai/catalog/standards/etsi/08d3693a-e5df-4610-ac4e-bee031d00f2e/etsi-tr-138-913-v15-0-0-2018-09 (accessed on 24 July 2024).
- Lashari, M.H.; Memon, A.A.; Shah, S.A.A.; Nenwani, K.; Shafqat, F. IoT Based Poultry Environment Monitoring System. In Proceedings of the 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS), Bali, Indonesia, 1–3 November 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Kelly, J.T.; Campbell, K.L.; Gong, E.; Scuffham, P. The Internet of Things: Impact and Implications for Health Care Delivery. J. Med. Internet Res. 2020, 2, e20135. [Google Scholar] [CrossRef]
- Pal, D.; Papasratorn, B.; Chutimaskul, W.; Funilkul, S. Embracing the Smart-Home Revolution in Asia by the Elderly: An End-User Negative Perception Modeling. IEEE Access 2019, 7, 38535–38549. [Google Scholar] [CrossRef]
- Meng, Y.; Zhang, W.; Zhu, H.; Shen, X.S. Securing Consumer IoT in the Smart Home: Architecture, Challenges, and Countermeasures. IEEE Wirel. Commun. 2018, 25, 53–59. [Google Scholar] [CrossRef]
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of Things for Smart Cities. IEEE Internet Things J. 2014, 1, 22–32. [Google Scholar] [CrossRef]
- Lee, S.K.; Bae, M.; Kim, H. Future of IoT networks: A survey. Appl. Sci. 2017, 7, 1072. [Google Scholar] [CrossRef]
- Akpakwu, G.A.; Silva, B.J.; Hancke, G.P.; Abu-Mahfouz, A.M. A Survey on 5G Networks for the Internet of Things: Communication Technologies and Challenges. IEEE Access 2018, 6, 3619–3647. [Google Scholar] [CrossRef]
- Ozturk, M. Cognitive Networking for Next Generation of Cellular Communication Systems. Ph.D. Thesis, University of Glasgow, Glasgow, UK, 2020. [Google Scholar]
- Shafi, M.; Molisch, A.F.; Smith, P.J.; Haustein, T.; Zhu, P.; De Silva, P.; Tufvesson, F.; Benjebbour, A.; Wunder, G. 5G: A Tutorial Overview of Standards, Trials, Challenges, Deployment, and Practice. IEEE J. Sel. Areas Commun. 2017, 35, 1201–1221. [Google Scholar] [CrossRef]
- Jameel, F.; Faisal; Haider, M.A.A.; Butt, A.A. Massive MIMO: A survey of recent advances, research issues and future directions. In Proceedings of the 2017 International Symposium on Recent Advances in Electrical Engineering (RAEE), Islamabad, Pakistan, 17–18 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Xing, Y.; MacCartney, G.R.; Molisch, A.F.; Mellios, E.; Zhang, J. Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks—With a Focus on Propagation Models. IEEE Trans. Antennas Propag. 2017, 65, 6213–6230. [Google Scholar] [CrossRef]
- Björnson, E.; Hoydis, J.; Sanguinetti, L. Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency. Found. Trends Signal Process. 2017, 11, 154–655. [Google Scholar] [CrossRef]
- Arshad, R.R.; ElSawy, H.; Sorour, S.; Al-Naffouri, T.Y.; Alouini, M.-S. Cooperative Handover Management in Dense Cellular Networks. In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Sun, Y.; Peng, M.; Zhou, Y.; Huang, Y.; Mao, S. Application of Machine Learning in Wireless Networks: Key Techniques and Open Issues. IEEE Commun. Surv. Tutor. 2019, 21, 3072–3108. [Google Scholar] [CrossRef]
- Cayamcela, M.E.M.; Lim, W. Artificial Intelligence in 5G Technology: A Survey. In Proceedings of the 2018 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 17–19 October 2018; pp. 860–865. [Google Scholar] [CrossRef]
- Zhang, C.; Patras, P.; Haddadi, H. Deep Learning in Mobile and Wireless Networking: A Survey. IEEE Commun. Surv. Tutor. 2019, 21, 2224–2287. [Google Scholar] [CrossRef]
- Lu, Y.; Zheng, X. 6G: A survey on technologies, scenarios, challenges, and the related issues. J. Ind. Inf. Integr. 2020, 19, 100158. [Google Scholar] [CrossRef]
- Dogra, A.; Jha, R.K.; Jain, S. A Survey on Beyond 5G Network with the Advent of 6G: Architecture and Emerging Technologies. IEEE Access 2021, 9, 67512–67547. [Google Scholar] [CrossRef]
- Koda, Y.; Nakashima, K.; Yamamoto, K.; Nishio, T.; Morikura, M. Cooperative Sensing in Deep RL-Based Image-to-Decision Proactive Handover for mmWave Networks. In Proceedings of the 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 10–13 January 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Rehman, A.U.; Roslee, M.B.; Jun Jiat, T. A Survey of Handover Management in Mobile HetNets: Current Challenges and Future Directions. Appl. Sci. 2023, 13, 3367. [Google Scholar] [CrossRef]
- Sönmez, Ş.; Shayea, I.; Khan, S.A.; Alhammadi, A. Handover Management for Next-Generation Wireless Networks: A Brief Overview. In Proceedings of the 2020 IEEE Microwave Theory and Techniques in Wireless Communications (MTTW), Riga, Latvia, 1–2 October 2020; pp. 35–40. [Google Scholar] [CrossRef]
- Kumar, P.P.; Sagar, K. A Relative Survey on Handover Techniques in Mobility Management. IOP Conf. Ser. Mater. Sci. Eng. 2019, 594, 012027. [Google Scholar] [CrossRef]
- Saad, W.K.; Shayea, I.; Hamza, B.J.; Mohamad, H.; Daradkeh, Y.I.; Jabbar, W.A. Handover Parameters Optimisation Techniques in 5G Networks. Sensors 2021, 21, 5202. [Google Scholar] [CrossRef]
- Ferretti, S.; Ghini, V.; Panzieri, F. A Survey on Handover Management in Mobility Architectures. Comput. Netw. 2016, 94, 390–413. [Google Scholar] [CrossRef]
- Saeed, R.A. Handover in a mobile wireless communication network—A review phase. Int. J. Comput. Commun. Inform. 2019, 1, 6–13. [Google Scholar]
- Kumawat, J.; Tailor, S. Soft and softer handover in communication networks. Int. J. Recent Innov. Trends Comput. Commun. 2013, 1, 558–562. [Google Scholar]
- Chattate, I.; Bakkoury, J.; Khiat, A.; El Khaili, M. Overview on technology of vertical handover and MIH architecture. In Proceedings of the 2016 4th IEEE International Colloquium on Information Science and Technology (CiSt), Tangier, Morocco, 24–26 October 2016; pp. 31–34. [Google Scholar] [CrossRef]
- Klaine, P.V.; Imran, M.A.; Onireti, O.; Souza, R.D. A Survey of Machine Learning Techniques Applied to Self-Organizing Cellular Networks. IEEE Commun. Surv. Tutor. 2017, 19, 2392–2431. [Google Scholar] [CrossRef]
- Zhang, H.; Dai, L. Mobility Prediction: A Survey on State-of-the-Art Schemes and Future Applications. IEEE Access 2019, 7, 802–822. [Google Scholar] [CrossRef]
- Tayyab, M.; Gelabert, X.; Jäntti, R. A Survey on Handover Management: From LTE to NR. IEEE Access 2019, 7, 118907–118930. [Google Scholar] [CrossRef]
- Zaidi, S.M.; Manalastas, M.; Farooq, H.; Imran, A. Mobility Management in Emerging Ultra-Dense Cellular Networks: A Survey, Outlook, and Future Research Directions. IEEE Access 2020, 8, 183505–183533. [Google Scholar] [CrossRef]
- Gures, E.; Shayea, I.; Alhammadi, A.; Ergen, M.; Mohamad, H. A Comprehensive Survey on Mobility Management in 5G Heterogeneous Networks: Architectures, Challenges and Solutions. IEEE Access 2020, 8, 195883–195913. [Google Scholar] [CrossRef]
- Ahmad, R.; Sundararajan, E.A.; Khalifeh, A. Survey on Femtocell Handover Management in Dense Heterogeneous 5G Networks. Telecommun. Syst. 2020, 75, 481–507. [Google Scholar] [CrossRef]
- Kasim, A.N. A Survey Mobility Management in 5G Networks. arXiv 2020. [Google Scholar] [CrossRef]
- 3GPP. Draft 3GPP TS 38.304 V0.7.0 (2020-07)-NR. User Equipment (UE) Procedures in Idle Mode and in RRC Inactive State. Available online: https://www.3gpp.org/ftp/tsg_ran/WG2_RL2/Specifications/202007_draft_specs_after_RAN_88/Draft_38304-f70.docx (accessed on 24 July 2024).
- ETSI. ETSI TS 136 300 V15.3.0 (2018-07)-LTE. Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description. Available online: https://www.etsi.org/deliver/etsi_ts/136300_136399/136300/15.03.00_60/ts_136300v150300p.pdf (accessed on 24 July 2024).
- Ullah, Y.; Roslee, M.B.; Mitani, S.M.; Khan, S.A.; Jusoh, M.H. A Survey on Handover and Mobility Management in 5G HetNets: Current State, Challenges, and Future Directions. Sensors 2023, 23, 5081. [Google Scholar] [CrossRef]
- Hamdan, M.; Hassan, E.; Abdelaziz, A.; Elhigazi, A.; Mohammed, B.; Khan, S.; Vasilakos, A.V.; Marsono, M. A comprehensive survey of load balancing techniques in software-defined network. J. Netw. Comput. Appl. 2021, 174, 102856. [Google Scholar] [CrossRef]
- Ahmadi, S. (Ed.) Chapter 1—5G network architecture. In 5G NR; Academic Press: Cambridge, MA, USA, 2019; pp. 1–194. [Google Scholar]
- Xiao, M.; Mumtaz, S.; Huang, Y.; Dai, L.; Li, Y.; Matthaiou, M.; Karagiannidis, G.K.; Björnson, E.; Yang, K.; I, C.-L.; et al. Millimeter Wave Communications for Future Mobile Networks. IEEE J. Sel. Areas Commun. 2017, 35, 1909–1935. [Google Scholar] [CrossRef]
- Alraih, S.; Nordin, R.; Abu-Samah, A.; Shayea, I.; Abdullah, N.F. A Survey on Handover Optimization in Beyond 5G Mobile Networks: Challenges and Solutions. IEEE Access 2023, 11, 59317–59345. [Google Scholar] [CrossRef]
- Mahmoud, M.; Ajour, M.N. Resource Allocation in UAV-Enabled NOMA Networks for Enhanced Six-G Communications Systems. Electronics 2023, 12, 5033. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, H.Y.; Hwang, P.; Patro, R.K.; Lee, J.; Roh, W.; Cheun, K. Feasibility of Mobile Cellular Communications at Millimeter Wave Frequency. IEEE J. Sel. Top. Signal Process. 2016, 10, 589–599. [Google Scholar] [CrossRef]
- Niu, Y.; Li, Y.; Jin, D.; Su, L.; Vasilakos, A.V. A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges. Wirel. Netw. 2015, 21, 2657–2676. [Google Scholar] [CrossRef]
- Usman, M.A.; Philip, N.Y.; Politis, C. 5G Enabled Mobile Healthcare for Ambulances. In Proceedings of the 2019 IEEE Globecom Workshops (GC Workshops), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Abubakar, A.I.; Omeke, K.G.; Ozturk, M.; Hussain, S.; Imran, M.A. The Role of Artificial Intelligence Driven 5G Networks in COVID-19 Outbreak: Opportunities, Challenges, and Future Outlook. Front. Commun. Netw. 2020, 1, 575065. [Google Scholar] [CrossRef]
- Ozturk, M.; Gogate, M.; Onireti, O.; Adeel, A.; Hussain, A.; Imran, M.A. A novel deep learning driven, low-cost mobility prediction approach for 5G cellular networks: The case of the Control/Data Separation Architecture (CDSA). Neurocomputing 2019, 358, 479–489. [Google Scholar] [CrossRef]
- Bui, N.; Cesana, M.; Hosseini, S.A.; Liao, Q.; Malanchini, I.; Widmer, J. A Survey of Anticipatory Mobile Networking: Context-Based Classification, Prediction Methodologies, and Optimization Techniques. IEEE Commun. Surv. Tutor. 2017, 19, 1790–1821. [Google Scholar] [CrossRef]
- Wang, T.; Wang, S.; Zhou, Z.H. Machine learning for 5G and beyond: From model-based to data-driven mobile wireless networks. China Commun. 2019, 16, 165–175. [Google Scholar]
- Tabassum, H.; Salehi, M.; Hossain, E. Fundamentals of Mobility-Aware Performance Characterization of Cellular Networks: A Tutorial. IEEE Commun. Surv. Tutor. 2019, 21, 2288–2308. [Google Scholar] [CrossRef]
- Hussain, F.; Hassan, S.A.; Hussain, R.; Hossain, E. Machine Learning for Resource Management in Cellular and IoT Networks: Potentials, Current Solutions, and Open Challenges. IEEE Commun. Surv. Tutor. 2020, 22, 1251–1275. [Google Scholar] [CrossRef]
- Nishio, T.; Koda, Y.; Park, J.; Bennis, M.; Doppler, K. When Wireless Communications Meet Computer Vision in Beyond 5G. IEEE Commun. Stand. Mag. 2021, 5, 76–83. [Google Scholar] [CrossRef]
- Tian, Y.; Pan, G.; Alouini, M.-S. Applying Deep-Learning-Based Computer Vision to Wireless Communications: Methodologies, Opportunities, and Challenges. IEEE Open J. Commun. Soc. 2021, 2, 132–143. [Google Scholar] [CrossRef]
- Arshad, R.; Elsawy, H.; Sorour, S.; Al-Naffouri, T.Y.; Alouini, M.-S. Handover Management in 5G and Beyond: A Topology Aware Skipping Approach. IEEE Access 2016, 4, 9073–9081. [Google Scholar] [CrossRef]
- Oguma, Y.; Nishio, T.; Yamamoto, K.; Morikura, M. Proactive Handover Based on Human Blockage Prediction Using RGB-D Cameras for mmWave Communications. IEICE Trans. Commun. 2016, 99, 1734–1744. [Google Scholar] [CrossRef]
- Farooq, M.U.B.; Manalastas, M.; Zaidi, S.M.A.; Abu-Dayya, A.; Imran, A. Machine Learning Aided Holistic Handover Optimization for Emerging Networks. In Proceedings of the ICC 2022—IEEE International Conference on Communications, Seoul, Republic of Korea, 16–20 May 2022; pp. 710–715. [Google Scholar]
- Mishra, V.; Das, D.; Singh, N.N. Novel Algorithm to Reduce Handover Failure Rate in 5G Networks. In Proceedings of the IEEE 3rd 5G World Forum (5GWF), Bangalore, India, 10–12 September 2020; pp. 524–529. [Google Scholar]
- Gao, X.; Zhang, R.; Zhang, J.; Yang, J.; Li, X. Advanced Technologies in Massive MIMO Systems: Efficiency, Performance, and Future Trends. Found. Trends Signal Process. 2020, 14, 1–290. [Google Scholar] [CrossRef]
- Arshad, R.; ElSawy, H.; Sorour, S.; Al-Naffouri, T.Y.; Alouini, M.-S. Handover management in dense cellular networks: A stochastic geometry approach. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016; pp. 1–7. [Google Scholar] [CrossRef]
- Addali, K.M.; Melhem, S.Y.B.; Khamayseh, Y.; Zhang, Z.; Kadoch, M. Dynamic Mobility Load Balancing for 5G Small-Cell Networks Based on Utility Functions. IEEE Access 2019, 7, 126998–127011. [Google Scholar] [CrossRef]
- Koda, Y.; Nakashima, K.; Yamamoto, K.; Nishio, T.; Morikura, M. Handover Management for mmWave Networks with Proactive Performance Prediction Using Camera Images and Deep Reinforcement Learning. IEEE Trans. Cogn. Commun. Netw. 2019, 6, 802–816. [Google Scholar] [CrossRef]
- Klautau, A.; González-Prelcic, N.; Heath, R.W. LIDAR Data for Deep Learning-Based mmWave Beam-Selection. IEEE Wirel. Commun. Lett. 2019, 8, 909–912. [Google Scholar] [CrossRef]
- Dias, M.; Klautau, A.; González-Prelcic, N.; Heath, R.W. Position and LIDAR-Aided mmWave Beam Selection using Deep Learning. In Proceedings of the 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Commu-nications (SPAWC), Cannes, France, 2–5 July 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Long, Y.; Chen, Z.; Fang, J.; Tellambura, C. Data-Driven-Based Analog Beam Selection for Hybrid Beamforming under mm-Wave Channels. IEEE J. Sel. Top. Signal Process. 2018, 12, 340–352. [Google Scholar] [CrossRef]
- Ma, X.; Chen, Z.; Li, Z.; Chen, W.; Liu, K. Low Complexity Beam Selection Scheme for Terahertz Systems: A Machine Learning Approach. In Proceedings of the 2019 IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai, China, 22–24 May 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Li, Z.; Ma, X.; Chen, W.; Kuang, N.; Zhang, B. Neural Network Enhanced Analog Beam Selection Scheme for Terahertz Systems. In Proceedings of the 2019 IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops), Changchun, China, 11–13 August 2019; pp. 136–141. [Google Scholar] [CrossRef]
- Booth, M.B.; Suresh, V.; Michelusi, N.; Love, D.J. Multi-Armed Bandit Beam Alignment and Tracking for Mobile Millimeter Wave Communications. IEEE Commun. Lett. 2019, 23, 1244–1248. [Google Scholar] [CrossRef]
- Xu, C.; Liu, S.; Zhang, C.; Huang, Y.; Yang, L. Joint User Scheduling and Beam Selection in mmWave Networks Based on Multi-Agent Reinforcement Learning. In Proceedings of the 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hangzhou, China, 8–11 June 2020; pp. 1–5. [Google Scholar]
- Van Huynh, N.; Nguyen, D.N.; Hoang, D.T.; Dutkiewicz, E. Optimal Beam Association for High Mobility mmWave Vehicular Networks: Lightweight Parallel Reinforcement Learning Approach. arXiv 2020. [Google Scholar] [CrossRef]
- Paropkari, R.A.; Thantharate, A.; Beard, C. Deep-Mobility: A Deep Learning Approach for an Efficient and Reliable 5G Handover. In Proceedings of the 2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), Chennai, India, 24–26 March 2022; pp. 244–250. [Google Scholar]
- Yajnanarayana, V.; Rydén, H.; Hévizi, L. 5G Handover using Reinforcement Learning. In Proceedings of the IEEE 3rd 5G World Forum (5GWF), Bangalore, India, 10–12 September 2020. [Google Scholar]
- Zidic, D.; Mastelic, T.; Kosovic, I.N.; Cagalj, M.; Lorincz, J. Analyses of ping-pong handovers in real 4G telecommunication networks. Comput. Netw. 2023, 227, 109699. [Google Scholar] [CrossRef]
- Yu, W.; Xu, H.; Zhang, H.; Griffith, D.; Golmie, N. Ultra-Dense Networks: Survey of State of the Art and Future Directions. In Proceedings of the 2016 25th International Conference on Computer Communication and Networks (ICCCN), Waikoloa, HI, USA, 1–4 August 2016; pp. 1–10. [Google Scholar] [CrossRef]
- Sun, W.; Wang, Q.; Zhao, N.; Zhang, H.; Shen, C.; Wai-Choong Wong, L. Ultra-Dense Heterogeneous Networks, 1st ed.; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar] [CrossRef]
- Bilen, T.; Canberk, B.; Chowdhury, K.R. Handover Management in Software-Defined Ultra-Dense 5G Networks. IEEE Netw. 2017, 31, 49–55. [Google Scholar] [CrossRef]
- Kharche, S.; Dere, P. Interoperability Issues and Challenges in 6G Networks. J. Mob. Multimed. 2022, 18, 1445–1470. [Google Scholar] [CrossRef]
- Agbaje, P.; Anjum, A.; Mitra, A.; Oseghale, E.; Bloom, G.; Olufowobi, H. Survey of Interoperability Challenges in the Internet of Vehicles. IEEE Trans. Intell. Transp. Syst. 2022, 23, 22838–22861. [Google Scholar] [CrossRef]
- Wu, J.; Fan, P. A Survey on High Mobility Wireless Communications: Challenges, Opportunities and Solutions. IEEE Access 2016, 4, 450–476. [Google Scholar] [CrossRef]
- Sesia, S.; Toufik, I.; Baker, M. LTE-the UMTS Long Term Evolution: From Theory to Practice; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Al-Khalidi, M.; Al-Zaidi, R.; Hammoudeh, M. Network Mobility Management Challenges, Directions, and Solutions: An Architectural Perspective. Electronics 2022, 11, 2696. [Google Scholar] [CrossRef]
- Hong, E.-K.; Lee, I.; Shim, B.; Ko, Y.-C.; Kim, S.-H.; Pack, S.; Lee, K.; Kim, S.; Kim, J.-H.; Shin, Y.; et al. 6G R&D vision: Re-quirements and candidate technologies. J. Commun. Netw. 2022, 24, 232–245. [Google Scholar] [CrossRef]
- Jun, S.; Choi, Y.; Chung, H. Considerations on Ultra broadband, High reliable and Low latency services in 6G system. In Proceedings of the 2021 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 20–22 October 2021; pp. 1552–1554. [Google Scholar] [CrossRef]
- Forbes. Roundup of Internet of Things Forecasts Market Estimates. 2016. Available online: https://www.forbes.com/sites/louiscolumbus/2016/11/27/roundup-of-internet-of-things-forecasts-and-market-estimates-2016/ (accessed on 24 July 2024).
- Huawei. GIV 2025 Unfolding the Industry Blueprint of an Intelligent World. 2018. Available online: https://www-file.huawei.com/-/media/corp2020/pdf/giv/history-reports/whitepaper_en_2018.pdf (accessed on 24 July 2024).
- Ray, P.P. A perspective on 6G: Requirement, technology, enablers, challenges and future road map. J. Syst. Archit. 2021, 118, 102180. [Google Scholar] [CrossRef]
- Fourati, H.; Maaloul, R.; Chaari, L. A survey of 5G network systems: Challenges and machine learning approaches. Int. J. Mach. Learn. Cybern. 2020, 12, 385–431. [Google Scholar] [CrossRef]
- Barreno, M.; Nelson, B.; Joseph, A.D.; Tygar, J.D. The security of machine learning. Mach. Learn. 2010, 81, 121–148. [Google Scholar] [CrossRef]
- Suomalainen, J.; Juhola, A.; Shahabuddin, S.; Mämmelä, A.; Ahmad, I. Machine Learning Threatens 5G Security. IEEE Access 2020, 8, 190822–190842. [Google Scholar] [CrossRef]
- Khosravi, S.; Ghadikolaei, H.S.; Petrova, M. Learningbased Handover in Mobile Millimeter-wave Networks. arXiv 2020. [Google Scholar] [CrossRef]
- Jain, A.; Demirkol, I. Are Mobility Management Solutions Ready for 5G and Beyond? arXiv 2019. [Google Scholar] [CrossRef]
- Mollel, M.S.; Abubakar, A.I.; Ozturk, M.; Kaijage, S.F.; Kisangiri, M.; Hussain, S.; Imran, M.A.; Abbasi, Q.H. A Survey of Machine Learning Applications to Handover Management in 5G and Beyond. IEEE Access 2021, 9, 45770–45802. [Google Scholar] [CrossRef]
- Tanveer, J.; Haider, A.; Ali, R.; Kim, A. An Overview of Reinforcement Learning Algorithms for Handover Management in 5G Ultra-Dense Small Cell Networks. Appl. Sci. 2022, 12, 426. [Google Scholar] [CrossRef]
- Khan, S.A.; Shayea, I.; Ergen, M.; Mohamad, H. Handover management over dual connectivity in 5G technology with future ultra-dense mobile heterogeneous networks: A review. Eng. Sci. Technol. Int. J. 2022, 35, 101172. [Google Scholar] [CrossRef]
- Siddiqui, M.U.; Qamar, F.; Tayyab, M.; Hindia, M.N.; Nguyen, Q.N.; Hassan, R. Mobility Management Issues and Solutions in 5G-and-Beyond Networks: A Comprehensive Review. Electronics 2021, 11, 1366. [Google Scholar] [CrossRef]
- Dimou, K.; Wang, M.; Yang, Y.; Kazmi, M.; Larmo, A.; Pettersson, J.; Muller, W.; Timner, Y. Handover within 3GPP LTE: Design Principles and Performance. In Proceedings of the 2009 IEEE 70th Vehicular Technology Conference Fall, Anchorage, AK, USA, 20–23 September 2009; pp. 1–5. [Google Scholar] [CrossRef]
- Haghrah, A.; Abdollahi, M.P.; Azarhava, H.; Niya, J.M. A survey on the handover management in 5G-NR cellular networks: Aspects, approaches and challenges. EURASIP J. Wirel. Commun. Netw. 2023, 2023, 52. [Google Scholar] [CrossRef]
- Kordi, K.A.; Alhammadi, A.; Roslee, M.; Alias, M.Y. A review on wireless emerging IoT indoor localization. In Proceedings of the 2020 IEEE 5th International Symposium on Telecommunication Technologies, Shah Alam, Malaysia, 9–11 November 2020. [Google Scholar]
- Roslee, M.; Subari, K.S.; Shahdan, I.S. Design of bow tie antenna in CST studio suite below 2GHz for ground penetrating radar applications. In Proceedings of the 2011 IEEE International RF & Microwave Conference, Seremban, Malaysia, 12–14 December 2011. [Google Scholar]
- Roy, S.; Tiang, J.-J.; Roslee, M.B.; Ahmed, M.T.; Kouzani, A.Z.; Mahmud, M.A.P. Design of a highly efficient wideband multi-frequency ambient RF energy harvester. Sensors 2022, 22, 424. [Google Scholar] [CrossRef] [PubMed]
- Fontanesi, G.; Ortíz, F.; Lagunas, E.; Baeza, V.M.; Vázquez, M.Á.; Vásquez-Peralvo, J.A.; Minardi, M.; Vu, H.N.; Honnaiah, P.J.; Lacoste, C.; et al. Artificial Intelligence for Satellite Communication and Non-Terrestrial Networks: A Survey. arXiv 2023. [Google Scholar] [CrossRef]
- Roy, S.; Tiang, J.J.; Roslee, M.B.; Ahmed, M.T.; Kouzani, A.Z.; Mahmud, M.A.P. Quad-band rectenna for ambient radio fre-quency (RF) energy harvesting. Sensors 2021, 21, 7838. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.H.; Kim, C.H.; Lee, K.Y. Design and Optimization of Wideband RF Energy Harvesters for Ambient Energy Scavenging. IEEE Trans. Microw. Theory Tech. 2016, 64, 2084–2095. [Google Scholar]
- Chen, G.; Li, S.; Zhang, Y. A Survey on Handover Management in 5G Networks: Challenges and Opportunities. IEEE Trans. Netw. Serv. Manag. 2020, 17, 18–34. [Google Scholar]
- Cao, Y.; Zhao, Y.; Yang, L.; Wu, J.; Zhang, X. A Survey on Data Quality and Benchmarking for Machine Learning in Wireless Networks. IEEE Commun. Surv. Tutor. 2023, 25, 1124–1148. [Google Scholar]
- Wang, H.; Zhang, J.; Zhao, H.; Li, J.; Liu, Y. Privacy-Preserving Machine Learning for Mobile Networks: Challenges and Future Directions. IEEE Trans. Netw. Serv. Manag. 2024, 21, 329–344. [Google Scholar]
- Chen, X.; Zhang, Y.; Liu, H.; Yang, X.; Zhao, Q. Centralized vs. Decentralized Machine Learning for Network Optimization: Trade-Offs and Performance Analysis. IEEE Trans. Wirel. Commun. 2024, 23, 1876–1890. [Google Scholar]
- Nguyen, T.; Kim, J.; Liu, W.; Li, L.; Zhang, X. Decentralized Machine Learning for 5G and Beyond: Enhancing Privacy, Energy Efficiency, and Latency. IEEE Trans. Netw. Serv. Manag. 2024, 21, 1534–1548. [Google Scholar]
- Zhang, L.; Wang, S.; Wu, K.; Zhao, H.; Yang, Z. Challenges and Strategies for Decentralized Machine Learning in 5G Networks: Mobility Management and Handover Optimization. IEEE Commun. Mag. 2024, 62, 98–104. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, J.; Wang, X.; Zhang, Z.; Li, M. Advanced Handover Management Techniques for mm-Wave Networks: Addressing Handover Frequency, Overhead, and Quality of Service Issues. IEEE Trans. Veh. Technol. 2024, 73, 2164–2178. [Google Scholar]
- Liu, X.; Zhao, Y.; Zhang, J.; Zhou, J.; Chen, M. Load Balancing in Cellular Networks: Addressing UE Mobility, Handover Frequency, and Quality of Service Challenges. IEEE Trans. Commun. 2023, 71, 3941–3956. [Google Scholar]
- Wang, Y.; Li, X.; Wu, Q.; Zheng, K.; Liu, J. Evaluating the Impact of Handover Optimization Techniques on Network Load Balancing and User Quality of Service. IEEE Trans. Netw. Serv. Manag. 2024, 21, 1125–1138. [Google Scholar]
Features | Soft HO | Hard HO |
---|---|---|
Speed | Slow | Fast |
Reliability | Moderate | High |
Energy Consumption | Minimum | High |
Service Interruption | Minimum | High |
Complexity | More | Less |
Packet Loss | Minimum | High |
References | Year of Publication | ML Algorithm | Application Scenario |
---|---|---|---|
[63] | 2017 | Deep Reinforcement Learning | Massive MIMO networks |
[64] | 2016 | Deep Reinforcement Learning | Camera-based networks with proactive performance prediction in mm-wave environment |
[65] | 2019 | Convolutional Neural Networks | mm-wave beam selection |
[66] | 2019 | Deep Neural Networks | Location and mm-wave LIDAR help to select the proper beam. |
[67] | 2018 | Support Vector Machine | Data-driven-based analog beam selection |
[68] | 2019 | Random Forest | A Terahertz system has been described and a beam selection scheme is proposed for use with the system |
[69] | 2019 | Artificial Neural Networks | Analog beam selection scheme for Terahertz systems |
[70] | 2019 | Multi-Armed Bandit (MAB) | Mobile millimeter-wave communications |
[71] | 2020 | Multi-Agent Reinforcement Learning | Joint user scheduling and beam selection in mm-wave networks |
[72] | 2020 | Q-Learning | mm-wave vehicular networks |
[73] | 2020 | Reinforcement Learning (RL) | Mobile millimeter-wave networks |
[74] | 2020 | Deep Deterministic Policy Gradient RL | Ultra-dense cellular networks |
Ref. | Year | Network | Motive | Contributions |
---|---|---|---|---|
[94] | 2020 | UDN | Mobility management (MM) challenges | Providing a valuable survey on mobility management in UDN |
[95] | 2020 | 5G or HetNets | Providing high coverage and mobility management | Survey work on MM with beam management and mobility |
[96] | 2020 | 5G or HetNets | HO management challenges and decisions | Providing a comprehensive survey on HO management |
[97] | 2020 | 5G | Provide data traffic demands and ensure QoS | Discussions about mobility management and solutions |
[98] | 2021 | 5G | HO management | Discussions about HO management using ML |
[99] | 2022 | 5G | ML techniques in 5G networks | Discussions about the impacts of ML in HO |
[100] | 2022 | 5G | HO management | Comparing many HO and mobility management methods using ML |
[101] | 2022 | 5G | Solving unaided issues in mobility management | Discussions on challenges, issues, and solutions for MM in 5G |
[102] | 2023 | 5G | HO management on 5G-NR networks | Analyzing the HO procedure for better QoS and reducing HO failure |
[103] | 2020 | Wireless Network | Comprehensive overview of the current state of research and development in indoor localization for the Internet of Things | Provides a guideline and an excellent platform to further their research in indoor localization |
[104] | 2011 | Ground-Penetrating Radar (GPR) | Outlines the design and application of a bowtie antenna specifically for ground-penetrating radar (GPR) applications | The design is constructed and the operating frequency range is established for use in measuring materials, such as concrete and soil |
[105] | 2023 | Non-Terrestrial Networks (NTN) | A comprehensive exploration of AI applications in Satellite Communication (SatCom) and Non-Terrestrial Networks (NTN), emphasizing opportunities to enhance performance and efficiency through AI-driven solutions | Offers input and recommendations for using AI to advance the effectiveness, efficiency, and creative possibilities of Non-Terrestrial Networks |
[106] | 2021 | Impedance-Matching Network (IMN) | Presents a quad-band rectenna design for highly efficient ambient wireless RF energy-harvesting in low-power applications sensors and wireless devices | Efficient quad-band rectenna design for RF energy-harvesting applications |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thillaigovindhan, S.K.; Roslee, M.; Mitani, S.M.I.; Osman, A.F.; Ali, F.Z. A Comprehensive Survey on Machine Learning Methods for Handover Optimization in 5G Networks. Electronics 2024, 13, 3223. https://doi.org/10.3390/electronics13163223
Thillaigovindhan SK, Roslee M, Mitani SMI, Osman AF, Ali FZ. A Comprehensive Survey on Machine Learning Methods for Handover Optimization in 5G Networks. Electronics. 2024; 13(16):3223. https://doi.org/10.3390/electronics13163223
Chicago/Turabian StyleThillaigovindhan, Senthil Kumar, Mardeni Roslee, Sufian Mousa Ibrahim Mitani, Anwar Faizd Osman, and Fatimah Zaharah Ali. 2024. "A Comprehensive Survey on Machine Learning Methods for Handover Optimization in 5G Networks" Electronics 13, no. 16: 3223. https://doi.org/10.3390/electronics13163223
APA StyleThillaigovindhan, S. K., Roslee, M., Mitani, S. M. I., Osman, A. F., & Ali, F. Z. (2024). A Comprehensive Survey on Machine Learning Methods for Handover Optimization in 5G Networks. Electronics, 13(16), 3223. https://doi.org/10.3390/electronics13163223