Karyotypes and Physical Mapping of Ribosomal DNA with Oligo-Probes in Eranthis sect. Eranthis (Ranunculaceae)
Abstract
:1. Introduction
2. Results
2.1. Karyotypes of Eranthis sect. Eranthis
2.1.1. Eranthis bulgarica
2.1.2. Eranthis cilicica
2.1.3. Eranthis hyemalis
2.1.4. Eranthis longistipitata
2.1.5. Comparative Karyomorphometric Analysis
2.2. Distribution of rDNA Sites along the Chromosomes of Eranthis cilicica, E. hyemalis, and E. longistipitata
3. Discussion
Karyotype Structure in Eranthis sect. Eranthis
4. Materials and Methods
4.1. Plant Samples
4.2. Karyotype Analysis
4.3. Oligonucleotide Probes
4.4. Chromosome Preparation and Fluorescence In Situ Hybridization (FISH)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, W.; Lu, A.M.; Ren, Y.; Endress, M.E.; Chen, Z.D. Phylogeny and classification of Ranunculales: Evidence from four molecular loci and morphological data. Perspect. Plant Ecol. Evol. Syst. 2009, 11, 81–110. [Google Scholar] [CrossRef]
- Park, S.Y.; Jeon, M.J.; Ma, S.H.; Wahlsteen, E.; Amundsen, K.; Kim, J.H.; Suh, J.K.; Chang, J.S.; Joung, Y.H. Phylogeny and genetic variation in the genus Eranthis using nrITS and cpIS single nucleotide polymorphisms. Hortic. Environ. Biotechnol. 2019, 60, 239–252. [Google Scholar] [CrossRef]
- Oh, A.; Oh, B.U. The speciation history of northern- and southern-sourced Eranthis (Ranunculaceae) species on the Korean peninsula and surrounding areas. Ecol. Evol. 2019, 9, 2907–2919. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.Y.; Kim, C.H.; Kim, T.J. A new species of Eranthis (Ranunculaceae). Korean J. Plant Tax. 1993, 2, 321–326. [Google Scholar]
- Erst, A.S.; Sukhorukov, A.P.; Mitrenina, E.Y.; Skaptsov, M.V.; Kostikova, V.A.; Chernisheva, O.A.; Troshkina, V.; Kushunina, M.; Krivenko, D.A.; Ikeda, H.; et al. An integrative taxonomic approach reveals a new species of Eranthis (Ranunculaceae) in North Asia. PhytoKeys 2020, 140, 75–100. [Google Scholar] [CrossRef] [PubMed]
- Tamura, M. Eranthis and Shibateranthis. Acta Phytotax. Geobot. 1987, 38, 96–97. [Google Scholar]
- Tamura, M. Eranthis. In Die Natürlichen Pflanzenfamilien; Duncker und Humblot: Berlin, Germany, 1995; Volume 17, pp. 253–255. [Google Scholar]
- Stefanoff, B. Dopolnitelni materiali varhu florata na Blgaria. Izv. Bot. Inst. [Mitteilungen Bot. Inst.] 1943, 11, 155. [Google Scholar]
- Rukšāns, J.; Zetterlund, H. Eranthis iranica (Ranunculaceae) Rukšāns & Zetterlund new species of winter aconite from Iran. Intern. Rock Gard. 2018, 108, 2–19. [Google Scholar]
- Rukšāns, J. Eranthis kurdica (Ranunculaceae) Rukšāns—A new species of winter aconite (Eranthis, Ranunculaceae) from Iran. Intern. Rock Gard. 2022, 151, 2–18. [Google Scholar]
- Grey-Wilson, C. The winter aconite, a taxonomic dilemma. Plant Rev. 2019, 1, 53–56. [Google Scholar]
- Stace, C.A. New Flora of the British Isles, 4th ed.; C&M Floristics: Cambridge, UK, 2019; 1300p. [Google Scholar]
- Boens, W. The genus Eranthis, heralds of the end of winter. Int. Rock Gard. 2014, 49, 1–24. [Google Scholar]
- Firat, M. An addition to flora of Turkey: Eranthis kurdica (Ranunculaceae), with contributions to its taxonomy. Acta Biol. Turc. 2023, 36, 1–11. [Google Scholar]
- Huang, Z.; Zhang, X. Floral nectaries and pseudonectaries in Eranthis (Ranunculaceae): Petal development, micromorphology, structure and ultrastructure. Protoplasma 2022, 259, 1283–1300. [Google Scholar] [CrossRef] [PubMed]
- Ilnicki, T. Plant biosystematics with the help of cytology and cytogenetics. Caryologia 2014, 67, 199–208. [Google Scholar] [CrossRef]
- Peruzzi, L.; Carta, A.; Altınordu, F. Chromosome diversity and evolution in Allium (Allioideae, Amaryllidaceae). Plant Biosyst. 2017, 151, 212–220. [Google Scholar] [CrossRef]
- Mráz, P.; Filipas, L.; Bărbos, M.I.; Kadlecová, J.; Paštová, L.; Belyayev, A.; Fehrer, J. An unexpected new diploid Hieracium from Europe: Integrative taxonomic approach with a phylogeny of diploid Hieracium taxa. Taxon 2019, 68, 1258–1277. [Google Scholar] [CrossRef]
- Volkova, S.A.; Gorovoy, P.G.; Pshennikova, L.M. Karyotypes of Adonis amurensis (Ranunculaceae) in the Primorsky Territory and in Sakhalin. Turczaninowia 2020, 23, 39–48. [Google Scholar]
- Mlinarec, J.; Šatović, Z.; Mihelj, D.; Malenica, N.; Besendorfer, V. Cytogenetic and phylogenetic studies of diploid and polyploid members of tribe Anemoninae (Ranunculaceae). Plant Biol. 2012, 14, 525–536. [Google Scholar] [CrossRef]
- Yang, Q.-E. Cytology of the tribe Trollieae and of the tribe Cimicifugeae in the Ranunculaceae: A comparative study. Acta Phytotaxon. Sin. 2002, 40, 52–65. [Google Scholar]
- Yuan, Q.; Yang, Q.-E. Tribal relationships of Beesia, Eranthis and seven other genera of Ranunculaceae: Evidence from cytological characters. Bot. J. Linn. Soc. 2006, 150, 267–289. [Google Scholar] [CrossRef]
- Páez, V.; Andrada, A. Análisis cariotípicos en dos especies de Halerpestes (Ranunculaceae) del Noroeste Argentino. Lilloa 2019, 56, 59–66. [Google Scholar] [CrossRef]
- Baltisberger, M.; Hörandl, E. Karyotype evolution supports the molecular phylogeny in the genus Ranunculus (Ranunculaceae). Perspect. Plant Ecol. Evol. Syst. 2016, 18, 1–14. [Google Scholar] [CrossRef]
- Weiss-Schneeweiss, H.; Schneeweiss, G.M.; Stuessy, T.F.; Mabuchi, T.; Park, J.M.; Jang, C.G.; Sun, B.Y. Chromosomal stasis in diploids contrasts with genome restructuring in auto-and allopolyploid taxa of Hepatica (Ranunculaceae). New Phytol. 2007, 174, 669–682. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.K.; Choi, H.W.; Kim, S.Y.; Bang, J.W. Molecular cytogenetics of five Pulsatilla species to the 5S, 45S rDNA genes by fluorescence in situ hybridization. Genes Genom. 2005, 27, 179–185. [Google Scholar]
- Sramkó, G.; Laczkó, L.; Volkova, P.A.; Bateman, R.M.; Mlinarec, J. Evolutionary history of the Pasque-flowers (Pulsatilla, Ranunculaceae): Molecular phylogenetics, systematics and rDNA evolution. Mol. Phylogenet. Evol. 2019, 135, 45–61. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, C. Physical mapping of rDNA sequences in four karyotypes of Ranunculus silerifolius (Ranunculaceae). J. Plant Res. 2003, 116, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Mitrenina, E.Y.; Erst, A.S.; Peruzzi, L.; Skaptsov, M.V.; Ikeda, H.; Nikulin, V.Y.; Wang, W. Karyotype and genome size variation in white-flowered Eranthis sect. Shibateranthis (Ranunculaceae). PhytoKeys 2021, 187, 207–227. [Google Scholar] [CrossRef]
- Tak, M.A.; Wafai, B.A. Somatic chromosome structure and nucleolar organization in Anemone coronaria L., Ranunculus asiaticus L. and Eranthis hyemalis Salisb. (Ranunculaceae). Phytomorphology 1996, 46, 377–385. [Google Scholar]
- Gömürgen, A.N. Chromosome Numbers and Karyotype Analysis of Eranthis hyemalis (L.) Salisb. In Progress in Botanical Research: Proceedings of the 1st Balkan Botanical Congress; Springer: Dordrecht, The Netherlands, 1997; pp. 489–492. [Google Scholar]
- Caparelli, K.F.; Aquaro, G.; Peruzzi, L. Numeri cromosomici per la flora Italiana: 1460–1463. Inform. Bot. Ital. 2007, 39, 233–235. [Google Scholar]
- Roa, F.; Guerra, M. Distribution of 45S rDNA sites in chromosomes of plants: Structural and evolutionary implications. BMC Evol. Biol. 2012, 12, 225. [Google Scholar] [CrossRef]
- Rosselló, J.A.; Maravilla, A.J.; Rosato, M. The nuclear 35S rDNA world in plant systematics and evolution: A primer of cautions and common misconceptions in cytogenetic studies. Front. Plant Sci. 2022, 13, 788911. [Google Scholar] [CrossRef]
- Langlet, O. Über Chromosomenverhältnisse und Systematik der Ranunculaceae. Sven. Bot. Tidskr. 1932, 26, 381–400. [Google Scholar]
- Colasante, M.; Ricci, S. Forme diploidi e triploidi di Eranthis hyemalis Salisb.: Omologie e differenze nel corredo cromosomico. Ann. Bot. 1974, 33, 139–150. [Google Scholar]
- Lima-de-Faria, A. The chromosome field I. Prediction of the location of ribosomal cistrons. Hereditas 1976, 83, 1–22. [Google Scholar] [CrossRef]
- Mártonfiová, L. A method of standardization of chromosome length measurement. Caryologia 2013, 66, 304–312. [Google Scholar] [CrossRef]
- Petrova, A.; Vladimirov, V. Red List of Bulgarian vascular plants. Phytol. Balc. 2009, 15, 63–94. [Google Scholar]
- Vladimirov, V. Eranthis bulgaricus. In Red Data Book of the Republic of Bulgaria: Vol. 1. Plants and Fungi; Peev, D., Petrova, A.S., Anchev, M., Temniskova, D., Denchev, C.M., Ganeva, A., Gussev, C., Vladimirov, V., Eds.; BAS & MoEW: Sofia, Bulgaria, 2015; p. 237. [Google Scholar]
- Trakić, S.; Čelebičić, M.; Bakić, V.; Sarač-Mehić, E.; Đug, S. Predictive distribution modeling for Eranthis hyemalis (Ranunculaceae)—A species of special conservation interest in Bosnia and Herzegovina. Phytol. Balc. 2023, 29, 45–52. [Google Scholar] [CrossRef]
- Shrager, L.N.; Malakhova, L.A. Karyotypical studies of Adonis sibirica Patr. in Tomsk region. Cytologia 1978, 20, 592–596. [Google Scholar]
- Mitrenina, E.Y.; Erst, A.S.; Skaptsov, M.V.; Smirnov, S.V.; Zolotov, D.V.; Leonova, T.V.; Tashev, A.N.; Bancheva, S.T.; Wang, W. Karyotype and genome size in Adonis vernalis and Adonis volgensis. Turczaninowia 2022, 25, 5–15. [Google Scholar] [CrossRef]
- Levan, A.; Fredga, K.; Sandberg, A. Nomenclature for centrometric position of chromosomes. Hereditas 1964, 52, 201–220. [Google Scholar] [CrossRef]
- Peruzzi, L.; Galasso, G.; Domina, G.; Bartolucci, F.; Santangelo, A.; Alessandrini, A.; Astuti, G.; D’Antraccoli, M.; Roma-Marzio, F.; Ardenghi, N.M.G.; et al. An inventory of the names of native, non-endemic vascular plants described from Italy, their loci classici and types. Phytotaxa 2019, 410, 1–215. [Google Scholar] [CrossRef]
- Peruzzi, L.; Eroğlu, H.E. Karyotype asymmetry: Again, how to measure and what to measure? Comp. Cytogenet. 2013, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Paszko, A. A critical review and a new proposal of karyotype asymmetry indices. Plant Syst. Evol. 2006, 258, 39–48. [Google Scholar] [CrossRef]
- Levin, D.A. The Role of Chromosomal Change in Plant Evolution; Oxford University Press: New York, NY, USA, 2002; 240p. [Google Scholar]
- Lewitsky, G.A. The ‘karyotype’ in systematics, on the base of karyology of the subfamily Helleboreae. Bull. Appl. Bot. Genet. Plant-Breed. 1931, 27, 187–240. [Google Scholar]
- Jones, K. Robertsonian fusion and centric fission in karyotype evolution of higher plants. Bot. Rev. 1998, 64, 273–289. [Google Scholar] [CrossRef]
- Wang, M.Z.; Fan, X.K.; Zhang, Y.H.; Wu, J.; Mao, L.M.; Zhang, S.L.; Cai, M.Q.; Li, M.H.; Zhu, Z.; Zhao, M.S.; et al. Phylogenomics and integrative taxonomy reveal two new species of Amana (Liliaceae). Plant Divers. 2023, 45, 54–68. [Google Scholar] [CrossRef] [PubMed]
- Jang, T.S.; McCann, J.; Parker, J.S.; Takayama, K.; Hong, S.P.; Schneeweiss, G.M.; Weiss-Schneeweiss, H. rDNA loci evolution in the genus Glechoma (Lamiaceae). PLoS ONE 2016, 11, e0167177. [Google Scholar] [CrossRef]
- Jiang, C.; Liu, X.; Yang, Z.; Li, G. Chromosome rearrangement in Elymus dahuricus revealed by ND-FISH and oligo-FISH painting. Plants 2023, 12, 3268. [Google Scholar] [CrossRef]
- Yurkevich, O.Y.; Samatadze, T.E.; Selyutina, I.Y.; Romashkina, S.I.; Zoshchuk, S.A.; Amosova, A.V.; Muravenko, O.V. Molecular cytogenetics of Eurasian species of the genus Hedysarum L.(Fabaceae). Plants 2021, 10, 89. [Google Scholar] [CrossRef]
- Smirnov, Y.A. Uskorennyi metod issledovaniya somaticheskykh khromosom plodovykh [Accelerated method for studying somatic chromosomes in fruit trees]. Tsitologia 1968, 10, 1601–1602. [Google Scholar]
- Altınordu, F.; Peruzzi, L.; Yu, Y.; He, X. A tool for the analysis of chromosomes: KaryoType. Taxon 2016, 65, 586–592. [Google Scholar] [CrossRef]
- Peruzzi, L.; Altınordu, F. A proposal for a multivariate quantitative approach to infer karyological relationships among taxa. Comp. Cytogenet. 2014, 8, 337–349. [Google Scholar] [CrossRef] [PubMed]
- Hammer, O.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Hammer, O. PAST 4.14. 2023. Available online: https://www.nhm.uio.no/english/research/resources/past/ (accessed on 31 October 2023).
- Yu, Z.; Wang, H.; Xu, Y.; Li, Y.; Lang, T.; Yang, Z.; Li, G. Characterization of chromosomal rearrangement in new wheat—Thinopyrum intermedium addition lines carrying Thinopyrum—Specific grain hardness genes. Agronomy 2019, 9, 18. [Google Scholar] [CrossRef]
- Badaeva, E.D.; Ruban, A.S.; Aliyeva-Schnorr, L.; Municio, C.; Hesse, S.; Houben, A. In situ hybridization to plant chromosomes. In Fluorescence In Situ Hybridization (FISH) Application Guide; Liehr, T., Ed.; Springer: Berlin, Germany, 2017; pp. 477–494. [Google Scholar]
Pop. | Species | Voucher Information | CN, 2n |
---|---|---|---|
1 | E. bulgarica | Bulgaria, Vidin District, Vrashka Chuka Peak, xerothermal belt of oak forests, 632 m, 43°50′14.2″ N 22°22′30.3″ E, 12.03.2019, A.N. Tashev, BU2019-2 | 16 |
2 | E. bulgarica | Bulgaria, Vidin District, Vrashka Chuka Peak, xerothermal belt of oak forests, 678 m, 43°49′54.8″ N 22°17′0.2″ E, 16.03.2021, A.N. Tashev, S. Bancheva, BU2021-5.3 | 16 |
3 | E. cilicica | Turkey, Kahramanmaraş Province, Göksun District, Delihöbek Dagi, mountain steppe, 2115 m, 37°53′ N 36°41′ E, 29.04.2019, T. Ertuğrul, TU2019-1 | 16 |
4 | E. cilicica | Turkey, Konya Province, between Taşkent–Başyayla, after Feslikan Plateau, high mountain steppe with Ornithoghalum lanceolatum, Anemone blanda, Tulipa armena, Ranunculus sp., 1726 m, 36°50′45″ N 32°33′36″ E, 2021, A.S. Erst, T.V. Erst, O. Çeçen, Z. Aytac, TU2021-4 | 16 |
5 | E. cilicica | Turkey, Karaman Province, between Taşkent–Başyayla, 10 km from Basuala, high mountain steppe with Ornithoghalum lanceolatum, Tulipa cinnaborina, Acantholimon venestum, Corydalis erdelii, Fritillaria pinardii, Anemone blanda, 1807 m, 36°47′20″ N 32°37′54″ E, 2021, A.S. Erst, T.V. Erst, O. Çeçen, Z. Aytac, TU2021-5 | 16 |
6 | E. cilicica | Turkey, Mersin Province, Anamur District, Tamtır Plateau, high mountain stony steppe with Corydalis sp., Anemone blanda, Fritillaria pinardi, Ornithogalum platyphyllum, 1889 m, 36°19′36″ N 32°43′16″ E, 2021, A.S. Erst, T.V. Erst, O. Çeçen, Z. Aytac, TU2021-11 | 16 |
7 | E. hyemalis | Italy, Impruneta, Villa Le Rose (Firenze), olive grove, 107 m, 43°43′15.5″ N 11°13′36.2″ E, 15.02.2020, A.S. Erst, T.V. Erst, L. Pinzani, IT2020-1 | 16 |
8 | E. hyemalis | Italy, Pontassieve, Villa di Grignano (Firenze), olive grove along the street, 300 m, 43°48′23.7″ N 11°27′32.1″ E, 15.02.2020, A.S. Erst, T.V. Erst, L. Pinzani, IT2020-4 | 16 |
9 | E. hyemalis | Italy, Via di Roncrio, Bologna, mixed deciduous wood near road, 123 m, 44°27′42.1″ N 11°20′12.9″ E, 16.02.2020, A.S. Erst, T.V. Erst, L. Pinzani, IT2020-5 | 16 |
10 | E. hyemalis | Italy, Franzone La Ponte, Lombardia, Goldferenzo (Pavia), along the road, 238 m, 44°58′11.4″ N 9°17′31.1″ E, 17.02.2020, A.S. Erst, T.V. Erst, L. Pinzani, IT2020-8 | 16 |
11 | E. hyemalis | Germany, Rheinland-Pfalz, Dörrmoschel, cemetery along the street, 362 m, 49°37′07.9″ N 7°45′07.1″ E, 12.02.2020, I. Vogler, C. Rosche, GE2020-3 | 16 |
12 | E. hyemalis | Hungary, Nagykapornak, park with remain Quercus–Carpinus forest, 163 m, 46°49′13″ N 16°59′33″ E, 15.02.2020, A. Mesterházy, HU2020-1 | 16 |
13 | E. hyemalis | Hungary, Aszófő, Quercus–Carpinus forest in the valley, 150 m, 46°56′18″ N 17°49′31″ E, 18.02.2020, A. Mesterházy, HU2020-2 | 16 |
14 | E. longistipitata | Kazakhstan, western part of the Kirghizsky Ridge, Botamoynak Mountains, near Taraz City, 900 m, 42°54′26″ N 71°32′09″ E, 24.03.2017, V. Kolbinzev, KAZ2017-1 | 16 |
15 | E. longistipitata | Tajikistan, Khatlon Oblast, Muminobod district, Hazrati-Shoh pass, Childukhtaron mountain, blackwood, 38°18′11.5″ N 70°09′57.7″ E, 10.04.2020, M.T. Boboev, S.B. Yoqubov, TJ2020-1 | 16 |
16 | E. longistipitata | Uzbekistan, Andijan region, Khojaabad region, east-southeastern part of the Fergana Valley, Kyrtashtau mountains, near Imamat village, mossy stony slope, 910 m, 40°32′27″ N, 72°36′28″ E, 12.03.2020, T.Kh. Makhkamov, D.A. Krivenko, O.T. Turginov, O.A. Chernysheva, UZB2020-1 | 16 |
17 | E. longistipitata | Uzbekistan, Tashkent region, Bostanlyk district, Western Tan-Shan, north-western part of the Chatkal ridge, foot of the Big Chimgan mountain, between Galvasay and Mramornaya rivers, on the road from Uchterek tract to Chimgan tract, bushy slope, 1690 m, 41°31′05″ N 69°59′15″ E, 16.03.2020, D.A. Krivenko, O.A. Chernysheva, T.Kh. Makhkamov, UZB2020-9 | 16 |
18 | E. longistipitata | Uzbekistan, Jizzakh region, Zaamin district, Western Pamiro-Alai, Gissar-Alai, northern macroslope of the Turkestan ridge, Zaamin forestry enterprise, Usman tract, mountain slope, 1450 m, 39°43′26.1″ N 68°27′54.0″ E, 20.03.2020, T.Kh. Makhkamov, UZB2020-10 | 16 |
Species | Population Number/Voucher | Karyotype Formula |
---|---|---|
E. bulgarica | Pop. 1, BU2019-2 | 10m + 3sm + 1st + 2stsat |
Pop. 2, BU2021-5.3 | 10m + 3sm + 1st + 2stsat | |
E. cilicica | Pop. 3, TU2019-1 | 10m + 4sm + 2stsat |
Pop. 4, TU2021-4 | 10m + 4sm + 2stsat | |
E. hyemalis | Pop. 7, IT2020-1 | 10m + 2sm + 2st + 2stsat |
Pop. 8, IT2020-4 | 10m + 2sm + 2st + 2stsat | |
Pop. 9, IT2020-5 | 10m + 2sm + 2st + 2stsat | |
Pop. 10, IT2020-8 | 10m + 2sm + 2st + 2stsat | |
Pop. 11, GE2020-3 | 10m + 2sm + 2st + 2stsat | |
Pop. 12, HU2020-1 | 10m + 2sm + 2st + 2stsat | |
E. longistipitata | Pop. 14, KAZ2017-1 | 10m + 2sm + 2st + 2stsat |
Pop. 15, TAJ 2020-1 | 10m + 2sm + 2st + 2stsat | |
Pop. 17, UZB2020-9 | 10m + 2sm + 2st + 2stsat |
Species | Pair | CL, µm | r | CI, % | RL, % | Type | THL | MCA | CVCL | CVCI |
---|---|---|---|---|---|---|---|---|---|---|
E. bulgarica (Pop. 1) | 1 | 6.99 ± 0.23 | 1.14 ± 0.06 | 46.67 | 7.75 | m | 45.12 ± 0.96 | 21.13 ± 0.67 | 18.57 ± 0.63 | 27.76 ± 0.83 |
2 | 6.71 ± 0.29 | 1.07 ± 0.05 | 48.49 | 7.44 | m | |||||
3 | 6.27 ± 0.17 | 1.07 ± 0.04 | 48.26 | 6.95 | m | |||||
4 | 6.14 ± 0.21 | 1.12 ± 0.06 | 47.29 | 6.80 | m | |||||
5 | 5.59 ± 0.27 | 1.13 ± 0.05 | 46.93 | 6.20 | m | |||||
6 | 4.88 ± 0.23 | 2.48 ± 0.13 | 28.76 | 5.41 | sm | |||||
7 | 4.42 ± 0.04 4.59 ± 0.11 | 2.40 ± 0.18 3.58 ± 0.31 | 29.44 21.97 | 4.90 5.10 | sm st | |||||
8 | 4.02 ± 0.15 | 3.28 ± 0.13 | 23.42 | 4.45 | stsat | |||||
E. cilicica (Pop. 3) | 1 | 8.35 ± 0.42 | 1.06 ± 0.03 | 48.48 | 7.60 | m | 54.90 ± 1.91 | 22.86 ± 0.98 | 22.11 ± 1.05 | 24.19 ± 1.69 |
2 | 8.26 ± 0.28 | 1.23 ± 0.07 | 44.96 | 7.52 | m | |||||
3 | 7.86 ± 0.23 | 1.13 ± 0.06 | 47.09 | 7.16 | m | |||||
4 | 7.69 ± 0.26 | 1.36 ± 0.09 | 42.53 | 7.00 | m | |||||
5 | 6.97 ± 0.45 | 1.36 ± 0.07 | 42.42 | 6.35 | m | |||||
6 | 6.02 ± 0.36 | 2.39 ± 0.32 | 29.82 | 5.49 | sm | |||||
7 | 6.02 ± 0.38 | 3.51 ± 0.43 | 22.37 | 5.48 | stsat | |||||
8 | 3.73 ± 0.16 | 2.25 ± 0.24 | 30.97 | 3.40 | sm | |||||
E. hyemalis (Pop. 9) | 1 | 9.75 ± 0.44 | 1.07 ± 0.03 | 48.34 | 7.90 | m | 61.71 ± 2.72 | 24.10 ± 1.55 | 22.40 ± 1.64 | 31.87 ± 2.31 |
2 | 9.24 ± 0.47 | 1.19 ± 0.08 | 45.82 | 7.48 | m | |||||
3 | 9.13 ± 0.40 | 1.08 ± 0.05 | 48.08 | 7.39 | m | |||||
4 | 8.49 ± 0.39 | 1.24 ± 0.10 | 44.80 | 6.88 | m | |||||
5 | 7.98 ± 0.58 | 1.13 ± 0.09 | 46.97 | 6.46 | m | |||||
6 | 5.97 ± 0.33 | 2.48 ± 0.16 | 28.72 | 4.84 | sm | |||||
7 | 5.59 ± 0.28 | 4.58 ± 0.83 | 18.28 | 4.53 | stsat | |||||
8 | 5.57 ± 0.44 | 3.59 ± 0.45 | 21.83 | 4.51 | st | |||||
E. longistipitata (Pop. 15) | 1 | 7.68 ± 0.54 | 1.23 ± 0.07 | 44.96 | 8.27 | m | 46.44 ± 2.24 | 22.31 ± 1.14 | 27.93 ± 1.21 | 24.45 ± 0.93 |
2 | 7.35 ± 0.30 | 1.08 ± 0.04 | 48.16 | 7.91 | m | |||||
3 | 6.95 ± 0.31 | 1.16 ± 0.07 | 46.28 | 7.48 | m | |||||
4 | 6.78 ± 0.41 | 1.30 ± 0.08 | 43.58 | 7.30 | m | |||||
5 | 6.14 ± 0.43 | 1.18 ± 0.08 | 46.04 | 6.61 | m | |||||
6 | 4.45 ± 0.36 | 3.16 ± 0.19 | 24.41 | 4.79 | st | |||||
7 | 3.82 ± 0.22 | 3.14 ± 0.14 | 24.40 | 4.12 | stsat | |||||
8 | 3.27 ± 0.31 | 2.05 ± 0.19 | 33.00 | 3.52 | sm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitrenina, E.Y.; Alekseeva, S.S.; Badaeva, E.D.; Peruzzi, L.; Artemov, G.N.; Krivenko, D.A.; Pinzani, L.; Aytaç, Z.; Çeçen, Ö.; Baasanmunkh, S.; et al. Karyotypes and Physical Mapping of Ribosomal DNA with Oligo-Probes in Eranthis sect. Eranthis (Ranunculaceae). Plants 2024, 13, 47. https://doi.org/10.3390/plants13010047
Mitrenina EY, Alekseeva SS, Badaeva ED, Peruzzi L, Artemov GN, Krivenko DA, Pinzani L, Aytaç Z, Çeçen Ö, Baasanmunkh S, et al. Karyotypes and Physical Mapping of Ribosomal DNA with Oligo-Probes in Eranthis sect. Eranthis (Ranunculaceae). Plants. 2024; 13(1):47. https://doi.org/10.3390/plants13010047
Chicago/Turabian StyleMitrenina, Elizaveta Yu., Svetlana S. Alekseeva, Ekaterina D. Badaeva, Lorenzo Peruzzi, Gleb N. Artemov, Denis A. Krivenko, Lorenzo Pinzani, Zeki Aytaç, Ömer Çeçen, Shukherdorj Baasanmunkh, and et al. 2024. "Karyotypes and Physical Mapping of Ribosomal DNA with Oligo-Probes in Eranthis sect. Eranthis (Ranunculaceae)" Plants 13, no. 1: 47. https://doi.org/10.3390/plants13010047
APA StyleMitrenina, E. Y., Alekseeva, S. S., Badaeva, E. D., Peruzzi, L., Artemov, G. N., Krivenko, D. A., Pinzani, L., Aytaç, Z., Çeçen, Ö., Baasanmunkh, S., Choi, H. J., Mesterházy, A., Tashev, A. N., Bancheva, S., Lian, L., Xiang, K., Wang, W., & Erst, A. S. (2024). Karyotypes and Physical Mapping of Ribosomal DNA with Oligo-Probes in Eranthis sect. Eranthis (Ranunculaceae). Plants, 13(1), 47. https://doi.org/10.3390/plants13010047