Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = FastDTW dynamic time warping algorithm

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2199 KB  
Article
A Deep-Learning-Based Dynamic Multidimensional Memory-Augmented Personalized Recommendation Research
by Peihua Xu and Maoyuan Zhang
Appl. Sci. 2025, 15(17), 9597; https://doi.org/10.3390/app15179597 - 31 Aug 2025
Viewed by 792
Abstract
To address the problem of inaccurate matching between personalized exercise recommendations and learners’ mastery of knowledge concepts/learning abilities, we propose the Dynamic Multidimensional Memory Augmented knowledge tracing model (DMMA). This model integrates a dynamic key-value memory neural network with the Ebbinghaus Forgetting Curve. [...] Read more.
To address the problem of inaccurate matching between personalized exercise recommendations and learners’ mastery of knowledge concepts/learning abilities, we propose the Dynamic Multidimensional Memory Augmented knowledge tracing model (DMMA). This model integrates a dynamic key-value memory neural network with the Ebbinghaus Forgetting Curve. By incorporating time decay factors and knowledge concept mastery speed factors, it dynamically adjusts knowledge update intensity, effectively resolving the insufficient personalized recommendation capabilities of traditional models. Experimental validation demonstrates its effectiveness: on Algebra 2006–2007, DMMA achieves 82% accuracy, outperforming CRDP-KT by 6%, while maintaining 53–55% accuracy for cold-start users (0–5 interactions), which is 25% higher than CoKT. The model’s integration of the Ebbinghaus forgetting curve and K-means-based concept classification enhances adaptability. Genetic algorithm optimization yields a diversity score of 0.79, with 18% higher 30-day knowledge retention. The FastDTW–Sigmoid hybrid similarity calculation (weight transition 0.27–0.88) ensures smooth cold-start adaptation, while novelty metrics reach 0.65 via random-forest-driven prediction. Ablation studies confirm component necessity: removing time decay factors reduces accuracy by 2.2%. These results validate DMMA’s superior performance in personalized education. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

17 pages, 6425 KB  
Article
Electric Vehicle Charging Demand Prediction Model Based on Spatiotemporal Attention Mechanism
by Yang Chen, Zeyang Tang, Yibo Cui, Wei Rao and Yiwen Li
Energies 2025, 18(3), 687; https://doi.org/10.3390/en18030687 - 2 Feb 2025
Cited by 3 | Viewed by 2603
Abstract
The accurate estimation and prediction of charging demand are crucial for the planning of charging infrastructure, grid layout, and the efficient operation of charging networks. To address the shortcomings of existing methods in utilizing the spatial interdependencies among urban regions, this paper proposes [...] Read more.
The accurate estimation and prediction of charging demand are crucial for the planning of charging infrastructure, grid layout, and the efficient operation of charging networks. To address the shortcomings of existing methods in utilizing the spatial interdependencies among urban regions, this paper proposes a forecasting approach that integrates dynamic time warping (DTW) with a spatial–temporal attention graph convolutional neural network (ASTGCN). First, this method delves into the correlations between various regions within the target city, establishing intricate coupling relationships among them. Subsequently, the FastDTW algorithm is employed to construct an adjacency matrix, capturing the spatiotemporal correlation among different urban regions. Finally, the ASTGCN model is applied to predict the power load of each region, which can accurately capture the spatiotemporal characteristics of the power load. The experimental results indicate that the proposed model has a more powerful comprehensive ability to capture spatiotemporal relationships and improve accuracy and stability in different prediction steps. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

18 pages, 3659 KB  
Article
Monitoring Plant Height and Spatial Distribution of Biometrics with a Low-Cost Proximal Platform
by Giovanni Bitella, Rocco Bochicchio, Donato Castronuovo, Stella Lovelli, Giuseppe Mercurio, Anna Rita Rivelli, Leonardo Rosati, Paola D’Antonio, Pierluigi Casiero, Gaetano Laghetti, Mariana Amato and Roberta Rossi
Plants 2024, 13(8), 1085; https://doi.org/10.3390/plants13081085 - 12 Apr 2024
Cited by 6 | Viewed by 2280
Abstract
Measuring canopy height is important for phenotyping as it has been identified as the most relevant parameter for the fast determination of plant mass and carbon stock, as well as crop responses and their spatial variability. In this work, we develop a low-cost [...] Read more.
Measuring canopy height is important for phenotyping as it has been identified as the most relevant parameter for the fast determination of plant mass and carbon stock, as well as crop responses and their spatial variability. In this work, we develop a low-cost tool for measuring plant height proximally based on an ultrasound sensor for flexible use in static or on-the-go mode. The tool was lab-tested and field-tested on crop systems of different geometry and spacings: in a static setting on faba bean (Vicia faba L.) and in an on-the-go setting on chia (Salvia hispanica L.), alfalfa (Medicago sativa L.), and wheat (Triticum durum Desf.). Cross-correlation (CC) or a dynamic time-warping algorithm (DTW) was used to analyze and correct shifts between manual and sensor data in chia. Sensor data were able to reproduce with minor shifts in canopy profile and plant status indicators in the field when plant heights varied gradually in narrow-spaced chia (R2 = 0.98), faba bean (R2 = 0.96), and wheat (R2 = up to 0.99). Abrupt height changes resulted in systematic errors in height estimation, and short-scale variations were not well reproduced (e.g., R2 in widely spaced chia was 0.57 to 0.66 after shifting based on CC or DTW, respectively)). In alfalfa, ultrasound data were a better predictor than NDVI (Normalized Difference Vegetation Index) for Leaf Area Index and biomass (R2 from 0.81 to 0.84). Maps of ultrasound-determined height showed that clusters were useful for spatial management. The good performance of the tool both in a static setting and in the on-the-go setting provides flexibility for the determination of plant height and spatial variation of plant responses in different conditions from natural to managed systems. Full article
(This article belongs to the Special Issue The Application of Spectral Techniques in Agriculture and Forestry)
Show Figures

Figure 1

25 pages, 8240 KB  
Article
Research on Rain Pattern Classification Based on Machine Learning: A Case Study in Pi River Basin
by Xiaodi Fu, Guangyuan Kan, Ronghua Liu, Ke Liang, Xiaoyan He and Liuqian Ding
Water 2023, 15(8), 1570; https://doi.org/10.3390/w15081570 - 17 Apr 2023
Cited by 8 | Viewed by 3347
Abstract
For the purpose of improving the scientific nature, reliability, and accuracy of flood forecasting, it is an effective and practical way to construct a flood forecasting scheme and carry out real-time forecasting with consideration of different rain patterns. The technique for rain pattern [...] Read more.
For the purpose of improving the scientific nature, reliability, and accuracy of flood forecasting, it is an effective and practical way to construct a flood forecasting scheme and carry out real-time forecasting with consideration of different rain patterns. The technique for rain pattern classification is of great significance in the above-mentioned technical roadmap. With the rapid development of artificial intelligence technologies such as machine learning, it is possible and necessary to apply these new methods to assist rain classification applications. In this research, multiple machine learning methods were adopted to study the time-history distribution characteristics and conduct rain pattern classification from observed rainfall time series data. Firstly, the hourly rainfall data between 2003 and 2021 of 37 rain gauge stations in the Pi River Basin were collected to classify rain patterns based on the universally acknowledged dynamic time warping (DTW) algorithm, and the classifications were treated as the benchmark result. After that, four other machine learning methods, including the Decision Tree (DT), Long- and Short-Term Memory (LSTM) neural network, Light Gradient Boosting Machine (LightGBM), and Support Vector Machine (SVM), were specifically selected to establish classification models and the model performances were compared. By adjusting the sampling size, the influence of different sizes on the classification was analyzed. Intercomparison results indicated that LightGBM achieved the highest accuracy and the fastest training speed, the accuracy and F1 score were 98.95% and 98.58%, respectively, and the loss function and accuracy converged quickly after only 20 iterations. LSTM and SVM have satisfactory accuracy but relatively low training efficiency, and DT has fast classification speed but relatively low accuracy. With the increase in the sampling size, classification results became stable and more accurate. Besides the higher accuracy, the training efficiency of the four methods was also improved. Full article
Show Figures

Figure 1

16 pages, 5614 KB  
Article
Dangerous Driving Behavior Recognition Based on Hand Trajectory
by Wenlong Liu, Hongtao Li and Hui Zhang
Sustainability 2022, 14(19), 12355; https://doi.org/10.3390/su141912355 - 28 Sep 2022
Cited by 7 | Viewed by 2661
Abstract
Dangerous driving behaviors in the process of driving will produce road traffic safety hazards, and even cause traffic accidents. Common dangerous driving behavior includes: eating, smoking, fetching items, using a handheld phone, and touching a control monitor. In order to accurately identify the [...] Read more.
Dangerous driving behaviors in the process of driving will produce road traffic safety hazards, and even cause traffic accidents. Common dangerous driving behavior includes: eating, smoking, fetching items, using a handheld phone, and touching a control monitor. In order to accurately identify the dangerous driving behaviors, this study first uses the hand trajectory data to construct the dangerous driving behavior recognition model based on the dynamic time warping algorithm (DTW) and the longest common sub-sequence algorithm (LCS). Secondly, 45 subjects’ hand trajectory data were obtained by driving simulation test, and 30 subjects’ hand trajectory data were used to determine the dangerous driving behavior label. The matching degree of hand trajectory data of 15 subjects was calculated based on the dangerous driving behavior recognition model, and the threshold of dangerous driving behavior recognition was determined according to the calculation results. Finally, the dangerous driving behavior recognition algorithm and neural network algorithm are compared and analyzed. The dangerous driving behavior recognition algorithm has a fast calculation speed, small memory consumption, and simple program structure. The research results can be applied to dangerous driving behavior recognition and driving distraction warning based on wrist wearable devices. Full article
Show Figures

Figure 1

20 pages, 1822 KB  
Article
Clustering Analysis of Voltage Sag Events Based on Waveform Matching
by Chenyan Hao and Jun Jin
Processes 2022, 10(7), 1337; https://doi.org/10.3390/pr10071337 - 8 Jul 2022
Cited by 4 | Viewed by 2010
Abstract
Voltage sags are a serious problem within power supplies, which pose threats to both residential electricity and industrial manufacturing. Since any one sag may be recorded by multiple monitoring devices from different substations, the issue of redundant information in data arises. In this [...] Read more.
Voltage sags are a serious problem within power supplies, which pose threats to both residential electricity and industrial manufacturing. Since any one sag may be recorded by multiple monitoring devices from different substations, the issue of redundant information in data arises. In this regard, a novel method for voltage sag events based on projection technology, shape dynamic time warping (shapeDTW), and spectral clustering is proposed. The main contributions of this paper may be summarized as follows: (1) We present a new method for extracting the voltage anomaly waveform, which is a fast projection segmentation algorithm (FPSA). The voltage sag waveform is only a part of the voltage anomaly waveform, so the voltage anomaly waveform contains more information. (2) ShapeDTW and spectral clustering are used to match and cluster voltage anomaly waveforms, so as to achieve the normalization of voltage sag events. (3) In practical engineering, the proposed method in the paper can be used to obtain the impact of voltage sags, reduce computational complexity, and ease the workload of the operation and maintenance engineers. Experiments were conducted using voltage sag data from voltage sag events recorded by the 10 kV monitoring points in Beijing, China. The results showed the effectiveness and reliability of our proposed methods. Full article
Show Figures

Figure 1

19 pages, 5643 KB  
Article
Visual Analysis of Vessel Behaviour Based on Trajectory Data: A Case Study of the Yangtze River Estuary
by Ye Li and Hongxiang Ren
ISPRS Int. J. Geo-Inf. 2022, 11(4), 244; https://doi.org/10.3390/ijgi11040244 - 9 Apr 2022
Cited by 17 | Viewed by 4140
Abstract
The widespread of shipborne Automatic Identification System (AIS) equipment will continue to produce a large amount of spatiotemporal trajectory data. In order to explore and understand the hidden behaviour patterns in the data, an interactive visual analysis method combining multiple views is proposed. [...] Read more.
The widespread of shipborne Automatic Identification System (AIS) equipment will continue to produce a large amount of spatiotemporal trajectory data. In order to explore and understand the hidden behaviour patterns in the data, an interactive visual analysis method combining multiple views is proposed. The method mainly includes four parts: using a trajectory compression algorithm that takes into account the vessel motion characteristics to preprocess the vessel trajectory data; displaying and replaying vessel trajectories based on Electronic Chart System (ECS), and proposing a detection algorithm for vessel stay points based on the principle of spatiotemporal density to semantically label vessel trajectories; using the Fast Dynamic Time Warping (FastDTW) similarity measurement algorithm and the Ordering Points to Identify the Clustering Structure (OPTICS) clustering algorithm to cluster vessel trajectories to show the differences and similarities between vessel traffic flows; and showing the distribution of vessels and the variation trend of vessel density based on the vessel heatmap. Based on the AIS data of the Yangtze River Estuary, three cases are used to prove the usefulness and effectiveness of the system in vessel behaviour analysis. Full article
(This article belongs to the Special Issue Geovisualization and Map Design)
Show Figures

Figure 1

14 pages, 9281 KB  
Article
Motion Similarity Evaluation between Human and a Tri-Co Robot during Real-Time Imitation with a Trajectory Dynamic Time Warping Model
by Liang Gong, Binhao Chen, Wenbin Xu, Chengliang Liu, Xudong Li, Zelin Zhao and Lujie Zhao
Sensors 2022, 22(5), 1968; https://doi.org/10.3390/s22051968 - 2 Mar 2022
Cited by 19 | Viewed by 4981
Abstract
Precisely imitating human motions in real-time poses a challenge for the robots due to difference in their physical structures. This paper proposes a human–computer interaction method for remotely manipulating life-size humanoid robots with a new metrics for evaluating motion similarity. First, we establish [...] Read more.
Precisely imitating human motions in real-time poses a challenge for the robots due to difference in their physical structures. This paper proposes a human–computer interaction method for remotely manipulating life-size humanoid robots with a new metrics for evaluating motion similarity. First, we establish a motion capture system to acquire the operator’s motion data and retarget it to the standard bone model. Secondly, we develop a fast mapping algorithm, by mapping the BVH (BioVision Hierarchy) data collected by the motion capture system to each joint motion angle of the robot to realize the imitated motion control of the humanoid robot. Thirdly, a DTW (Dynamic Time Warping)-based trajectory evaluation method is proposed to quantitatively evaluate the difference between robot trajectory and human motion, and meanwhile, visualization terminals render it more convenient to make comparisons between two different but simultaneous motion systems. We design a complex gesture simulation experiment to verify the feasibility and real-time performance of the control method. The proposed human-in-the-loop imitation control method addresses a prominent non-isostructural retargeting problem between human and robot, enhances robot interaction capability in a more natural way, and improves robot adaptability to uncertain and dynamic environments. Full article
(This article belongs to the Collection Smart Robotics for Automation)
Show Figures

Figure 1

19 pages, 6422 KB  
Article
Hand Gesture Recognition on a Resource-Limited Interactive Wristband
by Shenglin Zhao, Haoyuan Cai, Wenkuan Li, Yaqian Liu and Chunxiu Liu
Sensors 2021, 21(17), 5713; https://doi.org/10.3390/s21175713 - 25 Aug 2021
Cited by 7 | Viewed by 5156
Abstract
Most of the reported hand gesture recognition algorithms require high computational resources, i.e., fast MCU frequency and significant memory, which are highly inapplicable to the cost-effectiveness of consumer electronics products. This paper proposes a hand gesture recognition algorithm running on an interactive wristband, [...] Read more.
Most of the reported hand gesture recognition algorithms require high computational resources, i.e., fast MCU frequency and significant memory, which are highly inapplicable to the cost-effectiveness of consumer electronics products. This paper proposes a hand gesture recognition algorithm running on an interactive wristband, with computational resource requirements as low as Flash < 5 KB, RAM < 1 KB. Firstly, we calculated the three-axis linear acceleration by fusing accelerometer and gyroscope data with a complementary filter. Then, by recording the order of acceleration vectors crossing axes in the world coordinate frame, we defined a new feature code named axis-crossing code. Finally, we set templates for eight hand gestures to recognize new samples. We compared this algorithm’s performance with the widely used dynamic time warping (DTW) algorithm and recurrent neural network (BiLSTM and GRU). The results show that the accuracies of the proposed algorithm and RNNs are higher than DTW and that the time cost of the proposed algorithm is much less than those of DTW and RNNs. The average recognition accuracy is 99.8% on the collected dataset and 97.1% in the actual user-independent case. In general, the proposed algorithm is suitable and competitive in consumer electronics. This work has been volume-produced and patent-granted. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

26 pages, 11876 KB  
Article
A Dimensionality Reduction-Based Multi-Step Clustering Method for Robust Vessel Trajectory Analysis
by Huanhuan Li, Jingxian Liu, Ryan Wen Liu, Naixue Xiong, Kefeng Wu and Tai-hoon Kim
Sensors 2017, 17(8), 1792; https://doi.org/10.3390/s17081792 - 4 Aug 2017
Cited by 178 | Viewed by 9996
Abstract
The Shipboard Automatic Identification System (AIS) is crucial for navigation safety and maritime surveillance, data mining and pattern analysis of AIS information have attracted considerable attention in terms of both basic research and practical applications. Clustering of spatio-temporal AIS trajectories can be used [...] Read more.
The Shipboard Automatic Identification System (AIS) is crucial for navigation safety and maritime surveillance, data mining and pattern analysis of AIS information have attracted considerable attention in terms of both basic research and practical applications. Clustering of spatio-temporal AIS trajectories can be used to identify abnormal patterns and mine customary route data for transportation safety. Thus, the capacities of navigation safety and maritime traffic monitoring could be enhanced correspondingly. However, trajectory clustering is often sensitive to undesirable outliers and is essentially more complex compared with traditional point clustering. To overcome this limitation, a multi-step trajectory clustering method is proposed in this paper for robust AIS trajectory clustering. In particular, the Dynamic Time Warping (DTW), a similarity measurement method, is introduced in the first step to measure the distances between different trajectories. The calculated distances, inversely proportional to the similarities, constitute a distance matrix in the second step. Furthermore, as a widely-used dimensional reduction method, Principal Component Analysis (PCA) is exploited to decompose the obtained distance matrix. In particular, the top k principal components with above 95% accumulative contribution rate are extracted by PCA, and the number of the centers k is chosen. The k centers are found by the improved center automatically selection algorithm. In the last step, the improved center clustering algorithm with k clusters is implemented on the distance matrix to achieve the final AIS trajectory clustering results. In order to improve the accuracy of the proposed multi-step clustering algorithm, an automatic algorithm for choosing the k clusters is developed according to the similarity distance. Numerous experiments on realistic AIS trajectory datasets in the bridge area waterway and Mississippi River have been implemented to compare our proposed method with traditional spectral clustering and fast affinity propagation clustering. Experimental results have illustrated its superior performance in terms of quantitative and qualitative evaluations. Full article
Show Figures

Figure 1

29 pages, 8561 KB  
Article
A Vehicle Steering Recognition System Based on Low-Cost Smartphone Sensors
by Xinhua Liu, Huafeng Mei, Huachang Lu, Hailan Kuang and Xiaolin Ma
Sensors 2017, 17(3), 633; https://doi.org/10.3390/s17030633 - 20 Mar 2017
Cited by 22 | Viewed by 11802
Abstract
Recognizing how a vehicle is steered and then alerting drivers in real time is of utmost importance to the vehicle and driver’s safety, since fatal accidents are often caused by dangerous vehicle maneuvers, such as rapid turns, fast lane-changes, etc. Existing solutions using [...] Read more.
Recognizing how a vehicle is steered and then alerting drivers in real time is of utmost importance to the vehicle and driver’s safety, since fatal accidents are often caused by dangerous vehicle maneuvers, such as rapid turns, fast lane-changes, etc. Existing solutions using video or in-vehicle sensors have been employed to identify dangerous vehicle maneuvers, but these methods are subject to the effects of the environmental elements or the hardware is very costly. In the mobile computing era, smartphones have become key tools to develop innovative mobile context-aware systems. In this paper, we present a recognition system for dangerous vehicle steering based on the low-cost sensors found in a smartphone: i.e., the gyroscope and the accelerometer. To identify vehicle steering maneuvers, we focus on the vehicle’s angular velocity, which is characterized by gyroscope data from a smartphone mounted in the vehicle. Three steering maneuvers including turns, lane-changes and U-turns are defined, and a vehicle angular velocity matching algorithm based on Fast Dynamic Time Warping (FastDTW) is adopted to recognize the vehicle steering. The results of extensive experiments show that the average accuracy rate of the presented recognition reaches 95%, which implies that the proposed smartphone-based method is suitable for recognizing dangerous vehicle steering maneuvers. Full article
Show Figures

Figure 1

25 pages, 1715 KB  
Article
Depth Camera-Based 3D Hand Gesture Controls with Immersive Tactile Feedback for Natural Mid-Air Gesture Interactions
by Kwangtaek Kim, Joongrock Kim, Jaesung Choi, Junghyun Kim and Sangyoun Lee
Sensors 2015, 15(1), 1022-1046; https://doi.org/10.3390/s150101022 - 8 Jan 2015
Cited by 50 | Viewed by 11484
Abstract
Vision-based hand gesture interactions are natural and intuitive when interacting with computers, since we naturally exploit gestures to communicate with other people. However, it is agreed that users suffer from discomfort and fatigue when using gesture-controlled interfaces, due to the lack of physical [...] Read more.
Vision-based hand gesture interactions are natural and intuitive when interacting with computers, since we naturally exploit gestures to communicate with other people. However, it is agreed that users suffer from discomfort and fatigue when using gesture-controlled interfaces, due to the lack of physical feedback. To solve the problem, we propose a novel complete solution of a hand gesture control system employing immersive tactile feedback to the user’s hand. For this goal, we first developed a fast and accurate hand-tracking algorithm with a Kinect sensor using the proposed MLBP (modified local binary pattern) that can efficiently analyze 3D shapes in depth images. The superiority of our tracking method was verified in terms of tracking accuracy and speed by comparing with existing methods, Natural Interaction Technology for End-user (NITE), 3D Hand Tracker and CamShift. As the second step, a new tactile feedback technology with a piezoelectric actuator has been developed and integrated into the developed hand tracking algorithm, including the DTW (dynamic time warping) gesture recognition algorithm for a complete solution of an immersive gesture control system. The quantitative and qualitative evaluations of the integrated system were conducted with human subjects, and the results demonstrate that our gesture control with tactile feedback is a promising technology compared to a vision-based gesture control system that has typically no feedback for the user’s gesture inputs. Our study provides researchers and designers with informative guidelines to develop more natural gesture control systems or immersive user interfaces with haptic feedback. Full article
(This article belongs to the Special Issue Sensor Systems for Motion Capture and Interpretation)
Show Figures

Back to TopTop