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Abstract: Most of the reported hand gesture recognition algorithms require high computational
resources, i.e., fast MCU frequency and significant memory, which are highly inapplicable to the
cost-effectiveness of consumer electronics products. This paper proposes a hand gesture recognition
algorithm running on an interactive wristband, with computational resource requirements as low
as Flash < 5 KB, RAM < 1 KB. Firstly, we calculated the three-axis linear acceleration by fusing
accelerometer and gyroscope data with a complementary filter. Then, by recording the order of
acceleration vectors crossing axes in the world coordinate frame, we defined a new feature code
named axis-crossing code. Finally, we set templates for eight hand gestures to recognize new samples.
We compared this algorithm’s performance with the widely used dynamic time warping (DTW)
algorithm and recurrent neural network (BiLSTM and GRU). The results show that the accuracies
of the proposed algorithm and RNNs are higher than DTW and that the time cost of the proposed
algorithm is much less than those of DTW and RNNs. The average recognition accuracy is 99.8%
on the collected dataset and 97.1% in the actual user-independent case. In general, the proposed
algorithm is suitable and competitive in consumer electronics. This work has been volume-produced
and patent-granted.

Keywords: complementary filter; dynamic time warping (DTW); hand gesture recognition (HGR);
inertial measurement unit (IMU); interactive wristband; recurrent neural network (RNN)

1. Introduction

As an intuitive and convenient expression, gesture recognition becomes ubiquitous
in human-computer interaction. Gesture recognition technology has been widely used in
robot control [1], military tasks [2], authentication systems [3], medical assistance [4], smart
home [5], and games [6]. Recently with the rapid development of consumer electronics and
the proliferation of technologies, further cutting down computational resources under the
premise of ensuring accuracy has become a new requirement. There are mainly two types of
gesture recognition methods, i.e., vision-based and inertial sensor-based [7]. Vision-based
approaches are subject to ambit, illumination, low sampling rate, and high computational
burden. In contrast, inertial sensor-based methods have fewer restrictions when it comes
to users’ surrounding environments and relatively lower cost. Therefore, most hand
gesture recognition (HGR) studies are based on inertial sensors, especially Micro-Electro-
Mechanical System (MEMS) sensors. The technologies to be introduced below are all based
on inertial sensors.

Most of the widely-used methods, such as support vector machine (SVM) [5,8–10],
hidden Markov model (HMM) [11–13], neural network [14–17], and dynamic time warp-
ing (DTW) [3,18–22] have achieved good results for recognition accuracy, from 90% to
100%. Traditional machine learning (ML)and neural network (deep learning, DL) methods
are data-driven. Their recognition performance depends on whether the training data
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is sampled adequately for the scene in which they will be used. DTW is considered the
best accuracy/computation cost relationship [3] and has been widely applied to speech
recognition, gesture recognition, and other signal recognition tasks with time sequence
characteristics. However, the main challenge for all above algorithms lies in the misrecogni-
tion caused by different preferred speeds and styles, manifested as individual differences,
e.g., Y. Wang et al. [10] got the accuracy of recognition at 100% under user-dependent cases,
while only 87% accuracy under user-independent cases. This problem can be reduced by
expanding the training library for machine learning or selecting appropriate DTW tem-
plates adaptively. Besides, the recognition accuracy may drop when adding new gestures
to be recognized. Akl et al. [23] tested the recognition accuracy of different algorithms
when the number of gesture types increases, where that of classic dynamic time warping
(DTW) decreased from 75% to 60% when the types of gestures increased from 12 to 14.

In the cost-focused consumer electronics industry, the requirement of computational
resources is a more prominent problem. In terms of computational cost, machine learning
methods occupy extensive resources both in the training and recognition stages. DTW may
also require a large memory to store the metric matrix, which is always related to the data
length. In recent years, some CNN-based deep learning algorithms such as MobileNets [24]
and ShuffleNets [25] have emerged to speed up the computing time by reducing the
amount of computation. They are both based on depthwise separable convolution, which
can theoretically reduce the amount of calculation to one-tenth of the original. When using
the CPU for calculation, MobileNets can increase the computing speed by more than three
times. However, this level of computing still has relatively high requirements for CPU
(Qualcomm Snapdragon 810, for example), which make it difficult to run on a very low-cost
MCU, such as Cortex32-M0 as used in this paper. In fact, almost all the studies implement
their HGR algorithm on powerful computing devices, such as PC [7,9,10,13,14,18,19,22],
smartphone [3,21], or FPGA [15]. The difficulties lie in compromising both on the hardware
cost and the algorithm performance. A conventional way for most studies is to proceed to
collect inertial sensor data on a cheap microcontroller and transmit them to a PC for the
HGR algorithm, e.g., the inertial pen proposed by Hsu et al. in [18,19] and the wrist-worn
band proposed by Liu et al. in [22]. In general, the dependence on additional computational
equipment presents a cost problem.

For the user’s experience, wired or wireless and hand-held or wearable also need
to be considered. Besides integrated devices such as smartphones, most of the studies
transmit sensor data to PCs wirelessly [7,9,10,13,18,19,22] or via a data cable [9,14,15]. Some
studies developed hand-held modules, such as inertial pen [18,19], sensing mote [13], or
HGR for smartphones [3,21]. In most scenarios, wearable devices such as gloves [9] and
wristbands [22] are more convenient for users.

A multinational consumer electronics client enterprise demands an interactive wrist
band with all the above characteristics, i.e., high recognition accuracy, minimization of
commodity cost, and the suitability for wearing. However, the above works do not meet
the requirements. Table 1 lists previous studies, detailing their adopted technical solutions,
computing hardware, the number of gestures, and the recognition accuracy.
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Table 1. Summary of several typical studies.

Device Solution Computing Hardware Number of Gestures Accuracy

TV controller [5] MLP/SVM PIC32MX250F128D 20 98.1%
Sensing module [7] Sign sequence based method PC 7 95.6%

Glove [9] PCA+ANN/ELM/SVM PC 7 98.1%
Wearable IMU [10] PCA+LDA+SVM+DTW PC 10 87.0%
Sensing mote [13] DCT+HMM PC 7 95.7%

Pen-style module [14] FNN+SM PC 8 (basic) 98.9%
Test platform [15] RCE neural network+DTW FPGA 10 98.6%

Patchable IMU [16] RNN PC 3 95.3%
Inertial pen [18,19] DTW PC 8 98.1%

Continuous HGR [21] DTW Smartphones 6 94.0%
Wristband [22] DTW PC 12 96.9%

Proposed wristband Axis-crossing code matching Cortex32-M0 level MCU 8 97.1%

Computing hardware refers to the platform where the recognition or classification algorithm works. Microcontrollers for signal acquisition
and preprocessing are not listed here because they are at the same level as computing. Accuracy is the precision of the 3D hand gesture
recognition in the user-independent case. If there was no result, the general recognition accuracy will be displayed. If multiple algorithms
are proposed, the table will display the highest accuracy.

This paper introduces a novel gesture recognition algorithm for a wrist band to
interact with intelligent speakers. It neither adopts DTW nor other classic machine learning
classifiers and deep learning methods. It adopts a template matching method based on
acceleration axis-crossing codes. The significant contributions of this paper include:

(a) We introduce a template matching method based on acceleration axis-crossing code
and achieved high accuracy in eight gestures both in user-dependent and user-
independent cases.

(b) The algorithm has a very fast computational speed and can be implemented on
resource-limited hardware, which is competitive in consumer electronics.

(c) The recognition algorithm does not require an extensive database and does not need
to collect as many gestures made by different people as possible to improve the
recognition accuracy.

The rest of the paper is organized as follows: Section 2 introduces some related
work about hand gesture recognition algorithms using accelerometers and gyroscopes.
Section 3 describes our algorithm’s main idea and formulates the model. Section 4 details
the implementation process of the whole algorithm. Section 5 compares the proposed
algorithm with DTW in terms of accuracy and computational efficiency and provides the
accuracy for user-dependent and user-independent cases. Finally, Section 6 concludes our
work and discusses possible future research.

2. Related Work

DTW is a basic method to calculate the similarity of one-dimensional time-series
signals. It ensures a minimum cumulative distance between two aligned sequences and
can measure the similarity for the optimal alignment between two temporal sequences [19].
Hsu et al. proposed an inertial pen based on DTW that aligns the trajectories integrated
from a quaternion-based complementary filter using accelerometers, gyroscopes, and
magnetometers [18,19]. When recognizing eight 3D gestures, they obtained a recognition
rate from 82.3% to 98.1% using multiple cross-validation strategies. The inertial pen
collects inertial signals on the microcontroller STM32F103TB and transmits them to a PC’s
main processor via an RF wireless transceiver for further signal processing and analysis.
Srivastava et al. utilized DTW on quaternions and created a quaternion-based dynamic
time warping (QDTW) classifier to analyze play styles of a tennis player and provide
improvement advice [20]. One of the critical problems of DTW is how to select the class
templates in the training stage. Wang et al. selected the minimum intra-class DTW distance
as the class template [16]. Hsu et al. then developed a minimal intra-class to maximal inter-
class based template selection method as an improvement. There are also other template
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selection methods based on ML. As a similarity measure, DTW can also be combined with
different recognition algorithms [15,23]. Kim et al. replaced the metric calculation of the
restricted column energy (RCE) neural network [15] with DTW distance and achieved
an accuracy of 98.6%. Akl et al. employed DTW as well as affinity propagation (AP)
to improve the training stage [21]. This paper will also train a simple DTW classifier to
compare it with the proposed algorithm.

Support vector machine (SVM) [5,8–10] and hidden Markov model (HMM) [11–13] are
two typical machine learning methods in pattern recognition. SVM usually needs careful
feature extraction and selection, as well as other traditional ML algorithms like naïve
Bayes (NB), K-nearest neighbors (KNN), and decision tree (DT) [16]. HMM is memoryless
and unable to use contextual information. In contrast, deep learning (DL) algorithms
are becoming a new trend in gesture recognition because they extract and learn hidden
features directly from the raw data and usually have higher recognition accuracy. For time
sequential signals, recurrent neural networks (RNN) allow information to persist. Thus,
we can make full use of the contextual information of the sequence. However, RNN might
suffer from a vanishing gradient problem with long data sequences. To solve this problem,
Hochreiter et al. designed a special RNN, the long short-term memory (LSTM) network
that can learn long dependencies [26]. An LSTM unit is usually composed of a cell, an
input gate, an output gate, and a forget gate. The cell remembers values over arbitrary
time intervals and the three gates regulate the flow of information into and out of the cell.
Ordonez et al. proved that an LSTMRNN better classifies similar gestures than KNN, DT,
and SVM [27]. The LSTM was popularized and improved by many researchers. Some
variants include bidirectional-long short-term memory (BiLSTM) and gate recurrent unit
(GRU) [16,17]. BiLSTM consists of two LSTMs, one taking the input in a forward direction
and the other in a backward direction. This structure can effectively increase the amount of
information available to the network and improve the context available to the algorithm.
As another variant of LSTM, GRU combines the forget gate and the input gate into a single
update gate and also combines cell state and hidden state. It has fewer parameters than
LSTM. This paper will also train a BiLSTM-RNN and a GRU-RNN as two typical examples
of deep learning to compare them with the proposed algorithm.

3. Problem Formulation and Modeling

To learn what gesture has been drawn, the most intuitional approach is to restore
the spatial space trajectory [18,19]. However, for low-cost MEMS with a high noise ratio,
the trajectory obtained by a double integral of the acceleration is always unreliable. The
cumulative error will increase seriously when running for a period of time, and thus the
integral trajectory is challenging to identify. Therefore, most of the studies utilize the
original data or extracted features from accelerometers to develop recognition algorithms.
We would also deal with acceleration waveforms. Consider a standard circular motion
with a fixed origin in a plane: The relationship between the position vector and time can be
modeled as a vector function, shown in Equation (1), where ω and ϕ are the certain but
unknown angular rate and phase, respectively.

p(t) =
[

px(t)
py(t)

]
=

[
cos(ωt + ϕ)
sin(ωt + ϕ)

]
(1)

Acceleration is the second derivate of the position, as following:

a(t) =
[

ax(t)
ay(t)

]
=

[
−ω2 cos(ωt + ϕ)
−ω2 sin(ωt + ϕ)

]
(2)

It can be seen from Equations (1) and (2) that acceleration follows the same circu-
lar pattern and position. Representing their directions by tangent angle θ as shown in
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Equation (3), we can conclude that the acceleration direction and the position direction
differ by 180◦, and their tangent values are equal.

θa(t) = tan (ωt + ϕ + π) = tan (ωt + ϕ) =θp(t) (3)

That gives a revelation that, in some cases, the change of position and acceleration
follows the same regular pattern. Further, the evolution of the acceleration vector can
directly express the shift in the position vector. We performed a vertical clockwise circle and
plotted the accelerations in the world frame. Figure 1 validates that in the YZ-plane, the
Y-axis and Z-axis acceleration are two sine waves with about 90◦ phase difference. Figure 2
dynamically shows the acceleration vector and direction change in a circular gesture. For
a circular motion, we can recognize it by recording the angular value of the acceleration
vector in the world frame without calculating the trajectory.
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vector varying with time.

For non-circular motions or extremely non-standard circular motions, the above
analysis is not directly applicable. We only pay attention to when the quadrant of the
vector changes, i.e., when the vector passes through coordinate axes. If considering the
angle’s monotonicity, positive and negative of the coordinate axis, there will be eight
types of changing vectors. Each pattern is given an identification code, which we call
the axis-crossing code. Many gestures can be represented by combining these codes. In
this way, although there are differences between the actual trajectory and the measured
trajectory, the actual trajectory can still express the characteristics near the coordinate axis
through its corresponding acceleration.
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4. Gesture Recognition Algorithm Based on Axis-Crossing Code

Based on the axis-crossing code mentioned above, a hand gesture recognition al-
gorithm is implemented in this section. It is composed of five procedures: (1) signal
acquisition, (2) acceleration coordinate transformation to the world frame, (3) motion mode
detection, (4) gesture code generation, and (5) recognition by template codes. The pipeline
is shown in Figure 3. The accelerometers and gyroscopes measure signals generated by
hand movements in the wristband. For experimental purposes, they can also be sampled by
any other inertial modules and collected as a dataset for the PC to perform the evaluation.
The other processes will be described in detail below.
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Figure 3. Block diagram of the axis-crossing code based gesture recognition algorithm.

4.1. Acceleration Coordinate Transformation

This procedure transforms the acceleration from the sensor frame to the earth frame
so that the band can be worn on either the left or right hand. Users can gesture with their
hands arbitrarily instead of being asked to hold the band flat.

4.1.1. Drift Elimination

The accumulated error of the gyroscope is nonnegligible because it always makes
the heading angle drift quickly. The most critical process after acquisition from IMU is
to calibrate the random bias of the gyroscope. Ignoring the axis alignment error, the non-
orthogonality error, the scale error, and measurement noise (usually assumed Gaussian
white noise), a simplified mathematical model of the gyroscope can be expressed as in
Equation (4), where bgyro is the bias of gyroscope, ω is the actual value of the triaxial
angular velocity, and ω̃ is the measurement from the gyroscope.

ω̃ = ω + bgyro (4)

When the normalization of ω̃ changes minimally and stays smaller than the minimum
threshold for a certain length of time, the measurement ω̃ is considered as the bias bgyro.
By subtracting the bias from the measurement, we can approximately eliminate the drift.

4.1.2. Coordinate Transformation

Accelerometers measure the acceleration Sa in the sensor frame (body-fixed frame). It
can be expressed with respect to the earth frame by the quaternion E

S q and the conjugate
E
S q∗ as shown in Equation (5).

Ea = E
S q ⊗ Sa ⊗ E

S q∗ (5)
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Eliminating the gravity Eg from Ea and expressing the rotation defined above in matrix
form, we get the transformation equation shown as Equations (6) and (7).

Eg =
[

0 0 1
]T (6)

Ea = E
S RSa − Eg (7)

Our task in this procedure was to estimate E
S q. We utilized the quaternion-based

complementary filter (CF) to estimate the rotation information [28,29]. That was done to
design a closed-loop control system based on the frequency complementarity characteristics
of the accelerometer and gyroscope, to estimate the attitude of the sensor carrier in the
form of a quaternion. The implementation is shown in Figure 4.
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The controlled error is a cross product of the acceleration measurement Sã and the
estimation Sã that rotated from the gravity vector by an estimated unit quaternion. κP and
κI are proportional and integral gains respectively in the PI controller. Here we design a
membership function for κp, for the reason that some gestures may bring significant non-
gravitational acceleration to the accelerometer, which will distort the error to be controlled
calculated by cross product. The membership function is designed as in Equation (8a,b)
where τ is the absolute difference between the accelerometer measurement and grav-
ity. It ensures that when the proportion of non-gravitational acceleration increases, the
membership degree reduces [30].

τ = abs(‖Sã‖ − ‖Eg‖) (8a)

ξ(τ)= exp(−2 τ) (8b)

Complete iterative equations are shown as follows, where p(·) is the pure quaternion
operator, p(ω) = (0,ω).

e = Sã × Sâ (9a)

δ = κPξe + κI

∫
e (9b)

S
E

.
q =

1
2

S
Eq ⊗ p(Sω + δ) (9c)

After the transformation, a low-pass filter should be applied to the linear acceleration
Eã to eliminate the high-frequency component’s influence.

Eâk = αEãk + (1− α)Eãk−1 (10)
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4.2. Motion Detection

This part provides two functional decision processes before calculating the gesture
code.

4.2.1. Check Stationary

This function plays the role of segmentation. When the three axes’ accelerations are all
less than their respective thresholds for a period, the device is determined to be stationary.
At this time, the variables except quaternions are reset to clear the cache for the next gesture
to recognize. After a recognition result is given, there is also a timer waiting for clearing
variables. The algorithm does not wait for a gesture event to occur and intercepts this
whole segment for recognition. The segmentation process and recognition process are
carried out simultaneously because gesture codes keep on generating.

4.2.2. Check Shake Gesture

This function is to reset the direction since the definition of clockwise and counter-
clockwise depends on the observer’s direction. Viewing them from the opposite direction,
the clockwise circle and counterclockwise circle are opposite. Therefore, if it starts in an un-
known direction, or the heading angle accumulates a significant drift after a long running
time, the clockwise circle and counterclockwise circle may be confused. We added a shake
gesture to reset the direction. The shake gesture was recognized by detecting the aspect
ratio of an acceleration peak. If this value reached a threshold four times continuously, the
algorithm determined that a shake gesture occurred. Note that the method of identifying
shake gestures here is different from the method to be described below, and thresholds
guarantee their distinguishability.

4.3. Gesture Code
4.3.1. Projection on Main Plane

Determining the main plane of movement helps to classify gestures in the first step,
e.g., vertical or horizontal, and simplifies the two-dimensional plane’s calculation process.
Gestures in spatial space can be projected to the vertical or horizontal plane while main-
taining similar shapes. We accumulate the linear acceleration amplitudes on the three axes
and reset them only when stationary or known gesture duration reaches a threshold. We
take the two axes with larger accumulation as the main axis, and the plane determined
by them is the main plane. In this way, we have three planes—XY, XZ, and YZ—in the
earth frame. The z-axis points vertically up and the x-axis points an uncertain direction
horizontally, which is related to the position at the start.

4.3.2. Vector Angle Calculation and Gesture Code Generation

After obtaining the linear acceleration vector and its projection on the principal plane,
their quadrant angle θ can be defined as in Equation (11).

θ =


atan2(Y, X) , when XY plane
atan2(Z, Y) , when YZ plane
atan2(Z, X) , when XZ plane

(11)

We label the four pivotal axes as 1, 2, 3, and 4 in turn and make the following
conventions: when the vector passes through the quadrant axis in a clockwise direction, the
number of the quadrant axis is taken as a positive label; when the vector passes through the
quadrant axis in a counterclockwise direction, the number of the quadrant axis is recorded
as a negative label. In this paper, we define four-digit identification codes, i.e., recording
the last four labels. Marking the labels as c1, c2, c3 and c4, respectively, the calculation rules
of the gesture recognition code are as follows:

cges = 1000c1 + 100c2 + 10c3 + c4 (12)
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4.4. Recognition by Templates

We made templates for eight gestures: vertical clockwise circle (CWV), vertical counter-
clockwise circle (CCWV), horizontal clockwise circle (CWH), horizontal counterclockwise
circle (CCWH), up (U), down (D), left (L), and right (R). The trajectories of the eight gestures
are shown in Figure 5, and the corresponding gesture codes are listed in Table 2.
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Figure 5. Schematic diagram of eight gestures in spatial coordinate form.

Table 2. Eight gestures and their code templates.

Gestures Code Templates

CWV 1432, 4321, 3214, 2143
CWH 1432, 4321, 3214, 2143
CCWV −1234, −2341, −3412, 4123
CCWH −1234, −2341, −3412, 4123
U −2336, 2136, −3357, 1359, 3588, −3568, 1427, 4266, 2659, −3409, −857, −2338, −912, 877
D −4118, 4318, −409, −4086, 427, −1179, 3177, 1766, −1179, −1786
L 2088, 1359, 4266, 3177, 3209, 4318, 1427, 2136, −2679, −1786, −857, −3568
R −2268, −3357, −4086, −1179, 877, 1766, 2659, 3588, −4118, −1227, −2336, −3409

Figures 6 and 7 show the code templates and corresponding schematic diagrams of
circular gestures. See the Appendix A for diagrams corresponding to other identification
codes and gestures.
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In this way, when the four-digit identification code appears, the algorithm will traverse
these code templates to locate the corresponding gesture. Considering users may have
inadvertent interference action, each identification code can add the characteristic of
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duration and amplitude. On the other hand, this may require users to adapt to the
execution time and strength of actions. To say the least, an action that is too random cannot
be regarded as a gesture. If more types of gestures are requested to be added, we can add
new templates to Table 2 or expand the number of digits. But this may result in a decline
in the overall accuracy.

5. Experiments

The new algorithm presented in this article was evaluated and compared with two
typical HGRs —DTW and RNN—using a dataset of 200 × 8 gesture samples. The dataset
was collected from an LPMS-B2 module with a sampling rate of 200 Hz. One of the
characteristics of this dataset is that the starting point of the circle drawing action is not
fixed. It increases the complexity of the waveform of circle gestures and challenges different
HGR algorithms. The evaluation and comparison were processed on a PC running the
Microsoft Windows 10 operating system with an Intel(R) Core(TM) Processor i7-9700K
@ 3.60 GHz, 16-GB RAM, and GPU NVIDIA GeForce RTX 2060 Ti. Then, the proposed
algorithm was implemented and tested on the wristband both in user-dependent and
user-independent cases.

5.1. DTW Recognizer

The minimum cumulative distance obtained by DTW(·) programming in Equation (13)
represents the similarity of each axis of the two sequences Si and Sj. The smaller the
distance, the higher the similarity between the two sequences. For a three-axis vector, we
take its Euclidean distance as the representation of similarity, as shown in Equation (14).
Therefore, the most critical task when training a DTW recognizer is to select the optimal
DTW template. This article tested three methods to train the template of each gesture:

1. Minimal intra-class (min-intra): This is to find the template sample with the smallest
average distance from other samples in each pattern. Equation (15) is a mathematical
expression of the above solving process. For a sample Si, use DTW to calculate the
metric distance with all other samples Sj in the same class as the similarity criterion.
After traversing all the samples, the sample with the smallest average DTW distance
from other samples is selected as the template.

2. Minimal intra-class and maximal inter-class (min-intra and max-inter): The intra-class
DTW distance is calculated as the sum of the DTW distance between the template
sample and other samples within the same class, while the inter-class DTW distance
is calculated as the sum of the distance between the template and all other patterns
from the different class [19]. Equation (16) details the specific calculation method,
where Cinter_mean, Cintra_mean, Cinter_std, and Cintra_std are the means and the standard
deviations of the inter-class and intra-class DTW distances, respectively.

3. Maximal inter-class to intra-class (max-inter/intra): For each sample, Equation (17)
calculates the average DTW distance between this sample and the inter-class samples
divided by the average DTW distance between this sample and the intra-class samples,
and take the largest one as the template of this pattern. This is to ensure the maximum
difference between classes and within classes.

dx/y/z(i, j) = DTW(Sx/y/z,i, Sx/y/z,j) (13)

d(i, j) =
√

d2
x(i, j) + d2

y(i, j) + d2
z(i, j) (14)

argmin
i

1
N

N

∑
j=1

d(i, j), i = 1, . . . , N (15)

argmax
i

[(Cinter_mean(i)− 2Cinter_std(i))− (Cintra_mean(i) + 2Cintra_std(i))], i = 1, . . . , N (16)
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argmax
i

Cinter_mean(i)
Cintra_mean(i)

, i = 1, . . . , N (17)

We used all the samples to train the DTW recognizer and tested it with the same data.
The recognition accuracy of the three template selection methods is listed in Table 3. The
average recognition precision shows that the min-intra and max-inter/intra are similar,
and both are better than the min-intra and max-inter methods. This is not in line with
our intuition because according to [19], the min-intra and max-inter method are at least
not inferior to the min-intra method. We think the reason lies in the complexity of circle
gestures due to different starting points and orientations. Figure 8 shows 15 CWV gestures,
all of which have different starting points, and their orientations are uncertain. We can
intuitively see that the waveforms of the same gesture have significant distinction, so the
standard deviation of the intra-class distance would be substantial, resulting in the extreme
inaccuracy of the min-intra and max-inter method. In fact, the significant distinction
between samples within the same class is also the main reason for the low accuracy of
the DTW algorithm, no matter which template selection method is used. We chose the
min-intra method as the representative of the DTW recognizer to further compare the
accuracy and the consumption of computing time.

Table 3. Each gesture’s recognition accuracy of three DTW template selection methods.

CWV CWH CCWV CCWH U D L R Average

Min-intra 52.0% 63.5% 54.0% 45.0% 99.5% 38.5% 63.5% 58.5% 59.3%

Min-intra and max-inter 34.5% 71.5% 37.0% 68.0% 16.0% 38.5% 20.5% 10.5% 37.0%

Max-inter/intra 73.0% 68.5% 71.0% 51.0% 74.0% 51.5% 31.5% 51.0% 58.9%

Sensors 2021, 21, x FOR PEER REVIEW 11 of 19 
 

 

( ) ( )( ) ( ) ( )( )2 2inter_mean inter_std intra_mean intra_stdargmax
i

C i C i C i C i − + - , i = 1,...,N  (16) 

( )

( )
inter_mean

intra_mean

argmax
i

C i

C i
, i = 1,...,N  (17) 

We used all the samples to train the DTW recognizer and tested it with the same data. 

The recognition accuracy of the three template selection methods is listed in Table 3. The 

average recognition precision shows that the min-intra and max-inter/intra are similar, 

and both are better than the min-intra and max-inter methods. This is not in line with our 

intuition because according to [19], the min-intra and max-inter method are at least not 

inferior to the min-intra method. We think the reason lies in the complexity of circle ges-

tures due to different starting points and orientations. Figure 8 shows 15 CWV gestures, 

all of which have different starting points, and their orientations are uncertain. We can 

intuitively see that the waveforms of the same gesture have significant distinction, so the 

standard deviation of the intra-class distance would be substantial, resulting in the ex-

treme inaccuracy of the min-intra and max-inter method. In fact, the significant distinction 

between samples within the same class is also the main reason for the low accuracy of the 

DTW algorithm, no matter which template selection method is used. We chose the min-

intra method as the representative of the DTW recognizer to further compare the accuracy 

and the consumption of computing time. 

Table 3. Each gesture’s recognition accuracy of three DTW template selection methods. 

 CWV CWH CCWV CCWH U D L R Average 

Min-intra 52.0% 63.5% 54.0% 45.0% 99.5% 38.5% 63.5% 58.5% 59.3% 

Min-intra and max-inter 34.5% 71.5% 37.0% 68.0% 16.0% 38.5% 20.5% 10.5% 37.0% 

Max-inter/intra 73.0% 68.5% 71.0% 51.0% 74.0% 51.5% 31.5% 51.0% 58.9% 

 

 

Figure 8. Waveforms of 15 CWV gesture samples whose starting points are unfixed; the waveforms 

evidently differ. 

5.2. RNN-BiLSTM and RNN-GRU 

This paper referred to the methods in [16] and compared the two most representative 

and advantageous HGR algorithms of RNN—BiLSTM and GRU—with the proposed 
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waveforms evidently differ.

5.2. RNN-BiLSTM and RNN-GRU

This paper referred to the methods in [16] and compared the two most representative
and advantageous HGR algorithms of RNN—BiLSTM and GRU—with the proposed
algorithm. Their architectures are shown in Figure 9. The RNN-BiLSTM consists of two
hidden layers that both have 64 neurons. The RNN-GRU is composed of a first hidden layer
of 64 neurons and a second hidden layer of 128 neurons. At the output of the networks, a
dense layer (fully connected layer) with eight nodes representing each of the hand gestures
and the SoftMax activation function provides the classification probability.
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Figure 9. Architectures of (a) RNN–BiLSTM and (b) RNN–GRU.

The RNN-BiLSTM and RNN-GRU were implemented using the Keras library. The
minibatch approach with a mini-batch size of 64 was used for training. The initial weights
of the network were generated randomly. The learning rate was set as 0.001 and the number
of training iterations to 40. The trained RNN-BiLSTM and RNN-GRU model classified
the data as many-to-one, recognizing the input data as a single label. The inertial data
collected from the LPMS-B2 module was divided into 70%(140) as a training dataset and the
remaining 30%(60) as a testing dataset. The training process is 40-epochs. Tables 4 and 5
give the confusion matrix of BiLSTM and GRU, respectively, where the row labels are
actual and the column labels are predictions. We can get the average classification accuracy
using RNN-BiLSTM of 98.0% and the RNN-GRU of 97.7%. That average classification
accuracy of RNN-BiLSTM is better than that of 96.06% using the public data and 94.12%
using the collected data reported in [16]. Likewise, the accuracy of RNN-GRU is higher
than their 95.34% with their collected data but lower than their 99.16% with the public data.
Considering that the data sets used are fundamentally different, it can be assumed that the
recognition accuracy achieved by the two articles is similar.

Table 4. Confusion matrix of BiLSTM.

CWV CCWV CWH CCWH U D L R

CWV 60
CCWV 59 1 1
CWH 59 2 1

CCWH 59 1 2
U 1 60
D 59
L 1 57
R 57

Table 5. Confusion matrix of GRU.

CWV CCWV CWH CCWH U D L R

CWV 59 1
CCWV 57 1 1
CWH 59 1

CCWH 1 59 2 3
U 60
D 2 59
L 1 57
R 57
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5.3. Comprehensive Comparison with DTW and RNN

This section compares the overall accuracy and time cost of four algorithms on the
same PC with an Intel Core processor i7-9700K (3.60 GHz).

Table 6 presents the comparison of the accuracy of all four HGR algorithms, in which
BiLSTM, GRU, and the proposed algorithm all have high recognition accuracy. DTW
has the worst accuracy, which has been discussed in Section 5.1. At the same time, the
proposed algorithm gets the best accuracy. When considering time consumption, as listed
in Table 7, the two RNN algorithms show significant disadvantages. The histogram in
Figure 10 provides an intuitive expression of this substantial difference in time cost. It can
be seen that among DTW and RNNs, accuracy and time cost compose a trade-off problem:
higher accuracy requires more computing time. But our algorithm dramatically reduces
the balance point of the trade-off problem. While maintaining high precision, the time cost
of our algorithm is only 7.6%, 2.0%, and 3.3% of DTW, BiLSTM, and GRU, respectively.

Table 6. Recognition accuracy of four HGR algorithms for each gesture.

CWV CWH CCWV CCWH U D L R Average

DTW 52.0% 63.5% 54.0% 45.0% 99.5% 38.5% 63.5% 58.5% 59.3%

BiLSTM 100.0% 98.3% 98.3% 98.3% 100.0% 98.3% 95.0% 95.0% 98.0%

GRU 98.3% 95.0% 98.3% 98.3% 100.0% 98.3% 96.7% 95.0% 97.7%

Proposed 100.0% 98.5% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 99.8%

Table 7. Recognition time cost (µs) of four HGR algorithms for each gesture.

CWV CWH CCWV CCWH U D L R Average

DTW 1578 1574 1511 1604 1403 1435 1212 1294 1452

BiLSTM 5469 5352 5352 5385 5319 5353 5386 5453 5383

GRU 3341 3407 3307 3324 3374 3341 3374 3324 3350

Proposed 133 123 125 133 86 96 88 95 110
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5.4. Implementation and User-Independent Test

We implemented our algorithm on a small circuit board integrated with a Cortex32
M0 chip and IMU module, as shown in Figure 11. The device is as small as the size of
two coins and can be fixed on the wrist without external equipment. Figure 12 shows how
users interact with the intelligence speaker using our wristband. The user can perform
either large or small circle gestures, and the wristband can quickly complete the recognition
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task online. The recognition result is directly transmitted to the intelligence speaker and
its lighting components via Bluetooth to emit different sounds and light colors. The
computational resource requirements are as low as Flash < 5 KB, RAM < 1 KB. The
maximum battery consumption is about 13 mA × 3.3 V.
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The same gesture performed by different people may vary significantly in speed
and amplitude because of their different movement habits. Therefore, it is necessary to
test the recognition accuracy for different people to make the product more widely used.
We investigated eight participants (six males and two females) to test their individual
differences. Before starting the experiment, they were told some points to remember:

1. Pause 1–2 s before each gesture to reset the state.
2. When drawing a circle, it is better to draw one and a quarter circle or more, and the diameter

of the circle should not be too large. The more concise and standard the action is, the higher
the accuracy will be.

3. When performing straight gestures, it is better to make a short and strong movement without
procrastination.

With these suggestions in mind, the participants were allowed to have some time to get
adapted and then they were asked to repeat each gesture 50 times. Each person’s precision
is shown in Table 8, and an average precision of 97.1% is achieved. Table 9 shows the
confusion matrix in the user-independent case. From Table 5, we conclude a shortcoming
that if the user performs the circle gesture too largely, it is easy to be recognized as an up or
down gesture. That is why user2 tested as having a relatively low accuracy comparing to
other testers in Table 4. Individual differences could be large if users could not perform
each gesture with the necessary consistency.

Table 8. Accuracy of the user-independent case.

Users User1 User2 User3 User4 User5 User6 User7 User8 Average

Accuracy 99.5% 92.0% 97.5% 97.4% 98.3% 97.0% 97.3% 97.5% 97.1%
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Table 9. Confusion matrix of axis-crossing code based recognition algorithm in the user-
independent case.

CWV CWH CCWV CCWH U D L R

CWV 479 1 4
CWH 1 491 4

CCWV 473 4 1
CCWH 492 7

U 4 4 485 19
D 16 23 10 476
L 9 490 2
R 8 6 491

We further used the false acceptance rate (FAR) and the false rejected rate (FRR) to
evaluate the performance of our algorithm in the user-independent case. Table 10 lists
the FAR and FRR of each gesture. The results show the average FAR to be 0.44% and the
average FRR to be 3.08%. They are close to the authentication system (FAR of 0.27%, FRR
of 4.65%) achieved in [3].

Table 10. FAR and FRR of each gesture in the user-independent case.

Gesture CWV CWH CCWV CCWH U D L R Average

FAR 0.14% 0.14% 0.14% 0.20% 0.77% 1.40% 0.31% 0.40% 0.44%

FRR 4.20% 1.80% 5.40% 1.60% 3.00% 4.80% 2.00% 1.80% 3.08%

6. Conclusions and Further Work

This paper proposed and implemented a novel gesture recognition method based on
axis-crossing code that can recognize eight gestures. It reached an average recognition
accuracy of 99.8% on the collected dataset and 97.1% in the actual user-independent case.
The offline test showed that the time consumed by this algorithm was 92.4% less than
that of DTW and 97.3% less than RNN (BiLSTM and GRU) on average. It has excellent
competitiveness in computing efficiency. Besides, the proposed algorithm dramatically
reduces the computational complexity so that gesture recognition can be successfully used
on cheap CPUs and MEMS sensors. However, performing large circles may cause serious
misidentification, and the individual differences can be relatively significant. It is also
challenging to maintain high recognition accuracy when adding new gestures due to
the combinations of four-digit axis-crossing codes. The expansion of n-digit codes and
combination with deep neural networks will be further studied.

7. Patents

This work has a patent granted, CN201910415577. It is available at https://worldwide.
espacenet.com/patent/search/family/067490964/publication/CN110109551A?q=CN201
910415577 (accessed on 17 May 2019).

Abstract: The invention discloses a gesture recognition method which is applied to the
technical field of wearable equipment and comprises the steps of S1 initializing an attitude
quaternion of an inertial sensor, a three-axis acceleration vector of the inertial sensor in
a geographic coordinate system, a three-axis gyroscope vector of the inertial sensor in a
body coordinate system and a gesture feature code; S2, acquiring a three-axis acceleration
vector and a three-axis gyroscope vector; S3, based on the three-axis acceleration vector
and the three-axis gyroscope vector, judging whether the state of the inertial sensor is a
non-static state; S4, calculating and recording a motion vector angle based on the three-axis
acceleration vector; S5, judging a gesture identification code based on the motion vector
angle; S6, updating the gesture feature code based on the gesture identification code; and
S7, searching the gesture feature code in a preset gesture feature code library so as to
identify the gesture of the user. The invention further provides a gesture recognition device,

https://worldwide.espacenet.com/patent/search/family/067490964/publication/CN110109551A?q=CN201910415577
https://worldwide.espacenet.com/patent/search/family/067490964/publication/CN110109551A?q=CN201910415577
https://worldwide.espacenet.com/patent/search/family/067490964/publication/CN110109551A?q=CN201910415577
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an apparatus and a storage medium. According to the present invention, the problem of
low recognition precision caused by the higher gesture action requirements in the prior art
is effectively solved.

Author Contributions: Conceptualization, H.C.; methodology, H.C. and S.Z.; software, H.C., S.Z.
and Y.L; validation, H.C.; formal analysis, S.Z.; investigation, S.Z.; data curation, S.Z.; writing—
original draft preparation, S.Z.; writing—review and editing, H.C., W.L. and Y.L.; visualization,
S.Z.; supervision, H.C.; funding acquisition, C.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by National Key Research and Development Plan (2020YFC2004501
and 2020YFC2004503), National Natural Science Foundation of China (NSFC) (Nos. 61774157 and
81771388), and Beijing Natural Science Foundation (No. 4182075).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available now and will be uploaded later to the
public repository.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Figures A1–A4 are the recognition codes templates and their sketch maps of Up,
Down, Left, and Right gestures.
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