Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = FISH oligonucleotides probes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1912 KiB  
Protocol
Tn5-Labeled DNA-FISH: An Optimized Probe Preparation Method for Probing Genome Architecture
by Yang Yang, Gengzhan Chen, Tong Gao, Duo Ning, Yuqing Deng, Zhongyuan (Simon) Tian and Meizhen Zheng
Int. J. Mol. Sci. 2025, 26(5), 2224; https://doi.org/10.3390/ijms26052224 - 28 Feb 2025
Viewed by 1171
Abstract
Three-dimensional genome organization reveals that gene regulatory elements, which are linearly distant on the genome, can spatially interact with target genes to regulate their expression. DNA fluorescence in situ hybridization (DNA-FISH) is an efficient method for studying the spatial proximity of genomic loci. [...] Read more.
Three-dimensional genome organization reveals that gene regulatory elements, which are linearly distant on the genome, can spatially interact with target genes to regulate their expression. DNA fluorescence in situ hybridization (DNA-FISH) is an efficient method for studying the spatial proximity of genomic loci. In this study, we developed an optimized Tn5 transposome-based DNA-FISH method, termed Tn5-labeled DNA-FISH. This approach amplifies the target region and uses a self-assembled Tn5 transposome to simultaneously fragment the DNA into ~100 bp segments and label it with fluorescent oligonucleotides in a single step. This method enables the preparation of probes for regions as small as 4 kb and visualizes both endogenous and exogenous genomic loci at kb resolution. Tn5-labeled DNA-FISH provides a streamlined and cost-effective tool for probe generation, facilitating the investigation of chromatin spatial conformations, gene interactions, and genome architecture. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

14 pages, 1834 KiB  
Article
The Construction of a Standard Karyotype of Intermediate Wheatgrass and Its Potential Progenitor Species
by Lin Wang, Shuang Liang, Fei Qi, Yinguang Bao, Richard R.-C. Wang and Xingfeng Li
Plants 2025, 14(2), 196; https://doi.org/10.3390/plants14020196 - 12 Jan 2025
Cited by 1 | Viewed by 892
Abstract
The genome composition of intermediate wheatgrass (IWG; Thinopyrum intermedium (Host) Barkworth and D.R. Dewey; 2n = 6x = 42) is complex and remains to be a subject of ongoing investigation. This study employed fluorescence in situ hybridization (FISH) to analyze the karyotype of [...] Read more.
The genome composition of intermediate wheatgrass (IWG; Thinopyrum intermedium (Host) Barkworth and D.R. Dewey; 2n = 6x = 42) is complex and remains to be a subject of ongoing investigation. This study employed fluorescence in situ hybridization (FISH) to analyze the karyotype of Th. intermedium and its related species. With the St2-80 probe derived from Pseudoroegneria strigosa and the pDb12H probe from Dasypyrum breviaristatum, FISH analysis classified the chromosomes of Th. intermedium as JvsJvsJrJrStSt. FISH karyotype was established using pSc119.2-1, (GAA)10, AFA-3, AFA-4, pAs1-1, pAs1-3, pAs1-4, and pAs1-6 as a combined multiplex oligonucleotide probe. MATO software was used to analyze chromosome length, arm ratio, and karyotype structure. The karyotype formula of Th. intermedium is K(2n) = 6X = 42 = 36m + 6sm, and that of Th. junceiforme is K(2n) = 4X = 28 = 22m + 6sm. The karyotype formula of Th. elongatum and Th. bessarabicum is K(2n) = 2X = 14 = 12m + 2sm, of Ps. spicata is K(2n) = 2X = 14 = 2M + 12m, and of Da. villosum is K(2n) = 2X = 14 = 12m + 2sm. Based on the results of FISH, standard karyotypes of Th. intermedium and its potential progenitor species were constructed. These standard karyotypes revealed that there was evolutionary parallelism between genome and karyotype, but due to the complexity of evolution, the FISH signal of Th. intermedium was abundant and asymmetrical. Full article
(This article belongs to the Special Issue Chromosome Changes and Karyotype Evolution in Plants)
Show Figures

Figure 1

21 pages, 3430 KiB  
Article
Karyotype Description and Comparative Chromosomal Mapping of 5S rDNA in 42 Species
by Xiaomei Luo, Yunke Liu, Xiao Gong, Meng Ye, Qiangang Xiao and Zhen Zeng
Genes 2024, 15(5), 647; https://doi.org/10.3390/genes15050647 - 20 May 2024
Cited by 3 | Viewed by 1897
Abstract
This study was conducted to evaluate the 5S rDNA site number, position, and origin of signal pattern diversity in 42 plant species using fluorescence in situ hybridization. The species were selected based on the discovery of karyotype rearrangement, or because 5S rDNA had [...] Read more.
This study was conducted to evaluate the 5S rDNA site number, position, and origin of signal pattern diversity in 42 plant species using fluorescence in situ hybridization. The species were selected based on the discovery of karyotype rearrangement, or because 5S rDNA had not yet been explored the species. The chromosome number varied from 14 to 160, and the chromosome length ranged from 0.63 to 6.88 μm, with 21 species having small chromosomes (<3 μm). The chromosome numbers of three species and the 5S rDNA loci of nineteen species are reported for the first time. Six 5S rDNA signal pattern types were identified. The 5S rDNA varied and was abundant in signal site numbers (2–18), positions (distal, proximal, outside of chromosome arms), and even in signal intensity. Variation in the numbers and locations of 5S rDNA was observed in 20 species, whereas an extensive stable number and location of 5S rDNA was found in 22 species. The potential origin of the signal pattern diversity was proposed and discussed. These data characterized the variability of 5S rDNA within the karyotypes of the 42 species that exhibited chromosomal rearrangements and provided anchor points for genetic physical maps. Full article
(This article belongs to the Topic Vegetable Breeding, Genetics and Genomics)
Show Figures

Figure 1

16 pages, 14840 KiB  
Article
Karyotypes and Physical Mapping of Ribosomal DNA with Oligo-Probes in Eranthis sect. Eranthis (Ranunculaceae)
by Elizaveta Yu. Mitrenina, Svetlana S. Alekseeva, Ekaterina D. Badaeva, Lorenzo Peruzzi, Gleb N. Artemov, Denis A. Krivenko, Lorenzo Pinzani, Zeki Aytaç, Ömer Çeçen, Shukherdorj Baasanmunkh, Hyeok Jae Choi, Attila Mesterházy, Alexander N. Tashev, Svetlana Bancheva, Lian Lian, Kunli Xiang, Wei Wang and Andrey S. Erst
Plants 2024, 13(1), 47; https://doi.org/10.3390/plants13010047 - 22 Dec 2023
Cited by 3 | Viewed by 2164
Abstract
A comparative karyotype analysis of four species of yellow-flowered Eranthis sect. Eranthis, i.e., E. bulgarica, E. cilicica, E. hyemalis, and E. longistipitata from different areas, has been carried out for the first time. All the studied specimens had somatic [...] Read more.
A comparative karyotype analysis of four species of yellow-flowered Eranthis sect. Eranthis, i.e., E. bulgarica, E. cilicica, E. hyemalis, and E. longistipitata from different areas, has been carried out for the first time. All the studied specimens had somatic chromosome number 2n = 16 with basic chromosome number x = 8. Karyotypes of the investigated plants included five pairs of metacentric chromosomes and three pairs of submetacentric/subtelocentric chromosomes. The chromosome sets of the investigated species differ mainly in the ratio of submetacentric/subtelocentric chromosomes, their relative lengths, and arm ratios. A new oligonucleotide probe was developed and tested to detect 45S rDNA clusters. Using this probe and an oligonucleotide probe to 5S rDNA, 45S and 5S rDNA clusters were localized for the first time on chromosomes of E. cilicica, E. hyemalis, and E. longistipitata. Major 45S rDNA clusters were identified on satellite chromosomes in all the species; in E. cilicica, minor clusters were also identified in the terminal regions of one metacentric chromosome pair. The number and distribution of 5S rDNA clusters is more specific. In E. cilicica, two major clusters were identified in the pericentromeric region of a pair of metacentric chromosomes. Two major clusters in the pericentromeric region of a pair of submetacentric chromosomes and two major clusters in the interstitial region of a pair of metacentric chromosomes were observed in E. longistipitata. E. hyemalis has many clusters of different sizes, localized mainly in the pericentromeric regions. Summarizing new data on the karyotype structure of E. sect. Eranthis and previously obtained data on E. sect. Shibateranthis allowed conclusions to be formed about the clear interspecific karyological differences of the genus Eranthis. Full article
(This article belongs to the Special Issue Plant Molecular Cytogenetics)
Show Figures

Figure 1

16 pages, 13524 KiB  
Article
Development of a Set of Wheat-Rye Derivative Lines from Hexaploid Triticale with Complex Chromosomal Rearrangements to Improve Disease Resistance, Agronomic and Quality Traits of Wheat
by Tingting Wang, Guangrong Li, Chengzhi Jiang, Yuwei Zhou, Ennian Yang, Jianbo Li, Peng Zhang, Ian Dundas and Zujun Yang
Plants 2023, 12(22), 3885; https://doi.org/10.3390/plants12223885 - 17 Nov 2023
Cited by 4 | Viewed by 2181
Abstract
An elite hexaploid triticale Yukuri from Australia was used as a bridge for transferring valuable genes from Secale cereale L. into common wheat for enriching the genetic variability of cultivated wheat. Non-denaturing-fluorescence in situ hybridization (ND-FISH) identified that Yukuri was a secondary triticale [...] Read more.
An elite hexaploid triticale Yukuri from Australia was used as a bridge for transferring valuable genes from Secale cereale L. into common wheat for enriching the genetic variability of cultivated wheat. Non-denaturing-fluorescence in situ hybridization (ND-FISH) identified that Yukuri was a secondary triticale with a complete set of rye chromosomes and a 6D(6A) substitution. Seed protein electrophoresis showed that Yukuri had a unique composition of glutenin subunits. A set of Yukuri-derived wheat-rye introgression lines were created from a Yukuri x wheat population, and all lines were identified by ND-FISH with multiple probes and validated by diagnostic molecular marker analysis. A total of 59 wheat-rye introgression lines including modified chromosome structural variations of wheat, and new complex recombinant chromosomes of rye were detected through ND-FISH and Oligo-FISH painting based on oligonucleotide pools derived from wheat-barley genome collinear regions. Wheat lines carrying the 1R chromosome from Yukuri displayed resistance to both stripe rust and powdery mildew, while the lines carrying the 3RL and 7RL chromosome arms showed stripe rust resistance. The chromosome 1R-derived lines were found to exhibit a significant effect on most of the dough-related parameters, and chromosome 5R was clearly associated with increased grain weight. The development of the wheat-rye cytogenetic stocks carrying disease resistances and superior agronomic traits, as well as the molecular markers and FISH probes will promote the introgression of abundant variation from rye into wheat improvement programs. Full article
(This article belongs to the Special Issue Disease Resistance Breeding of Field Crops)
Show Figures

Figure 1

19 pages, 5645 KiB  
Article
The Improvement of Fluorescence In Situ Hybridization Technique Based on Explorations of Symbionts in Cicadas
by Zhi Huang, Dandan Wang, Jinrui Zhou, Hong He and Cong Wei
Int. J. Mol. Sci. 2023, 24(21), 15838; https://doi.org/10.3390/ijms242115838 - 31 Oct 2023
Cited by 2 | Viewed by 1834
Abstract
Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes is widely used for the identification of microbes in complex samples, but it suffers from some limitations resulting in the weak or even absence of fluorescence signals of microbe(s), which may lead to the [...] Read more.
Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes is widely used for the identification of microbes in complex samples, but it suffers from some limitations resulting in the weak or even absence of fluorescence signals of microbe(s), which may lead to the underestimation or misunderstanding of a microbial community. Herein, we explored symbionts in the bacteriomes and fat bodies of cicadas using modified FISH, aiming to improve this technique. We initially revealed that the probes of Candidatus Sulcia muelleri (Sulcia) and the yeast-like fungal symbiont (YLS) are suitable for detection of these symbionts in all cicadas and some other species of Auchenorrhyncha, whereas the probe of Candidatus Hodgkinia cicadicola (Hodgkinia) is only suitable for detection of Hodgkinia in a few cicada species. The fluorescence signal of Sulcia, Hodgkinia and YLS exhibited weak intensity without the addition of unlabeled oligonucleotides (helpers) and heat shock in some cicadas; however, it can be significantly improved by the addition of both helpers and heat shock. Results of this study suggest that heat shock denaturing rRNA and proteins of related microbe(s) together with helpers binding to the adjacent region of the probe’s target sites prevent the re-establishment of the native secondary structure of rRNA; therefore, suitable probe(s) can more easily access to the probe’s target sites of rRNA. Our results provide new information for the significant improvement of hybridization signal intensities of microbes in the FISH experiment, making it possible to achieve a more precise understanding of the microbial distribution, community and density in complex samples. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

13 pages, 3069 KiB  
Article
Genome Analysis of Thinopyrum intermedium and Its Potential Progenitor Species Using Oligo-FISH
by Fei Qi, Shuang Liang, Piyi Xing, Yinguang Bao, Richard R.-C. Wang and Xingfeng Li
Plants 2023, 12(21), 3705; https://doi.org/10.3390/plants12213705 - 27 Oct 2023
Cited by 4 | Viewed by 2057
Abstract
The genome composition of intermediate wheatgrass (IWG) is complex and continues to be a subject of investigation. In this study, molecular cytogenetics were used to investigate the karyotype composition of Th. intermedium and its relative diploid species. St2-80 developed from Pseudowroegneria [...] Read more.
The genome composition of intermediate wheatgrass (IWG) is complex and continues to be a subject of investigation. In this study, molecular cytogenetics were used to investigate the karyotype composition of Th. intermedium and its relative diploid species. St2-80 developed from Pseudowroegneria strigose and pDb12H developed from Dasypyrum breviaristatum were used as probes in fluorescence in situ hybridization (FISH) to classify the chromosomes of Th. intermedium into three groups, expressed as JvsJvsJrJrStSt. A combined multiplex oligonucleotide probe, including pSc119.2-1, (GAA)10, AFA-3, AFA-4, pAs1-1, Pas1-3, pAs1-4, and pAs1-6, was used to establish the FISH karyotype of ten accessions of Th. intermedium. Variability among and within the studied accessions of intermediate wheatgrass was observed in their FISH patterns. Results of this study led to the conclusions that Jvs had largely been contributed from Da. breviaristatum, but not the present-day Da. villosum; IWG had only one J genome, Jr, which was related to either Th. elongatum or Th. bessarabicum; and St was contributed from the genus Pseudoroegneria by hybridization with Th. junceiforme or Th. sartorii. Full article
(This article belongs to the Special Issue Plant Molecular Cytogenetics)
Show Figures

Figure 1

19 pages, 1213 KiB  
Review
Oligonucleotide Fluorescence In Situ Hybridization: An Efficient Chromosome Painting Method in Plants
by Arrashid Harun, Hui Liu, Shipeng Song, Sumeera Asghar, Xiaopeng Wen, Zhongming Fang and Chunli Chen
Plants 2023, 12(15), 2816; https://doi.org/10.3390/plants12152816 - 29 Jul 2023
Cited by 9 | Viewed by 4608
Abstract
Fluorescence in situ hybridization (FISH) is an indispensable technique for studying chromosomes in plants. However, traditional FISH methods, such as BAC, rDNA, tandem repeats, and distributed repetitive sequence probe-based FISH, have certain limitations, including difficulties in probe synthesis, low sensitivity, cross-hybridization, and limited [...] Read more.
Fluorescence in situ hybridization (FISH) is an indispensable technique for studying chromosomes in plants. However, traditional FISH methods, such as BAC, rDNA, tandem repeats, and distributed repetitive sequence probe-based FISH, have certain limitations, including difficulties in probe synthesis, low sensitivity, cross-hybridization, and limited resolution. In contrast, oligo-based FISH represents a more efficient method for chromosomal studies in plants. Oligo probes are computationally designed and synthesized for any plant species with a sequenced genome and are suitable for single and repetitive DNA sequences, entire chromosomes, or chromosomal segments. Furthermore, oligo probes used in the FISH experiment provide high specificity, resolution, and multiplexing. Moreover, oligo probes made from one species are applicable for studying other genetically and taxonomically related species whose genome has not been sequenced yet, facilitating molecular cytogenetic studies of non-model plants. However, there are some limitations of oligo probes that should be considered, such as requiring prior knowledge of the probe design process and FISH signal issues with shorter probes of background noises during oligo-FISH experiments. This review comprehensively discusses de novo oligo probe synthesis with more focus on single-copy DNA sequences, preparation, improvement, and factors that affect oligo-FISH efficiency. Furthermore, this review highlights recent applications of oligo-FISH in a wide range of plant chromosomal studies. Full article
(This article belongs to the Special Issue Plant Molecular Cytogenetics)
Show Figures

Figure 1

15 pages, 3105 KiB  
Article
Karyotype and Phylogenetic Relationship Analysis of Five Varieties and Cultivars of Zanthoxylum armatum Based on Oligo-FISH
by Zhoujian He, Yuting Lei, Wei Gong, Meng Ye and Xiaomei Luo
Genes 2023, 14(7), 1459; https://doi.org/10.3390/genes14071459 - 17 Jul 2023
Cited by 5 | Viewed by 1997
Abstract
Green prickly ash (Zanthoxylum armatum) has edible and medicinal value and is an economically significant plant in many countries. Z. armatum has many cultivars and varieties with similar phenotypes that are difficult to distinguish via traditional methods. In this study, we [...] Read more.
Green prickly ash (Zanthoxylum armatum) has edible and medicinal value and is an economically significant plant in many countries. Z. armatum has many cultivars and varieties with similar phenotypes that are difficult to distinguish via traditional methods. In this study, we utilized oligo-FISH to distinguish five varieties and cultivars of Z. armatum on the basis of three oligonucleotide probes of 5S rDNA, (AG3T3)3, and (GAA)6. Karyotype analysis of the five varieties and cultivars of Z. armatum showed that the Z. armatum ‘Tengjiao’ karyotype formula was 2n = 2x = 98m with karyotype type 1C and an arm ratio of 4.3237, including two pairs of 5S rDNA signals and five pairs of (GAA)6 signals. The karyotype formula of Z. armatum ‘Youkangtengjiao’ was 2n = 2x = 128m + 8sm with karyotype type 2B and an arm ratio of 3.5336, including three pairs of 5S rDNA signals and 17 pairs of (GAA)6 signals. The karyotype formula of Z. armatum var. novemfolius was 2n = 2x = 134m + 2sm with karyotype type 1C and an arm ratio of 5.5224, including two pairs of 5S rDNA signals and eight pairs of (GAA)6 signals. The karyotype formula of Z. armatum ‘YT-03’ was 2n = 2x = 2M + 128m + 4sm + 2st with karyotype type 2C and an arm ratio of 4.1829, including three pairs of 5S rDNA signals and nine pairs of (GAA)6 signals. The karyotype formula of Z. armatum ‘YT-06’ was 2n = 2x = 126m + 10sm with cytotype 2B and an arm ratio of 3.3011, including three pairs of 5S rDNA signals and two pairs of (GAA)6 signals. The five varieties and cultivars of Z. armatum had (AG3T3)3 signals on all chromosomes. The chromosomal symmetry of Z. armatum ‘Tengjiao’ was high, whereas the chromosomal symmetry of Z. armatum 'YT-03' was low, with the karyotypes of the five materials showing a trend toward polyploid evolution. The phylogenetic relationship between Z. armatum ‘Tengjiao’ and Z. armatum var. novemfolius was the closest, while that between Z. armatum ‘YT-03’ and Z. armatum ‘YT-06’ was closer than with Z. armatum ‘Youkangtengjiao’ according to oligo-FISH. The results provided a karyotype profile and a physical map that contributes to the distinction of varieties and cultivars of Z. armatum and provides strategies for distinguishing other cultivated species. Full article
Show Figures

Figure 1

10 pages, 1773 KiB  
Article
Oligo-FISH of Populus simonii Pachytene Chromosomes Improves Karyotyping and Genome Assembly
by Yilian Zhao, Guangxin Liu, Ziyue Wang, Yihang Ning, Runxin Ni and Mengli Xi
Int. J. Mol. Sci. 2023, 24(12), 9950; https://doi.org/10.3390/ijms24129950 - 9 Jun 2023
Cited by 4 | Viewed by 2533
Abstract
Poplar was one of the first woody species whose individual chromosomes could be identified using chromosome specific painting probes. Nevertheless, high-resolution karyotype construction remains a challenge. Here, we developed a karyotype based on the meiotic pachytene chromosome of Populus simonii which is a [...] Read more.
Poplar was one of the first woody species whose individual chromosomes could be identified using chromosome specific painting probes. Nevertheless, high-resolution karyotype construction remains a challenge. Here, we developed a karyotype based on the meiotic pachytene chromosome of Populus simonii which is a Chinese native species with many excellent traits. This karyotype was anchored by oligonucleotide (oligo)-based chromosome specific painting probes, a centromere-specific repeat (Ps34), ribosomal DNA, and telomeric DNA. We updated the known karyotype formula for P. simonii to 2n = 2x = 38 = 26m + 8st + 4t and the karyotype was 2C. The fluorescence in situ hybridization (FISH) results revealed some errors in the current P. simonii genome assembly. The 45S rDNA loci were located at the end of the short arm of chromosomes 8 and 14 by FISH. However, they were assembled on pseudochromosomes 8 and 15. In addition, the Ps34 loci were distributed in every centromere of the P. simonii chromosome in the FISH results, but they were only found to be present in pseudochromosomes 1, 3, 6, 10, 16, 17, 18, and 19. Our results reveal that pachytene chromosomes oligo-FISH is a powerful tool for constructing high-resolution karyotypes and improving the quality of genome assembly. Full article
Show Figures

Figure 1

21 pages, 10835 KiB  
Article
Factors Impacting Invader-Mediated Recognition of Double-Stranded DNA
by Caroline P. Shepard, Raymond G. Emehiser, Saswata Karmakar and Patrick J. Hrdlicka
Molecules 2023, 28(1), 127; https://doi.org/10.3390/molecules28010127 - 23 Dec 2022
Cited by 1 | Viewed by 2794
Abstract
The development of chemically modified oligonucleotides enabling robust, sequence-unrestricted recognition of complementary chromosomal DNA regions has been an aspirational goal for scientists for many decades. While several groove-binding or strand-invading probes have been developed towards this end, most enable recognition of DNA only [...] Read more.
The development of chemically modified oligonucleotides enabling robust, sequence-unrestricted recognition of complementary chromosomal DNA regions has been an aspirational goal for scientists for many decades. While several groove-binding or strand-invading probes have been developed towards this end, most enable recognition of DNA only under limited conditions (e.g., homopurine or short mixed-sequence targets, low ionic strength, fully modified probe strands). Invader probes, i.e., DNA duplexes modified with +1 interstrand zippers of intercalator-functionalized nucleotides, are predisposed to recognize DNA targets due to their labile nature and high affinity towards complementary DNA. Here, we set out to gain further insight into the design parameters that impact the thermal denaturation properties and binding affinities of Invader probes. Towards this end, ten Invader probes were designed, and their biophysical properties and binding to model DNA hairpins and chromosomal DNA targets were studied. A Spearman’s rank-order correlation analysis of various parameters was then performed. Densely modified Invader probes were found to result in efficient recognition of chromosomal DNA targets with excellent binding specificity in the context of denaturing or non-denaturing fluorescence in situ hybridization (FISH) experiments. The insight gained from the initial phase of this study informed subsequent probe optimization, which yielded constructs displaying improved recognition of chromosomal DNA targets. The findings from this study will facilitate the design of efficient Invader probes for applications in the life sciences. Full article
Show Figures

Figure 1

12 pages, 2120 KiB  
Article
Five Species of Taxus Karyotype Based on Oligo-FISH for 5S rDNA and (AG3T3)3
by Zhoujian He, Xiaomei Luo, Yuting Lei and Wei Zhang
Genes 2022, 13(12), 2209; https://doi.org/10.3390/genes13122209 - 25 Nov 2022
Cited by 4 | Viewed by 2130
Abstract
As a relict plant, Taxus is used in a variety of medicinal ingredients, for instance to treat a variety of cancers. Taxus plants are difficult to distinguish from one another due to their similar morphology; indeed, some species of Taxus cytogenetic data still [...] Read more.
As a relict plant, Taxus is used in a variety of medicinal ingredients, for instance to treat a variety of cancers. Taxus plants are difficult to distinguish from one another due to their similar morphology; indeed, some species of Taxus cytogenetic data still are unclear. Oligo-FISH can rapidly and efficiently provide insight into the genetic composition and karyotype. This is important for understanding the organization and evolution of chromosomes in Taxus species. We analysed five Taxus species using two oligonucleotide probes. (AG3T3)3 signals were distributed at the chromosome ends and the centromere of five species of Taxus. The 5S rDNA signal was displayed on two chromosomes of five species of Taxus. In addition to Taxus wallichiana var. mairei, 5S rDNA signals were found proximal in the remaining four species, which signals a difference in its location. The karyotype formula of Taxus wallichiana was 2n = 2x = 24m, its karyotype asymmetry index was 55.56%, and its arm ratio was 3.0087. Taxus × media’s karyotype formula was 2n = 2x = 24m, its karyotype asymmetry index was 55.09%, and its arm ratio was 3.4198. The karyotype formula of Taxus yunnanensis was 2n = 2x = 24m, its karyotype asymmetry index was 55.56%, and its arm ratio was 2.6402. The karyotype formula of Taxus cuspidate was 2n = 2x = 24m, its karyotype asymmetry index was 54.67%, its arm ratio was 3.0135, and two chromosomes exhibited the 5S rDNA signal. The karyotype formula of T. wallichiana var. mairei was 2n= 2x = 22m + 2sm, its karyotype asymmetry index was 54.33%, and its arm ratio was 2.8716. Our results provide the karyotype analysis and physical genetic map of five species of Taxus, which contributes to providing molecular cytogenetics data for Taxus. Full article
(This article belongs to the Special Issue Chromosome Evolution and Karyotype Analysis)
Show Figures

Figure 1

15 pages, 3226 KiB  
Article
Accurate Chromosome Identification in the Prunus Subgenus Cerasus (Prunus pseudocerasus) and its Relatives by Oligo-FISH
by Lei Wang, Yan Feng, Yan Wang, Jing Zhang, Qing Chen, Zhenshan Liu, Congli Liu, Wen He, Hao Wang, Shaofeng Yang, Yong Zhang, Ya Luo, Haoru Tang and Xiaorong Wang
Int. J. Mol. Sci. 2022, 23(21), 13213; https://doi.org/10.3390/ijms232113213 - 30 Oct 2022
Cited by 4 | Viewed by 2222
Abstract
A precise, rapid and straightforward approach to chromosome identification is fundamental for cytogenetics studies. However, the identification of individual chromosomes was not previously possible for Chinese cherry or other Prunus species due to the small size and similar morphology of their chromosomes. To [...] Read more.
A precise, rapid and straightforward approach to chromosome identification is fundamental for cytogenetics studies. However, the identification of individual chromosomes was not previously possible for Chinese cherry or other Prunus species due to the small size and similar morphology of their chromosomes. To address this issue, we designed a pool of oligonucleotides distributed across specific pseudochromosome regions of Chinese cherry. This oligonucleotide pool was amplified through multiplex PCR with specific internal primers to produce probes that could recognize specific chromosomes. External primers modified with red and green fluorescence tags could produce unique signal barcoding patterns to identify each chromosome concomitantly. The same oligonucleotide pool could also discriminate all chromosomes in other Prunus species. Additionally, the 5S/45S rDNA probes and the oligo pool were applied in two sequential rounds of fluorescence in situ hybridization (FISH) localized to chromosomes and showed different distribution patterns among Prunus species. At the same time, comparative karyotype analysis revealed high conservation among P. pseudocerasus, P. avium, and P. persica. Together, these findings establish this oligonucleotide pool as the most effective tool for chromosome identification and the analysis of genome organization and evolution in the genus Prunus. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

10 pages, 1319 KiB  
Article
Location of Tandem Repeats on Wheat Chromosome 5B and the Breakpoint on the 5BS Arm in Wheat Translocation T7BS.7BL-5BS Using Single-Copy FISH Analysis
by Wei Zhang, Zongxiang Tang, Jie Luo, Guangrong Li, Zujun Yang, Manyu Yang, Ennian Yang and Shulan Fu
Plants 2022, 11(18), 2394; https://doi.org/10.3390/plants11182394 - 14 Sep 2022
Cited by 2 | Viewed by 1951
Abstract
Wheat (Triticum aestivum L.) is rich in tandem repeats, and this is helpful in studying its karyotypic evolution. Some tandem repeats have not been assembled into the wheat genome sequence. Alignment using the blastn tool in the B2DSC web server indicated that [...] Read more.
Wheat (Triticum aestivum L.) is rich in tandem repeats, and this is helpful in studying its karyotypic evolution. Some tandem repeats have not been assembled into the wheat genome sequence. Alignment using the blastn tool in the B2DSC web server indicated that the genomic sequence of 5B chromosome (IWGSC RefSeq v2.1) does not contain the tandem repeat pTa-275, and the tandem repeat (GA)26 distributed throughout the whole 5B chromosome. The nondenaturing fluorescence in situ hybridization (ND-FISH) using the oligonucleotide (oligo) probes derived from pTa-275 and (GA)26 indicated that one signal band of pTa-275 and two signal bands of (GA)26 appeared on the 5B chromosome of Chinese Spring wheat, indicating the aggregative distribution patterns of the two kinds of tandem repeats. Single-copy FISH indicated that the clustering region of pTa-275 and the two clustering regions of (GA)26 were located in ~160–201 Mb, ~153–157 Mb, and ~201–234 Mb intervals, respectively. Using ND-FISH and single-copy FISH technologies, the translocation breakpoint on the 5BS portion of the translocation T7BS.7BL-5BS, which exists widely in north-western European wheat cultivars, was located in the region from 157,749,421 bp to 158,555,080 bp (~0.8 Mb), and this region mainly contains retrotransposons, and no gene was found. The clustering regions of two kinds of tandem repeats on wheat chromosome 5B were determined and this will be helpful to improve the future sequence assembly of this chromosome. The sequence characteristics of the translocation breakpoint on the translocation T7BS.7BL-5BS obtained in this study are helpful to understand the mechanism of wheat chromosome translocation. Full article
(This article belongs to the Special Issue Plant Chromosome Biology and Genomics for Breeding)
Show Figures

Figure 1

16 pages, 3454 KiB  
Article
Electrochemical DNA Biosensor Based on Mercaptopropionic Acid-Capped ZnS Quantum Dots for Determination of the Gender of Arowana Fish
by Eka Safitri, Lee Yook Heng, Musa Ahmad, Ling Ling Tan, Nazaruddin Nazaruddin, Khairi Suhud, Chew Poh Chiang and Muhammad Iqhrammullah
Biosensors 2022, 12(8), 650; https://doi.org/10.3390/bios12080650 - 17 Aug 2022
Cited by 9 | Viewed by 3344
Abstract
A new electrochemical DNA biosensor based on mercaptopropionic acid (MPA)-capped ZnS quantum dots (MPA-ZnS QDs) immobilization matrix for covalent binding with 20-base aminated oligonucleotide has been successfully developed. Prior to the modification, screen-printed carbon paste electrode (SPE) was self-assembled with multilayer gold nanoparticles [...] Read more.
A new electrochemical DNA biosensor based on mercaptopropionic acid (MPA)-capped ZnS quantum dots (MPA-ZnS QDs) immobilization matrix for covalent binding with 20-base aminated oligonucleotide has been successfully developed. Prior to the modification, screen-printed carbon paste electrode (SPE) was self-assembled with multilayer gold nanoparticles (AuNPs) and cysteamine (Cys). The inclusion of MPA-ZnS QDs semiconducting material in modified electrodes has enhanced the electron transfer between the SPE transducer and DNA leading to improved bioanalytical assay of target biomolecules. Electrochemical studies performed by cyclic voltammetry (CV) and differential pulsed voltammetry (DPV) demonstrated that the MPA-ZnS QDs modified AuNPs electrode was able to produce a lower charge transfer resistance response and hence higher electrical current response. Under optimal conditions, the immobilized synthetic DNA probe exhibited high selectivity towards synthetic target DNA. Based on the DPV response of the reduction of anthraquinone monosulphonic acid (AQMS) redox probe, the MPA-ZnS QDs-based electrochemical DNA biosensor responded to target DNA concentration from 1 × 10−9 μM to 1 × 10−3 μM with a sensitivity 1.2884 ± 0.12 µA, linear correlation coefficient (R2) of 0.9848 and limit of detection (LOD) of 1 × 10−11 μM target DNA. The DNA biosensor exhibited satisfactory reproducibility with an average relative standard deviation (RSD) of 7.4%. The proposed electrochemical transducer substrate has been employed to immobilize the aminated Arowana fish (Scleropages formosus) DNA probe. The DNA biosensor showed linearity to target DNA from 1 × 1011 to 1 × 106 µM (R2 = 0.9785) with sensitivity 1.1251 ± 0.243 µA and LOD of 1 × 1011 µM. The biosensor has been successfully used to determine the gender of Arowana fish without incorporating toxic raw materials previously employed in the hazardous processing conditions of polypyrrole chemical conducting polymer, whereby the cleaning step becomes difficult with thicker films due to high levels of toxic residues from the decrease in polymerization efficacy as films grew. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

Back to TopTop