Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (604)

Search Parameters:
Keywords = Fab-7

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6478 KiB  
Article
Human Small Intestinal Tissue Models to Assess Barrier Permeability: Comparative Analysis of Caco-2 Cells, Jejunal and Duodenal Enteroid-Derived Cells, and EpiIntestinalTM Tissues in Membrane-Based Cultures with and Without Flow
by Haley L. Moyer, Leoncio Vergara, Clifford Stephan, Courtney Sakolish, Hsing-Chieh Lin, Weihsueh A. Chiu, Remi Villenave, Philip Hewitt, Stephen S. Ferguson and Ivan Rusyn
Bioengineering 2025, 12(8), 809; https://doi.org/10.3390/bioengineering12080809 - 28 Jul 2025
Viewed by 264
Abstract
Accurate in vitro models of intestinal permeability are essential for predicting oral drug absorption. Standard models like Caco-2 cells have well-known limitations, including lack of segment-specific physiology, but are widely used. Emerging models such as organoid-derived monolayers and microphysiological systems (MPS) offer enhanced [...] Read more.
Accurate in vitro models of intestinal permeability are essential for predicting oral drug absorption. Standard models like Caco-2 cells have well-known limitations, including lack of segment-specific physiology, but are widely used. Emerging models such as organoid-derived monolayers and microphysiological systems (MPS) offer enhanced physiological relevance but require comparative validation. We performed a head-to-head evaluation of Caco-2 cells, human jejunal (J2) and duodenal (D109) enteroid-derived cells, and EpiIntestinalTM tissues cultured on either static Transwell and flow-based MPS platforms. We assessed tissue morphology, barrier function (TEER, dextran leakage), and permeability of three model small molecules (caffeine, propranolol, and indomethacin), integrating the data into a physiologically based gut absorption model (PECAT) to predict human oral bioavailability. J2 and D109 cells demonstrated more physiologically relevant morphology and higher TEER than Caco-2 cells, while the EpiIntestinalTM model exhibited thicker and more uneven tissue structures with lower TEER and higher passive permeability. MPS cultures offered modest improvements in epithelial architecture but introduced greater variability, especially with enteroid-derived cells. Predictions of human fraction absorbed (Fabs) were most accurate when using static Caco-2 data with segment-specific corrections based on enteroid-derived values, highlighting the utility of combining traditional and advanced in vitro gut models to optimize predictive performance for Fabs. While MPS and enteroid-based systems provide physiological advantages, standard static models remain robust and predictive when used with in silico modeling. Our findings support the need for further refinement of enteroid-MPS integration and advocate for standardized benchmarking across gut model systems to improve translational relevance in drug development and regulatory reviews. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

20 pages, 3857 KiB  
Article
Temporal and Sex-Dependent N-Glycosylation Dynamics in Rat Serum
by Hirokazu Yagi, Sachiko Kondo, Reiko Murakami, Rina Yogo, Saeko Yanaka, Fumiko Umezawa, Maho Yagi-Utsumi, Akihiro Fujita, Masako Okina, Yutaka Hashimoto, Yuji Hotta, Yoichi Kato, Kazuki Nakajima, Jun-ichi Furukawa and Koichi Kato
Int. J. Mol. Sci. 2025, 26(15), 7266; https://doi.org/10.3390/ijms26157266 - 27 Jul 2025
Viewed by 381
Abstract
We conducted systematic glycomic and glycoproteomic profiling to characterize the dynamic N-glycosylation landscape of rat serum, with particular focus on sex- and time-dependent variations. MALDI-TOF-MS analysis revealed that rat serum N-glycans are predominantly biantennary, disialylated complex-type structures with extensive O-acetylation [...] Read more.
We conducted systematic glycomic and glycoproteomic profiling to characterize the dynamic N-glycosylation landscape of rat serum, with particular focus on sex- and time-dependent variations. MALDI-TOF-MS analysis revealed that rat serum N-glycans are predominantly biantennary, disialylated complex-type structures with extensive O-acetylation of Neu5Ac residues, especially in females. LC-MS/MS-based glycoproteomic analysis of albumin/IgG-depleted serum identified 87 glycoproteins enriched in protease inhibitors (e.g., serine protease inhibitor A3K) and immune-related proteins such as complement C3. Temporal analyses revealed stable sialylation in males but pronounced daily fluctuations in females, suggesting hormonal influence. Neu5Gc-containing glycans were rare and mainly derived from residual IgG, as confirmed by glycomic analysis. In contrast to liver-derived glycoproteins, purified IgG exhibited Neu5Gc-only sialylation without O-acetylation, underscoring distinct sialylation profiles characteristic of B cell-derived glycoproteins. Region-specific glycosylation patterns were observed in IgG, with the Fab region carrying more disialylated structures than Fc. These findings highlight cell-type and sex-specific differences in sialylation patterns between hepatic and immune tissues, with implications for hormonal regulation and biomarker research. This study provides a valuable dataset on rat serum glycoproteins and underscores the distinctive glycosylation features of rats, reinforcing their utility as model organisms in glycobiology and disease research. Full article
(This article belongs to the Special Issue Glycobiology of Health and Diseases)
Show Figures

Figure 1

17 pages, 7840 KiB  
Article
Systemic and Retinal Protective Effects of Butyrate in Early Type 2 Diabetes via Gut Microbiota–Lipid Metabolism Interaction
by Haijun Gong, Haoyu Zuo, Keling Wu, Xinbo Gao, Yuqing Lan and Ling Zhao
Nutrients 2025, 17(14), 2363; https://doi.org/10.3390/nu17142363 - 18 Jul 2025
Viewed by 376
Abstract
Background: Early neurovascular unit (NVU) impairment plays a critical role in the pathogenesis of diabetic retinopathy (DR), often preceding clinically detectable changes. Butyrate, a short-chain fatty acid (SCFA) derived from gut microbiota, has shown promising metabolic and anti-inflammatory effects. Methods: This study [...] Read more.
Background: Early neurovascular unit (NVU) impairment plays a critical role in the pathogenesis of diabetic retinopathy (DR), often preceding clinically detectable changes. Butyrate, a short-chain fatty acid (SCFA) derived from gut microbiota, has shown promising metabolic and anti-inflammatory effects. Methods: This study investigated the protective potential of oral butyrate supplementation in a mouse model of early type 2 diabetes mellitus (T2DM) induced by a high-fat diet and streptozotocin. Mice (C57BL/6J) received sodium butyrate (5 g/L in drinking water) for 12 weeks. Retinal NVU integrity was assessed using widefield swept-source optical coherence tomography angiography (WF SS-OCTA), alongside evaluations of systemic glucose and lipid metabolism, hepatic steatosis, visual function, and gut microbiota composition via 16S rRNA sequencing. Results: Butyrate supplementation significantly reduced body weight, fasting glucose, serum cholesterol, and hepatic lipid accumulation. Microbiome analysis demonstrated a partial reversal of gut dysbiosis, characterized by increased SCFA-producing taxa (Ruminococcaceae, Oscillibacter, Lachnospiraceae) and decreased pro-inflammatory, lipid-metabolism-related genera (Rikenella, Ileibacterium). KEGG pathway analysis further revealed enrichment in microbial lipid metabolism functions (fabG, ABC.CD.A, and transketolase). Retinal vascular and neurodegenerative alterations—including reduced vessel density and retinal thinning—were markedly attenuated by butyrate, as revealed by WF SS-OCTA. OKN testing indicated partial improvement in visual function, despite unchanged ERG amplitudes. Conclusions: Butyrate supplementation mitigates early NVU damage in the diabetic retina by improving glucose and lipid metabolism and partially restoring gut microbial balance. This study also underscores the utility of WF SS-OCTA as a powerful noninvasive tool for detecting early neurovascular changes in DR. Full article
(This article belongs to the Section Nutrition and Diabetes)
Show Figures

Figure 1

17 pages, 1548 KiB  
Article
CD19-ReTARGTPR: A Novel Fusion Protein for Physiological Engagement of Anti-CMV Cytotoxic T Cells Against CD19-Expressing Malignancies
by Anne Paulien van Wijngaarden, Isabel Britsch, Matthias Peipp, Douwe Freerk Samplonius and Wijnand Helfrich
Cancers 2025, 17(14), 2300; https://doi.org/10.3390/cancers17142300 - 10 Jul 2025
Viewed by 391
Abstract
Background/Objectives: The physiological activation of cytotoxic CD8pos T cells (CTLs) relies on the engagement of the TCR/CD3 complex with cognate peptide-HLA class I (pHLA-I) on target cells, triggering cell lysis with appropriate cytokine release and minimized off-target toxicity. In contrast, current [...] Read more.
Background/Objectives: The physiological activation of cytotoxic CD8pos T cells (CTLs) relies on the engagement of the TCR/CD3 complex with cognate peptide-HLA class I (pHLA-I) on target cells, triggering cell lysis with appropriate cytokine release and minimized off-target toxicity. In contrast, current immunotherapies for CD19-expressing hematological malignancies, such as chimeric antigen receptor (CAR) T cells and bispecific T cell engagers (BiTEs), bypass TCR/pHLA interactions, resulting in CTL hyperactivation and excessive cytokine release, which frequently cause severe immune-related adverse events (irAEs). Thus, there is a pressing need for T cell-based therapies that preserve physiological activation while maintaining antitumor efficacy. Methods: To address this, we developed CD19-ReTARGTPR, a novel fusion protein consisting of the immunodominant cytomegalovirus (CMV) pp65-derived peptide TPRVTGGAM (TPR) covalently presented by a soluble HLA-B*07:02/β2-microglobulin complex fused to a high-affinity CD19-targeting Fab antibody fragment. The treatment of CD19-expressing cancer cells with CD19-ReTARGTPR makes them recognizable for pre-existing anti-CMVpp65 CTLs via physiological TCR-pHLA engagement. Results: Our preclinical data demonstrate that CD19-ReTARGTPR efficiently redirects anti-CMV CTLs to eliminate CD19-expressing cancer cells, including both established cell lines and primary chronic lymphocytic leukemia (CLL) cells. Unlike CD19-directed CAR T cells or the CD19/CD3 BiTE blinatumomab, CD19-ReTARGTPR mediated robust cytotoxic activity without triggering supraphysiological cytokine release. Importantly, this approach retained efficacy even against cancer cells with low CD19 expression. Conclusions: In summary, we provide a robust proof-of-concept study and show that CD19-ReTARGTPR offers a promising alternative strategy for T cell redirection, enabling the selective and effective killing of CD19-expressing malignancies while minimizing cytokine-driven toxicities through physiological CTL activation pathways. Full article
(This article belongs to the Special Issue New Insights of Hematology in Cancer)
Show Figures

Graphical abstract

18 pages, 1258 KiB  
Article
Cerebral Haemodynamics and Cognitive Impairment in Chronic Haemodialysis Patients: A Pilot Study
by Giulia Belluardo, Dario Galeano, Concetto Sessa, Giuseppe Zelante, Walter Morale and Paola De Bartolo
J. Clin. Med. 2025, 14(14), 4890; https://doi.org/10.3390/jcm14144890 - 10 Jul 2025
Viewed by 321
Abstract
Background: Patients with chronic kidney disease (CKD) have a substantially higher risk of developing cognitive impairment (CI) than the general population. Patients with CKD undergoing haemodialysis (HD) treatment also have an elevated risk of developing cerebrovascular and cardiovascular diseases. This study aims [...] Read more.
Background: Patients with chronic kidney disease (CKD) have a substantially higher risk of developing cognitive impairment (CI) than the general population. Patients with CKD undergoing haemodialysis (HD) treatment also have an elevated risk of developing cerebrovascular and cardiovascular diseases. This study aims to investigate the relationship between the cognitive performance of haemodialysis patients and cerebral and carotid haemodynamic indices. Methods: This study was a non-interventional observational study; the sample consisted of 32 patients (age 65 ± 12 years) undergoing chronic HD treatment. The patients underwent neuropsychological and haemodynamic instrumental investigations, including Supra-Aortic Trunk Echodoppler (SAT) and Transcranial Doppler (TCD). Results: Patients were 17% deficient at Montreal Cognitive Assessment (MoCA), 45% deficient at Frontal Assessment Battery (FAB), 55% deficient at Trail-Making Test-A (TMT-A) and 65% deficient at TMT-B. The TCD investigation detected a decrease in flow (MFV) and an increase in Breath Hold Index (BHI) predominantly in the right cerebral arterial district. The SAT investigation revealed an altered IMT, plaques and the presence of severe carotid stenosis. A strong association between cerebral and carotid indices and cognitive scores was also observed. Correlation analyses reported statistically significant correlations between TMT-A and TMT-B and cerebral flow indices. Conclusions: Among haemodialysis patients, there is a high percentage of cognitive impairment associated and correlated with alterations in cerebral and carotid haemodynamics. Cerebral haemodynamics are a factor to be taken into consideration as a possible pathological mechanism underlying cognitive impairment in haemodialysis. Full article
(This article belongs to the Section Nephrology & Urology)
Show Figures

Graphical abstract

18 pages, 959 KiB  
Article
Response to Training in Emotion Recognition Function for Mild TBI/PTSD Survivors: Pilot Study
by J. Kay Waid-Ebbs, Kristen Lewandowski, Yi Zhang, Samantha Graham and Janis J. Daly
Brain Sci. 2025, 15(7), 728; https://doi.org/10.3390/brainsci15070728 - 8 Jul 2025
Viewed by 678
Abstract
Background/Objectives: For those with comorbid mild traumatic brain injury/post-traumatic stress disorder (mTBI/PTSD), deficits are common with regard to recognition of emotion expression in others. These deficits can cause isolation and suicidal ideation. For mTBI/PTSD, there is a dearth of information regarding effective treatment. [...] Read more.
Background/Objectives: For those with comorbid mild traumatic brain injury/post-traumatic stress disorder (mTBI/PTSD), deficits are common with regard to recognition of emotion expression in others. These deficits can cause isolation and suicidal ideation. For mTBI/PTSD, there is a dearth of information regarding effective treatment. In pilot work, we developed and tested an innovative treatment to improve recognition of both affect (facial expression of emotion) and prosody (spoken expression of emotion). Methods: We enrolled eight Veterans with mTBI/PTSD and administered eight treatment sessions. Measures included the following: Florida Affect Battery (FAB), a test of emotion recognition of facial affect and spoken prosody; Attention Index of the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS); and Emotion Recognition Test (ERT), a speed test of facial emotion recognition. Results: There was a significant treatment response according to the FAB (p = 0.01, effect size = 1.2); RBANS attention index (p = 0.04, effect size = 0.99); and trending toward significance for the ERT (0.17, effect size 0.75). Participants were able to engage actively in all eight sessions and provided qualitative evidence supporting generalization of the training to interpersonal relationships. Conclusions: Our data show promising clinical potential and warrant future research, given the importance of developing novel interventions to train and restore recognition of emotion in Veterans with mTBI/PTSD. Full article
(This article belongs to the Special Issue At the Frontiers of Neurorehabilitation: 3rd Edition)
Show Figures

Figure 1

17 pages, 459 KiB  
Article
Transformative Potential of Digital Manufacturing Laboratories: Insights from Mexico and Spain
by Carmen Bueno Castellanos and Álvaro Fernández-Baldor
Knowledge 2025, 5(3), 12; https://doi.org/10.3390/knowledge5030012 - 7 Jul 2025
Viewed by 259
Abstract
This article presents a comparative analysis of digital manufacturing laboratories (DMLs) in Mexico and Spain. It is argued that DMLs, also known as makerspaces or FabLabs, play a key role in innovation and experimentation, but that their success depends on the relationships they [...] Read more.
This article presents a comparative analysis of digital manufacturing laboratories (DMLs) in Mexico and Spain. It is argued that DMLs, also known as makerspaces or FabLabs, play a key role in innovation and experimentation, but that their success depends on the relationships they establish with social actors, such as local governments, universities, and firms. Key concepts of the transformative innovation approach such as “protective space” and “embeddedness” are introduced, which allow us to understand how DMLs operate within a complex system. The comparative analysis of a DML in Mexico City (Mexico) and a DML in Valencia (Spain) allows us to identify similarities and differences in their operational contexts. While the Mexican DML faces a lack of government support and dependence on the private sector, the Spanish one benefits from strong institutional support and public policies that facilitate its development. This results in greater stability and capacity for action for the Valencian FabLab VLC compared to the Mexican FabLab Finally, we reflect on how the embeddedness received from different social actors affects the autonomy and transformative capacity of DMLs, suggesting that while both labs have the potential to innovate, their contexts and relationships determine their effectiveness and sustainability in the digital sociotechnical system. Full article
Show Figures

Figure 1

19 pages, 1938 KiB  
Article
Identification of Pharmacophore Groups with Antimalarial Potential in Flavonoids by QSAR-Based Virtual Screening
by Adriana de Oliveira Fernandes, Valéria Vieira Moura Paixão, Yria Jaine Andrade Santos, Eduardo Borba Alves, Ricardo Pereira Rodrigues, Daniela Aparecida Chagas-Paula, Aurélia Santos Faraoni, Rosana Casoti, Marcus Vinicius de Aragão Batista, Marcel Bermudez, Silvio Santana Dolabella and Tiago Branquinho Oliveira
Drugs Drug Candidates 2025, 4(3), 33; https://doi.org/10.3390/ddc4030033 - 4 Jul 2025
Viewed by 409
Abstract
Background/Objectives: Severe malaria, mainly caused by Plasmodium falciparum, remains a significant therapeutic challenge due to increasing drug resistance and adverse effects. Flavonoids, known for their wide range of bioactivities, offer a promising route for antimalarial drug discovery. The aim of this [...] Read more.
Background/Objectives: Severe malaria, mainly caused by Plasmodium falciparum, remains a significant therapeutic challenge due to increasing drug resistance and adverse effects. Flavonoids, known for their wide range of bioactivities, offer a promising route for antimalarial drug discovery. The aim of this study was to elucidate key structural features associated with antimalarial activity in flavonoids and to develop accurate, interpretable predictive models. Methods: Curated databases of flavonoid structures and their activity against P. falciparum strains and enzymes were constructed. Molecular fingerprinting and decision tree analyses were used to identify key pharmacophoric groups. Subsequently, molecular descriptors were generated and reduced to build multiple classification and regression models. Results: These models demonstrated high predictive accuracy, with test set accuracies ranging from 92.85% to 100%, and R2 values from 0.64 to 0.97. Virtual screening identified novel flavonoid candidates with potential inhibitory activity. These were further evaluated using molecular docking and molecular dynamics simulations to assess binding affinity and stability with Plasmodium proteins (FabG, FabZ, and FabI). The predicted active ligands exhibited stable pharmacophore interactions with key protein residues, providing insights into binding mechanisms. Conclusions: This study provides highly predictive models for antimalarial flavonoids and enhances the understanding of structure–activity relationships, offering a strong foundation for further experimental validation. Full article
(This article belongs to the Section In Silico Approaches in Drug Discovery)
Show Figures

Figure 1

19 pages, 2272 KiB  
Article
Antimicrobial Activity of Lavender Essential Oil from Lavandula angustifolia Mill.: In Vitro and In Silico Evaluation
by Sylvia Stamova, Neli Ermenlieva, Gabriela Tsankova and Emilia Georgieva
Antibiotics 2025, 14(7), 656; https://doi.org/10.3390/antibiotics14070656 - 28 Jun 2025
Viewed by 879
Abstract
The increasing prevalence of antimicrobial resistance (AMR) demands novel strategies, including the use of plant-derived agents. This study investigates the chemical profile and in vitro antimicrobial activity of essential oil from Lavandula angustifolia (LEO), cultivated in Northeastern Bulgaria. Gas chromatography–mass spectrometry (GC-MS) analysis [...] Read more.
The increasing prevalence of antimicrobial resistance (AMR) demands novel strategies, including the use of plant-derived agents. This study investigates the chemical profile and in vitro antimicrobial activity of essential oil from Lavandula angustifolia (LEO), cultivated in Northeastern Bulgaria. Gas chromatography–mass spectrometry (GC-MS) analysis confirmed the presence of a linalool/linalyl acetate chemotype, characteristic of high-quality lavender oil. LEO demonstrated significant inhibitory activity against Escherichia coli ATCC 25922, with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 0.31% (v/v) and moderate to weak activity against other Gram-positive and fungal strains. Time–kill assays revealed a concentration-dependent bactericidal effect on E. coli. The addition of LEO at subinhibitory concentrations increased the inhibition zones for all antibiotics. In silico analysis identified functional protein clusters potentially modulated by LEO constituents, including targets related to membrane integrity and metabolic regulation. The findings indicate the potential of lavender essential oil as a natural antimicrobial adjuvant; however, additional in vivo and clinical investigations are necessary to validate its therapeutic use. Furthermore, molecular docking analysis revealed a high binding affinity of linalool and linalyl acetate towards the FabI protein of E.coli, suggesting a potential inhibitory mechanism at the molecular level. Full article
Show Figures

Figure 1

23 pages, 5834 KiB  
Article
Comparative Analysis of the Expression of Genes Involved in Fatty Acid Synthesis Across Camelina Varieties
by Elisa Gómez, Gregorio Hueros, David Mostaza-Colado, Aníbal Capuano, Mercedes Uscola and Pedro V. Mauri
Agriculture 2025, 15(12), 1305; https://doi.org/10.3390/agriculture15121305 - 17 Jun 2025
Viewed by 457
Abstract
Camelina sativa (L.) Crantz, a native European oilseed crop of the Brassicaceae family, is notable for its short life cycle, making it well-suited for crop rotation and diversification. Its seeds contain a high content of oil (36–47%) that is rich in polyunsaturated fatty [...] Read more.
Camelina sativa (L.) Crantz, a native European oilseed crop of the Brassicaceae family, is notable for its short life cycle, making it well-suited for crop rotation and diversification. Its seeds contain a high content of oil (36–47%) that is rich in polyunsaturated fatty acids (PUFAs) such as alpha-linolenic acid (ALA, C18:3, Ω-3) and linoleic acid (LA, C18:2, Ω-6). This oil has diverse industrial applications, including low-emission biofuels, animal feed, pharmaceuticals, biolubricants, bioplastics, and cosmetics. We analyzed the expression of seven key enzymes involved in fatty acid biosynthesis across nine C. sativa accessions at three stages of silique development using highly efficient qRT-PCR assays designed for the target genes and a normalizing control. Our detailed expression analysis revealed significant variation across varieties, with only the gene FAB2c exhibiting genotype-independent expression, indicating a constitutive and essential role in monounsaturated fatty acid (MUFA) biosynthesis. Other genes showed significant interactions between the variety and developmental stage, highlighting the combined influences of genetic background and silique maturation on gene regulation. V18 emerges as particularly promising, exhibiting elevated expression of genes linked to PUFA and VLCFA biosynthesis—traits of significance for food, biofuel, and industrial applications. These findings, together with the developed qRT-PCR assays, provide valuable tools for selecting Camelina varieties with optimized genetic profiles, highlighting the potential of harnessing natural transcriptional diversity for crop improvement. Full article
(This article belongs to the Special Issue Crop Yield Improvement in Genetic and Biology Breeding)
Show Figures

Figure 1

17 pages, 1891 KiB  
Article
Exploring the Impact of Robotic Hand Rehabilitation on Functional Recovery in Parkinson’s Disease: A Randomized Controlled Trial
by Loredana Raciti, Desiree Latella, Gianfranco Raciti, Chiara Sorbera, Mirjam Bonanno, Laura Ciatto, Giuseppe Andronaco, Angelo Quartarone, Giuseppe Di Lorenzo and Rocco Salvatore Calabrò
Brain Sci. 2025, 15(6), 644; https://doi.org/10.3390/brainsci15060644 - 15 Jun 2025
Viewed by 782
Abstract
Background/Objective: Parkinson’s disease (PD) is characterized by motor and cognitive impairments that significantly affect quality of life. Robotic-assisted therapies, such as the AMADEO® system, have shown potential in rehabilitating upper limb function but are underexplored in PD. This study aimed to assess [...] Read more.
Background/Objective: Parkinson’s disease (PD) is characterized by motor and cognitive impairments that significantly affect quality of life. Robotic-assisted therapies, such as the AMADEO® system, have shown potential in rehabilitating upper limb function but are underexplored in PD. This study aimed to assess the effects of Robotic-Assisted Therapy (RAT) compared to Conventional Physical Therapy (CPT) on cognitive, motor, and functional outcomes in PD patients. Methods: A single-blind, randomized controlled trial was conducted with PD patients allocated to RAT or CPT. Participants were assessed at baseline (T0) and post-intervention (T1) using measures including MoCA, FAB, UPDRS-III, 9-Hole Peg Test, FMA-UE, FIM, and PDQ-39. Statistical analyses included ANCOVA and regression models. Results: RAT led to significant improvements in global cognition (MoCA, p < 0.001) and executive functioning (FAB, p = 0.0002) compared to CPT. Motor function improved, particularly in wrist and hand control (FMA-UE), whereas changes in fine motor dexterity (9-Hole Peg Test) were less consistent and did not reach robust significance. No significant improvements were observed in broader quality of life domains, depressive symptoms, or memory-related cognitive measures. However, quality of life improved significantly in the stigma subdomain of the PDQ-39 (p = 0.0075). Regression analyses showed that baseline motor impairment predicted cognitive outcomes. Conclusions: RAT demonstrated superior cognitive and motor benefits in PD patients compared to CPT. These results support the integration of robotic rehabilitation into PD management. Further studies with larger sample sizes and long-term follow-up are needed to validate these findings and assess their sustainability. Full article
Show Figures

Figure 1

17 pages, 2465 KiB  
Review
Post-Treatment Imaging in Focal Therapy: Understanding TARGET and PI-FAB Scoring Systems
by Haidy Megahed, Samuel Tremblay, Jason Koehler, Simon Han, Ahmed Hamimi, Aytekin Oto and Abhinav Sidana
Diagnostics 2025, 15(11), 1328; https://doi.org/10.3390/diagnostics15111328 - 26 May 2025
Viewed by 666
Abstract
As the adoption of focal therapy (FT) for prostate cancer (PCa) grows, the demand for accurate post-treatment imaging to monitor outcomes and detect residual or recurrent cancer increases. Traditional diagnostic systems like the Prostate Imaging Reporting and Data System (PI-RADS) are ill-suited for [...] Read more.
As the adoption of focal therapy (FT) for prostate cancer (PCa) grows, the demand for accurate post-treatment imaging to monitor outcomes and detect residual or recurrent cancer increases. Traditional diagnostic systems like the Prostate Imaging Reporting and Data System (PI-RADS) are ill-suited for post-FT evaluations due to treatment-induced tissue changes. MRI-based scoring systems specific for evaluation after FT have been developed to address these challenges and improve post-FT imaging accuracy by distinguishing benign alterations from recurrence. The currently developed scoring systems are Transatlantic Recommendations for Prostate Gland Evaluation with MRI after Focal Therapy (TARGET) and Prostate Imaging after Focal Ablation (PI-FAB). In this review, we describe and compare these two systems. These scoring systems standardize imaging assessments, enhance follow-up care, and support clinical decision-making. While promising, TARGET and PI-FAB require further large-scale validation to confirm their utility. Nevertheless, they represent critical advances in optimizing PCa management, particularly for patients undergoing FT, by improving diagnostic accuracy and guiding treatment decisions. Full article
(This article belongs to the Special Issue Recent Advances in Prostate Cancer Imaging and Biopsy Techniques)
Show Figures

Figure 1

13 pages, 1776 KiB  
Article
Altered IgG N-Glycosylation at Onset of Type 1 Diabetes in Children Is Predominantly Driven by Changes in the Fab N-Glycans
by Branimir Plavša, Najda Rudman, Flemming Pociot and Olga Gornik
Biomedicines 2025, 13(5), 1206; https://doi.org/10.3390/biomedicines13051206 - 15 May 2025
Viewed by 420
Abstract
BackgroundN-glycosylation is a post-translational modification involving the attachment of oligosaccharides to proteins and is known to influence immunoglobulin G (IgG) effector functions and even antigen binding. IgG contains an evolutionarily conserved N-glycosylation site in its fragment crystallizable (Fc) region, [...] Read more.
BackgroundN-glycosylation is a post-translational modification involving the attachment of oligosaccharides to proteins and is known to influence immunoglobulin G (IgG) effector functions and even antigen binding. IgG contains an evolutionarily conserved N-glycosylation site in its fragment crystallizable (Fc) region, while during V-D-J recombination and somatic hypermutation processes it can also obtain N-glycosylation sites in its antigen binding fragment (Fab). Our previous study demonstrated altered IgG N-glycosylation in children at type 1 diabetes (T1D) onset, with the most prominent changes involving sialylated glycans, hypothesized to mainly come from the Fab region, however, the analytical method used could not distinguish between Fc and Fab. Methods: IgG was isolated from plasma from 118 children with T1D and 98 healthy controls from the Danish Registry of Childhood and Adolescent Diabetes. Isolated IgG was cleaved into Fc and Fab fragments using IdeS enzyme. N-glycans were enzymatically released from each fragment, fluorescently labelled with procainamide, and analyzed separately using the UPLC-MS method. Structural annotation of resulting chromatograms was performed using MS/MS. Results: T1D related N-glycosylation changes were more pronounced in the Fab glycans compared to Fc glycans, with five Fab glycans (Man5, Man7, FA2BG1S1, A2G2S2, FA2BG2S1) being significantly altered compared to only one in the Fc region (FA2[3]BG1). Comparing Fc and Fab glycosylation overall reveals stark differences in the types of glycans on each region, with a more diverse and complex repertoire being present in the Fab region. Conclusions: These findings suggest that N-glycosylation changes in early onset T1D predominantly originate from the Fab region, underscoring their potential role in modulating (auto)immunity and highlighting distinct glycosylation patterns between Fc and Fab. Full article
(This article belongs to the Special Issue Diabetes: Comorbidities, Therapeutics and Insights (2nd Edition))
Show Figures

Figure 1

15 pages, 2127 KiB  
Article
Predicting Clinical Response to Monoclonal TNF Inhibitors in Rheumatoid Arthritis: A Transcriptomic Approach Based on Transmembrane TNF Reverse Signaling and Nrf2 Activation
by Katy Diallo, Yannick Degboé, Michel Baron, Anaïs Bellin-Robert, Jean-Frédéric Boyer, Adeline Ruyssen-Witrand, Arnaud Constantin, Benjamin Rauwel, Alain Cantagrel and Jean-Luc Davignon
Diagnostics 2025, 15(10), 1232; https://doi.org/10.3390/diagnostics15101232 - 14 May 2025
Viewed by 526
Abstract
(1) Background: TNF inhibitors (TNFis) have revolutionized the treatment of rheumatoid arthritis (RA). However, 30–40% of RA patients do not respond adequately to those biologics. In addition to neutralizing soluble TNF, TNFis have the ability to bind the transmembrane form of TNF, [...] Read more.
(1) Background: TNF inhibitors (TNFis) have revolutionized the treatment of rheumatoid arthritis (RA). However, 30–40% of RA patients do not respond adequately to those biologics. In addition to neutralizing soluble TNF, TNFis have the ability to bind the transmembrane form of TNF, tmTNF. Importantly, tmTNF can act itself as a receptor that induces “Reverse Signaling” (RS) in cells. We previously showed that certolizumab, a Fab’ TNFi, activates RS in human primary monocytes, at least in part through the transcription factor Nrf2 that is known to regulate the expression of genes involved in anti-inflammatory response and oxidative stress. (2) Methods: Here, we have developed an assay for the prediction of clinical response of RA patients to TNF inhibitors. This assay is based on mRNA quantitation of CD36 activation and of six genes induced by Nrf2 following tmTNF RS in fresh monocytes. (3) Results: We could predict the response to anti-TNF monoclonal antibodies (mAbs) with 93.3% accuracy. However, our method was not suitable for the prediction of the response to TNF soluble receptor etanercept. (4) Conclusions: We have developed a rather simple, short-term test that can be standardized. Predicting the response to TNF mAbs will help physicians offer the best available treatment and provide patients with personalized medicine. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

9 pages, 2059 KiB  
Proceeding Paper
Reliability Assessment of Power Distribution System in Freeport Area of Bataan
by Jomel R. Cristobal and Ronald Vincent M. Santiago
Eng. Proc. 2025, 92(1), 58; https://doi.org/10.3390/engproc2025092058 - 8 May 2025
Viewed by 430
Abstract
The continuous distribution ability of electricity is defined as the effectiveness of the computation of reliability indices. Therefore, we conducted a reliability assessment and evaluated the performance of the distribution system in the Freeport Area of Bataan (FAB). For reliability assessment, software was [...] Read more.
The continuous distribution ability of electricity is defined as the effectiveness of the computation of reliability indices. Therefore, we conducted a reliability assessment and evaluated the performance of the distribution system in the Freeport Area of Bataan (FAB). For reliability assessment, software was developed to automate the computation of indices, including system average interruption frequency index (SAIFI), system average interruption duration index (SAIDI), customer average interruption frequency index (CAIFI), and customer average interruption duration index (CAIDI). Through reliability assessment and evaluation, the low-performing distribution network of the FAB was successfully identified. After the identification of the low-performing network, reconductoring and redundant feeder line projects were proposed to alleviate and reduce the occurrence of power interruptions. An analysis of its economy was also conducted, and the result showed that line reconductoring from bare conductor to insulated cable was the most feasible option since it resulted in a high benefit–cost ratio (BCR) and a positive net present value (NPV) for all evaluated cases. Full article
(This article belongs to the Proceedings of 2024 IEEE 6th Eurasia Conference on IoT, Communication and Engineering)
Show Figures

Figure 1

Back to TopTop