Exploring the Impact of Robotic Hand Rehabilitation on Functional Recovery in Parkinson’s Disease: A Randomized Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Inclusion and Exclusion Criteria
2.3. Ethical Considerations
2.4. Randomization
2.5. Robotic-Assisted Therapy
- Ergonomic Hand Positioning: The patient’s hand is positioned naturally, and each finger is attached individually to a robotic actuator for precise and targeted movement.
- Active and Passive Therapy Modes: The device offers both passive (robot-driven) and active (patient-initiated) modes, supporting rehabilitation across various stages of motor recovery.
- Interactive Feedback and Virtual Reality Integration: AMADEO® incorporates sensory feedback and virtual-reality-based training games to increase patient engagement and motivation. The device’s sensitivity and assistance levels were automatically calibrated before each session based on individual motor performance (finger strength and range of motion), independently of age.
- Real-Time Performance Monitoring: The system collects and displays real-time data on grip strength, range of motion, movement coordination, and therapy efficiency, enabling objective progress tracking and personalized therapy adjustments.
2.6. Conventional Physical Therapy
2.7. Outcome Measures
2.7.1. Motor Outcome Measures
2.7.2. Primary Outcome
2.7.3. Secondary Motor Outcomes
2.7.4. Neuropsychological Outcome Measures
2.7.5. Behavioral Outcome Measures
2.7.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Post-Intervention Between-Group Comparisons
3.3. Within-Group Improvements in the Experimental Group
3.4. Exploratory Regression Analysis
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale Presentation and Clinimetric Testing Results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef] [PubMed]
- Roalf, D.R.; Rupert, P.; Mechanic-Hamilton, D.; Brennan, L.; Duda, J.E.; Weintraub, D.; Trojanowski, J.Q.; Wolk, D.; Moberg, P.J. Quantitative Assessment of Finger Tapping Characteristics in Mild Cognitive Impairment, Alzheimer’s Disease, and Parkinson’s Disease. J. Neurol. 2018, 265, 1365–1375. [Google Scholar] [CrossRef] [PubMed]
- Stegemöller, E.; Zaman, A.; MacKinnon, C.D.; Tillman, M.D.; Hass, C.J.; Okun, M.S. Laterality of Repetitive Finger Movement Performance and Clinical Features of Parkinson’s Disease. Hum. Mov. Sci. 2016, 49, 116–123. [Google Scholar] [CrossRef]
- Gallardo, F.P.; Onishi, E.T.; Lira, F.I.; Suzuki, F.B.; Testa, J.R.G. Translation, Validation and Cultural Adaptation of “The Eustachian Tube Dysfunction Questionnaire-7” (ETDQ-7) to Brazilian Portuguese (BR). Braz. J. Otorhinolaryngol. 2019, 85, 456–464. [Google Scholar] [CrossRef]
- Calabrò, R.S.; Naro, A.; Russo, M.; Leo, A.; De Luca, R.; Balletta, T.; Buda, A.; La Rosa, G.; Bramanti, A.; Bramanti, P. The Role of Virtual Reality in Improving Motor Performance as Revealed by EEG: A Randomized Clinical Trial. J. Neuroeng. Rehabil. 2017, 14, 53. [Google Scholar] [CrossRef]
- Kwakkel, G.; Wagenaar, R.C.; Koelman, T.W.; Lankhorst, G.J.; Koetsier, J.C. Effects of Intensity of Rehabilitation after Stroke. A Research Synthesis. Stroke 1997, 28, 1550–1556. [Google Scholar] [CrossRef] [PubMed]
- Labyt, E.; Devos, D.; Bourriez, J.-L.; Cassim, F.; Destée, A.; Guieu, J.-D.; Defebvre, L.; Derambure, P. Motor Preparation Is More Impaired in Parkinson’s Disease When Sensorimotor Integration Is Involved. Clin. Neurophysiol. 2003, 114, 2423–2433. [Google Scholar] [CrossRef]
- Tamilselvam, Y.K.; Jog, M.; Patel, R.V. Robot-Assisted Investigation of Sensorimotor Control in Parkinson’s Disease. Sci. Rep. 2023, 13, 4751. [Google Scholar] [CrossRef]
- Chen, J.; Ho, S.-L.; Lee, T.M.-C.; Chang, R.S.-K.; Pang, S.Y.-Y.; Li, L. Visuomotor Control in Patients with Parkinson’s Disease. Neuropsychologia 2016, 80, 102–114. [Google Scholar] [CrossRef]
- Tan, X.; Luo, Q.; Yang, S.; Jiang, Y. Hand-Assisted Rehabilitation Robot Based on Human-Machine Master-Slave Motion Mode. In Proceedings of the 2020 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), Chongqing, China, 29–30 October 2020; pp. 362–365. [Google Scholar]
- Yogev-Seligmann, G.; Hausdorff, J.M.; Giladi, N. The Role of Executive Function and Attention in Gait. Mov. Disord. 2008, 23, 329–342; quiz 472. [Google Scholar] [CrossRef]
- Wu, T.; Hallett, M. The Influence of Normal Human Ageing on Automatic Movements. J. Physiol. 2005, 562, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Springer, S.; Giladi, N.; Peretz, C.; Yogev, G.; Simon, E.S.; Hausdorff, J.M. Dual-Tasking Effects on Gait Variability: The Role of Aging, Falls, and Executive Function. Mov. Disord. 2006, 21, 950–957. [Google Scholar] [CrossRef] [PubMed]
- Bridenbaugh, S.A.; Kressig, R.W. Motor Cognitive Dual Tasking: Early Detection of Gait Impairment, Fall Risk and Cognitive Decline. Z. Gerontol. Geriatr. 2015, 48, 15–21. [Google Scholar] [CrossRef]
- Leroi, I.; Pantula, H.; McDonald, K.; Harbishettar, V. Neuropsychiatric Symptoms in Parkinson’s Disease with Mild Cognitive Impairment and Dementia. Parkinsons Dis. 2012, 2012, 308097. [Google Scholar] [CrossRef]
- Ellis, T.; Cavanaugh, J.T.; Earhart, G.M.; Ford, M.P.; Foreman, K.B.; Dibble, L.E. Which Measures of Physical Function and Motor Impairment Best Predict Quality of Life in Parkinson’s Disease? Park. Relat. Disord. 2011, 17, 693–697. [Google Scholar] [CrossRef] [PubMed]
- Carmeli, E.; Peleg, S.; Bartur, G.; Elbo, E.; Vatine, J. HandTutorTM Enhanced Hand Rehabilitation after Stroke—A Pilot Study. Physiother. Res. Int. 2011, 16, 191–200. [Google Scholar] [CrossRef]
- Vanoglio, F.; Comini, L.; Gaiani, M.; Bonometti, G.P.; Luisa, A.; Bernocchi, P. A Sensor-Based Upper Limb Treatment in Hemiplegic Patients: Results from a Randomized Pilot Study. Sensors 2024, 24, 2574. [Google Scholar] [CrossRef]
- Brokaw, E.B.; Black, I.; Holley, R.J.; Lum, P.S. Hand Spring Operated Movement Enhancer (HandSOME): A Portable, Passive Hand Exoskeleton for Stroke Rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2011, 19, 391–399. [Google Scholar] [CrossRef]
- Friedman, N.; Chan, V.; Zondervan, D.; Bachman, M.; Reinkensmeyer, D.J. MusicGlove: Motivating and Quantifying Hand Movement Rehabilitation by Using Functional Grips to Play Music. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; IEEE: Boston, MA, USA, 2011; pp. 2359–2363. [Google Scholar]
- Adar, S.; Demircan, A.; Akçin, A.İ.; Dündar, Ü.; Toktaş, H.; Yeşil, H.; Eroğlu, S.; Eyvaz, N.; Beştaş, E.; Köseoğlu Toksoy, C. Evaluation of Finger Strength and Spasticity in Hemiplegic Patients Using Hand-Finger Robotic Device: A Validity and Reliability Study. Medicine 2023, 102, e36479. [Google Scholar] [CrossRef]
- Veerbeek, J.M.; Langbroek-Amersfoort, A.C.; Van Wegen, E.E.H.; Meskers, C.G.M.; Kwakkel, G. Effects of Robot-Assisted Therapy for the Upper Limb After Stroke: A Systematic Review and Meta-Analysis. Neurorehabil. Neural Repair 2017, 31, 107–121. [Google Scholar] [CrossRef]
- Bertani, R.; Melegari, C.; De Cola, M.C.; Bramanti, A.; Bramanti, P.; Calabrò, R.S. Effects of Robot-Assisted Upper Limb Rehabilitation in Stroke Patients: A Systematic Review with Meta-Analysis. Neurol. Sci. 2017, 38, 1561–1569. [Google Scholar] [CrossRef] [PubMed]
- Bützer, T.; Lambercy, O.; Arata, J.; Gassert, R. Fully Wearable Actuated Soft Exoskeleton for Grasping Assistance in Everyday Activities. Soft Robot. 2021, 8, 128–143. [Google Scholar] [CrossRef] [PubMed]
- Raciti, L.; Pignolo, L.; Perini, V.; Pullia, M.; Porcari, B.; Latella, D.; Isgrò, M.; Naro, A.; Calabrò, R.S. Improving Upper Extremity Bradykinesia in Parkinson’s Disease: A Randomized Clinical Trial on the Use of Gravity-Supporting Exoskeletons. J. Clin. Med. 2022, 11, 2543. [Google Scholar] [CrossRef] [PubMed]
- Clarke, C.E.; Patel, S.; Ives, N.; Rick, C.E.; Woolley, R.; Wheatley, K.; Walker, M.F.; Zhu, S.; Kandiyali, R.; Yao, G.; et al. UK Parkinson’s Disease Society Brain Bank Diagnostic Criteria. In Clinical Effectiveness and Cost-Effectiveness of Physiotherapy and Occupational Therapy Versus no Therapy in Mild to Moderate Parkinson’s Disease: A Large Pragmatic Randomised Controlled Trial (PD REHAB); NIHR Journals Library: Southampton, UK, 2016. [Google Scholar]
- Hoehn, M.M.; Yahr, M.D. Parkinsonism: Onset, Progression and Mortality. Neurology 1967, 17, 427–442. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-Mental State”. A Practical Method for Grading the Cognitive State of Patients for the Clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Movement Disorder Society Task Force on Rating Scales for Parkinson’s Disease. The Unified Parkinson’s Disease Rating Scale (UPDRS): Status and Recommendations. Mov. Disord. 2003, 18, 738–750. [Google Scholar] [CrossRef]
- AMADEO®: Robot-Assisted Finger-Hand Rehabilitation; Tyromotion: Marietta, GA, USA, 2020.
- Feys, P.; Lamers, I.; Francis, G.; Benedict, R.; Phillips, G.; LaRocca, N.; Hudson, L.D.; Rudick, R. The Nine-Hole Peg Test as a Manual Dexterity Performance Measure for Multiple Sclerosis. Mult. Scler. 2017, 23, 711–720. [Google Scholar] [CrossRef]
- Raciti, L.; Nicoletti, A.; Mostile, G.; Bonomo, R.; Contrafatto, D.; Dibilio, V.; Luca, A.; Sciacca, G.; Cicero, C.E.; Vasta, R.; et al. Validation of the UPDRS Section IV for Detection of Motor Fluctuations in Parkinson’s Disease. Park. Relat. Disord. 2016, 27, 98–101. [Google Scholar] [CrossRef]
- Fugl-Meyer, A.R.; Jääskö, L.; Leyman, I.; Olsson, S.; Steglind, S. The Post-Stroke Hemiplegic Patient. 1. a Method for Evaluation of Physical Performance. Scand. J. Rehabil. Med. 1975, 7, 13–31. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Goh, W.Y.; Chan, D.; Ali, N.B.; Chew, A.P.; Chuo, A.; Chan, M.; Lim, W.S. Frontal Assessment Battery in Early Cognitive Impairment: Psychometric Property and Factor Structure. J. Nutr. Health Aging 2019, 23, 966–972. [Google Scholar] [CrossRef]
- Miles, S.; Howlett, C.A.; Berryman, C.; Nedeljkovic, M.; Moseley, G.L.; Phillipou, A. Considerations for Using the Wisconsin Card Sorting Test to Assess Cognitive Flexibility. Behav. Res. Methods 2021, 53, 2083–2091. [Google Scholar] [CrossRef]
- Parker, D.M.; Crawford, J.R. Assessment of Frontal Lobe Dysfunction. In A Handbook of Neuropsychological Assessment; Routledge: London, UK, 1992; ISBN 978-0-429-49031-6. [Google Scholar]
- Shin, M.; Park, S.; Park, S.; Seol, S.; Kwon, J.S. Clinical and Empirical Applications of the Rey-Osterrieth Complex Figure Test. Nat. Protoc. 2006, 1, 892–899. [Google Scholar] [CrossRef]
- Scarpa, P.; Piazzini, A.; Pesenti, G.; Brovedani, P.; Toraldo, A.; Turner, K.; Scotti, S.; Dal Lago, C.; Perelli, V.; Brizzolara, D.; et al. Italian Neuropsychological Instruments to Assess Memory, Attention and Frontal Functions for Developmental Age. Neurol. Sci. 2006, 27, 381–396. [Google Scholar] [CrossRef]
- Reitan, R.M. Validity of the Trail Making Test as an Indicator of Organic Brain Damage. Percept. Mot. Ski. 1958, 8, 271–276. [Google Scholar] [CrossRef]
- Dissanayaka, N.N.W.; Sellbach, A.; Matheson, S.; Marsh, R.; Silburn, P.A.; O’Sullivan, J.D.; Byrne, G.J.; Mellick, G.D. Validity of Hamilton Depression Inventory in Parkinson’s Disease. Mov. Disord. 2007, 22, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, C.; Fitzpatrick, R.; Peto, V.; Greenhall, R.; Hyman, N. The Parkinson’s Disease Questionnaire (PDQ-39): Development and Validation of a Parkinson’s Disease Summary Index Score. Age Ageing 1997, 26, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, C.; Controzzi, M.; Carrozza, M.C. The SmartHand Transradial Prosthesis. J. NeuroEngineering Rehabil. 2011, 8, 29. [Google Scholar] [CrossRef]
- Saposnik, G.; Levin, M.; Stroke Outcome Research Canada (SORCan) Working Group. Virtual Reality in Stroke Rehabilitation: A Meta-Analysis and Implications for Clinicians. Stroke 2011, 42, 1380–1386. [Google Scholar] [CrossRef]
- Cameirão, M.S.; Bermúdez I Badia, S.; Duarte Oller, E.; Verschure, P.F.M.J. The Rehabilitation Gaming System: A Review. Stud. Health Technol. Inform. 2009, 145, 65–83. [Google Scholar]
- Lotze, M.; Cohen, L.G. Volition and Imagery in Neurorehabilitation. Cogn. Behav. Neurol. 2006, 19, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Adamovich, S.V.; Fluet, G.G.; Tunik, E.; Merians, A.S. Sensorimotor Training in Virtual Reality: A Review. NeuroRehabilitation 2009, 25, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Johansson, H.; Folkerts, A.-K.; Hammarström, I.; Kalbe, E.; Leavy, B. Effects of Motor–Cognitive Training on Dual-Task Performance in People with Parkinson’s Disease: A Systematic Review and Meta-Analysis. J. Neurol. 2023, 270, 2890–2907. [Google Scholar] [CrossRef]
- Strouwen, C.; Molenaar, E.A.L.M.; Münks, L.; Keus, S.H.J.; Bloem, B.R.; Rochester, L.; Nieuwboer, A. Dual Tasking in Parkinson’s Disease: Should We Train Hazardous Behavior? Expert. Rev. Neurother. 2015, 15, 1031–1039. [Google Scholar] [CrossRef]
- Mehrholz, J.; Pohl, M.; Platz, T.; Kugler, J.; Elsner, B. Electromechanical and Robot-Assisted Arm Training for Improving Activities of Daily Living, Arm Function, and Arm Muscle Strength after Stroke. Cochrane Database Syst. Rev. 2018, 9, CD006876. [Google Scholar] [CrossRef] [PubMed]
- Duret, C.; Courtial, O.; Grosmaire, A.-G.; Hutin, E. Use of a Robotic Device for the Rehabilitation of Severe Upper Limb Paresis in Subacute Stroke: Exploration of Patient/Robot Interactions and the Motor Recovery Process. BioMed Res. Int. 2015, 2015, 482389. [Google Scholar] [CrossRef]
- Calabrò, R.S.; Naro, A.; Filoni, S.; Pullia, M.; Billeri, L.; Tomasello, P.; Portaro, S.; Di Lorenzo, G.; Tomaino, C.; Bramanti, P. Walking to Your Right Music: A Randomized Controlled Trial on the Novel Use of Treadmill plus Music in Parkinson’s Disease. J. Neuroeng. Rehabil. 2019, 16, 68. [Google Scholar] [CrossRef]
- Kehagia, A.A.; Barker, R.A.; Robbins, T.W. Neuropsychological and Clinical Heterogeneity of Cognitive Impairment and Dementia in Patients with Parkinson’s Disease. Lancet Neurol. 2010, 9, 1200–1213. [Google Scholar] [CrossRef]
- Schenkman, M.; Moore, C.G.; Kohrt, W.M.; Hall, D.A.; Delitto, A.; Comella, C.L.; Josbeno, D.A.; Christiansen, C.L.; Berman, B.D.; Kluger, B.M.; et al. Effect of High-Intensity Treadmill Exercise on Motor Symptoms in Patients with De Novo Parkinson Disease: A Phase 2 Randomized Clinical Trial. JAMA Neurol. 2018, 75, 219–226. [Google Scholar] [CrossRef]
- Kehagia, A.A.; Barker, R.A.; Robbins, T.W. Cognitive Impairment in Parkinson’s Disease: The Dual Syndrome Hypothesis. Neurodegener. Dis. 2013, 11, 79–92. [Google Scholar] [CrossRef]
Variable | Experimental (Mean ± SD, n = 20) | Control (Mean ± SD, n = 20) | p-Value |
---|---|---|---|
Age | 64.8 ± 9.04 | 56.8 ± 9.96 | 0.01 |
Education (years) | 8.80 ± 3.58 | 12.2 ± 3.86 | 0.007 |
Sex (M/F) | 9 F (11 M) | 12 F (8 M) | 0.5266 |
Test | Experimental T0 (Mean ± SD, n = 20) | Control T0 (Mean ± SD, n = 20) | p-Value T0 | Experimental T1 (Mean ± SD, n = 20) | Control T1 (Mean ± SD, n = 20) | p-Value T1 |
---|---|---|---|---|---|---|
MoCA | 21.09 ± 4.29 | 21.85 ± 3.03 | 0.5 | 22.89 ± 3.56 | 22.10 ± 3.11 | 0.5 |
UPDRS III | 33.95 ± 8.06 | 34.05 ± 12.80 | 0.9 | 27.95 ± 6.52 | 31.65 ± 11.94 | 0.2 |
FAB | 14.81 ± 2.79 | 13.90 ± 3.11 | 0.3 | 15.71 ± 2.24 | 13.90 ± 3.11 | 0.04 |
HAM-D | 15.10 ± 7.28 | 7.85 ± 5.17 | 0.0009 | 13.95 ± 6.28 | 7.85 ± 5.17 | 0.002 |
PDQ-39 | 63.50 ± 27.7 | 66.2 ± 29.7 | 0.8 | 62.20 ± 28.28 | 58.90 ± 29.2 | 0.7 |
9HPT affected side | 32.45 ± 18.1 | 35.99 ± 5.94 | 0.6 | 30.1 ± 18.98 | 31.89 ± 4.12 | 0.7 |
FMA-UE hand affected side | 9.55 ± 2.50 | 12.25 ± 1.89 | 0.0005 | 12.50 ± 3.05 | 13.35 ± 0.99 | 0.2 |
FMA-UE wrist affected side | 4.35 ± 3.41 | 7.50 ± 2.31 | 0.0016 | 6.35 ± 3.84 | 9.00 ± 1.45 | 0.0081 |
Test | Mean T0 ± SD | Mean T1 ± SD | p-Value (T0 vs. T1) |
---|---|---|---|
Motor assessment | |||
UPDRS III | 33.95 ± 8.06 | 27.95 ± 6.52 | 0.0 |
FMA-UE Hand affected side | 9.55 ± 2.50 | 12.50 ± 3.05 | 0.0001 |
FMA-UE Wrist affected side | 4.35 ± 3.41 | 6.35 ± 3.84 | 0.0006 |
FMA-UE coordination | 3.70 ± 1.59 | 4.70 ± 1.53 | 0.0002 |
9HPT affected side | 32.45 ± 18.06 | 30.05 ± 18.98 | 0.03 |
Cognitive assessment | |||
MOCA | 21.09 ± 4.29 | 22.89 ± 3.56 | 0.0 |
FAB | 14.81 ± 2.79 | 15.71 ± 2.24 | 0.0027 |
HAM-D | 15.10 ± 7.28 | 13.95 ± 6.28 | 0.1 |
PDQ-39 | 63.50 ± 27.68 | 62.20 ± 28.28 | 0.5 |
PDQ-39 ADL | 43.3 ± 29.6 | 43.5 ± 27.2 | 0.9 |
PDQ-39 stigma | 25.6 ± 23.9 | 20.6 ± 25.7 | 0.0075 |
PDQ-39 SS | 15.4 ± 29.6 | 16.2 ± 29.9 | 0.7 |
PDQ-39 CI | 39.1 ± 15 | 39.1 ± 15.9 | 1.0 |
PDQ-39 com | 40 ± 20.7 | 39.2 ± 21.8 | 0.8 |
DIGIT SPAN | 6.92 ± 1.87 | 7.22 ± 1.60 | 0.4 |
ROCF copy | 18.74 ± 9.86 | 19.94 ± 9.22 | 0.5 |
ROCF IR | 10.02 ± 9.24 | 8.80 ± 6.38 | 0.4 |
ROCF DR | 11.38 ± 12.24 | 9.96 ± 6.80 | 0.6 |
Phonemic fluency | 29.14 ± 12.25 | 32.19 ± 13.69 | 0.05 |
Semantic fluency | 35.10 ± 11.22 | 37.15 ± 11.47 | 0.09 |
Attentive matrices | 38.30 ± 12.47 | 41.34 ± 10.41 | 0.09 |
TMT A | 60.70 ± 37.38 | 62.30 ± 34.55 | 0.8 |
TMT B | 81.10 ± 77.42 | 93.90 ± 66.45 | 0.2 |
TMT B-A | 47.45 ± 46.87 | 43.25 ± 47.28 | 0.6 |
WCST | 32.96 ± 31.59 | 36.91 ± 35.56 | 0.3 |
Outcome | R-Squared | Significant Predictors |
---|---|---|
MOC A | 0.911 | MOCA_T0, FAB_T0, HAM-D_T0 |
FAB | 0.927 | FAB_T0 |
HAM-D | 0.929 | HAM-D_T0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raciti, L.; Latella, D.; Raciti, G.; Sorbera, C.; Bonanno, M.; Ciatto, L.; Andronaco, G.; Quartarone, A.; Di Lorenzo, G.; Calabrò, R.S. Exploring the Impact of Robotic Hand Rehabilitation on Functional Recovery in Parkinson’s Disease: A Randomized Controlled Trial. Brain Sci. 2025, 15, 644. https://doi.org/10.3390/brainsci15060644
Raciti L, Latella D, Raciti G, Sorbera C, Bonanno M, Ciatto L, Andronaco G, Quartarone A, Di Lorenzo G, Calabrò RS. Exploring the Impact of Robotic Hand Rehabilitation on Functional Recovery in Parkinson’s Disease: A Randomized Controlled Trial. Brain Sciences. 2025; 15(6):644. https://doi.org/10.3390/brainsci15060644
Chicago/Turabian StyleRaciti, Loredana, Desiree Latella, Gianfranco Raciti, Chiara Sorbera, Mirjam Bonanno, Laura Ciatto, Giuseppe Andronaco, Angelo Quartarone, Giuseppe Di Lorenzo, and Rocco Salvatore Calabrò. 2025. "Exploring the Impact of Robotic Hand Rehabilitation on Functional Recovery in Parkinson’s Disease: A Randomized Controlled Trial" Brain Sciences 15, no. 6: 644. https://doi.org/10.3390/brainsci15060644
APA StyleRaciti, L., Latella, D., Raciti, G., Sorbera, C., Bonanno, M., Ciatto, L., Andronaco, G., Quartarone, A., Di Lorenzo, G., & Calabrò, R. S. (2025). Exploring the Impact of Robotic Hand Rehabilitation on Functional Recovery in Parkinson’s Disease: A Randomized Controlled Trial. Brain Sciences, 15(6), 644. https://doi.org/10.3390/brainsci15060644