Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Eutypella sp. D-1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3609 KiB  
Article
Pimarane-Type Diterpenes with Anti-Inflammatory Activity from Arctic-Derived Fungus Eutypella sp. D-1
by Yaodong Ning, Shi Zhang, Te Zheng, Yao Xu, Song Li, Jianpeng Zhang, Binghua Jiao, Yun Zhang, Zengling Ma and Xiaoling Lu
Mar. Drugs 2023, 21(10), 541; https://doi.org/10.3390/md21100541 - 18 Oct 2023
Cited by 8 | Viewed by 2138
Abstract
The Arctic-derived fungus Eutypella sp. D-1 can produce numerous secondary metabolites, and some compounds exhibit excellent biological activity. Seven pimarane-type diterpenes, including three new compounds eutypellenone F (1), libertellenone Y (2), and libertellenone Z (3), and four [...] Read more.
The Arctic-derived fungus Eutypella sp. D-1 can produce numerous secondary metabolites, and some compounds exhibit excellent biological activity. Seven pimarane-type diterpenes, including three new compounds eutypellenone F (1), libertellenone Y (2), and libertellenone Z (3), and four known compounds (47), were isolated from fermentation broth of Eutypella sp. D-1 by the OSMAC strategy of adding ethanol as a promoter in the culture medium. Compound 2 has a rare tetrahydrofuran-fused pimarane diterpene skeleton. The anti-inflammatory activity of all compounds was evaluated. Compounds 36 showed a significant inhibitory effect on cell NO release at 10 μmol/L by in vitro experiments, of which 35 had inhibitory rates over 60% on nitric oxide (NO) release. Subsequently, the anti-inflammatory activity of 35 was evaluated based on a zebrafish model, and the results showed that 3 had a significant inhibitory effect on inflammatory cells migration at 40 μmol/L, while 4 and 5 had a significant inhibitory effect at 20 μmol/L. Moreover, compounds 35 have the same conjugated double bond structure, which may be an important group for these compounds to exert anti-inflammatory activity. Full article
(This article belongs to the Special Issue Marine Bioactive Compound Discovery through OSMAC Approach)
Show Figures

Figure 1

13 pages, 1779 KiB  
Article
Cytosporin Derivatives from Arctic-Derived Fungus Eutypella sp. D-1 via the OSMAC Approach
by Hao-Bing Yu, Zhe Ning, Bo Hu, Yu-Ping Zhu, Xiao-Ling Lu, Ying He, Bing-Hua Jiao and Xiao-Yu Liu
Mar. Drugs 2023, 21(7), 382; https://doi.org/10.3390/md21070382 - 28 Jun 2023
Cited by 9 | Viewed by 1951
Abstract
A chemical investigation of the Arctic-derived fungus Eutypella sp. D-1 based on the OSMAC (one strain many compounds) approach resulted in the isolation of five cytosporin polyketides (compounds 13 and 1112) from rice medium and eight cytosporins (compounds [...] Read more.
A chemical investigation of the Arctic-derived fungus Eutypella sp. D-1 based on the OSMAC (one strain many compounds) approach resulted in the isolation of five cytosporin polyketides (compounds 13 and 1112) from rice medium and eight cytosporins (compounds 2 and 411) from solid defined medium. The structures of the seven new compounds, eutypelleudesmane A (1), cytosporin Y (2), cytosporin Z (3), cytosporin Y1 (4), cytosporin Y2 (5), cytosporin Y3 (6), and cytosporin E1 (7), were elucidated by analyzing their detailed spectroscopic data. Structurally, cytosporin Y1 (4) may be a key intermediate in the biosynthesis of the isolated cytosporins, rather than an end product. Compound 1 contained a unique skeleton formed by the ester linkage of two moieties, cytosporin F (12) and the eudesmane-type sesquiterpene dihydroalanto glycol. Additionally, the occurrence of cyclic carbonate moieties in compounds 6 and 7 was found to be rare in nature. The antibacterial, immunosuppressive, and cytotoxic activities of all compounds derived from Eutypella sp. D-1 were evaluated. Unfortunately, only compounds 3, 6, 8, and 1011 displayed immunosuppressive activity, with inhibitory rates of 62.9%, 59.5%, 67.8%, 55.8%, and 68.7%, respectively, at a concentration of 5 μg/mL. Full article
(This article belongs to the Special Issue Diversity of Marine Fungi as a Source of Bioactive Natural Products)
Show Figures

Graphical abstract

15 pages, 3211 KiB  
Article
Libertellenone H, a Natural Pimarane Diterpenoid, Inhibits Thioredoxin System and Induces ROS-Mediated Apoptosis in Human Pancreatic Cancer Cells
by Weirui Zhang, Yuping Zhu, Haobing Yu, Xiaoyu Liu, Binghua Jiao and Xiaoling Lu
Molecules 2021, 26(2), 315; https://doi.org/10.3390/molecules26020315 - 9 Jan 2021
Cited by 28 | Viewed by 3254
Abstract
Libertellenone H (LH), a marine-derived pimarane diterpenoid isolated from arctic fungus Eutypella sp. D-1, has shown effective cytotoxicity on a range of cancer cells. The present study is to explore the anticancer effect of LH on human pancreatic cancer cells and to investigate [...] Read more.
Libertellenone H (LH), a marine-derived pimarane diterpenoid isolated from arctic fungus Eutypella sp. D-1, has shown effective cytotoxicity on a range of cancer cells. The present study is to explore the anticancer effect of LH on human pancreatic cancer cells and to investigate the intracellular molecular target and underlying mechanism. As shown, LH exhibited anticancer activity in human pancreatic cancer cells by promoting cell apoptosis. Mechanistic studies suggested that LH-induced reactive oxygen species (ROS) accumulation was responsible for apoptosis as antioxidant N-acetylcysteine (NAC) and antioxidant enzyme superoxide dismutase (SOD) antagonized the inhibitory effect of LH. Zymologic testing demonstrated that LH inhibited Trx system but had little effect on the glutathione reductase and glutaredoxin. Mass spectrometry (MS) analysis revealed that the mechanism of action was based on the direct conjugation of LH to the Cys32/Cys35 residue of Trx1 and Sec498 of TrxR, leading to a decrease in the cellular level of glutathione (GSH) and activation of downstream ASK1/JNK signaling pathway. Taken together, our findings revealed LH was a marine derived inhibitor of Trx system and an anticancer candidate. Full article
(This article belongs to the Special Issue Natural Products in Asia)
Show Figures

Figure 1

18 pages, 2200 KiB  
Article
Eutypella parasitica and Other Frequently Isolated Fungi in Wood of Dead Branches of Young Sycamore Maple (Acer pseudoplatanus) in Slovenia
by Ana Brglez, Barbara Piškur and Nikica Ogris
Forests 2020, 11(4), 467; https://doi.org/10.3390/f11040467 - 20 Apr 2020
Cited by 11 | Viewed by 5763
Abstract
Eutypella parasitica R.W. Davidson and R.C. Lorenz is the causative agent of Eutypella canker of maple, a destructive disease of maples in Europe and North America. The fungus E. parasitica infects the trunk through a branch stub or bark wound. Because the fungal [...] Read more.
Eutypella parasitica R.W. Davidson and R.C. Lorenz is the causative agent of Eutypella canker of maple, a destructive disease of maples in Europe and North America. The fungus E. parasitica infects the trunk through a branch stub or bark wound. Because the fungal community may have an impact on infection and colonization by E. parasitica, the composition of fungi colonizing wood of dead branches of sycamore maple (Acer pseudoplatanus L.) was investigated in five sampling sites in Slovenia. Forty samples from each sampling site were collected between the November 2017 and March 2018 period. Isolations were made from the wood in the outer part of dead branches and from discoloured wood in the trunk that originated from a dead branch. Pure cultures were divided into morphotypes, and one representative culture per morphotype was selected for further molecular identification. From a total of 2700 cultured subsamples, 1744 fungal cultures were obtained, which were grouped into 212 morphotypes. The investigated samples were colonized by a broad spectrum of fungi. The most frequently isolated species were Eutypa maura (Fr.) Sacc., Eutypa sp. Tul. and C. Tul., Fusarium avenaceum (Fr.) Sacc., Neocucurbitaria acerina Wanas., Camporesi, E.B.G. Jones and K.D. Hyde and E. parasitica. In this study, we distinguished species diversity and the fungal community. There were no significant differences in the diversity of fungal species between the five sampling sites, and branch thickness did not prove to be a statistically significant factor in fungal species diversity. Nevertheless, relatively low Jaccard similarity index values suggested possible differences in the fungal communities from different sampling sites. This was confirmed by an analysis of similarities, which showed that the isolated fungal community distinctly differed between the five sampling sites and between the different isolation sources. Eutypella parasitica was isolated from all five investigated sampling sites, although Eutypella cankers were observed in only three sampling sites, indicating the possibility of asymptomatic infection. Full article
(This article belongs to the Special Issue Emerging Pathogens in Forest Ecosystems)
Show Figures

Figure 1

10 pages, 4225 KiB  
Article
Eutypellenoids A–C, New Pimarane Diterpenes from the Arctic Fungus Eutypella sp. D-1
by Hao-Bing Yu, Xiao-Li Wang, Wei-Heng Xu, Yi-Xin Zhang, Yi-Sen Qian, Jian-Peng Zhang, Xiao-Ling Lu and Xiao-Yu Liu
Mar. Drugs 2018, 16(8), 284; https://doi.org/10.3390/md16080284 - 16 Aug 2018
Cited by 28 | Viewed by 4831
Abstract
Three new pimarane diterpenes, eutypellenoids A–C (13), together with a known compound, eutypenoid C (4), were isolated from the culture extract of Eutypella sp. D-1 derived from the Arctic region. Compounds 13 possessed an uncommon [...] Read more.
Three new pimarane diterpenes, eutypellenoids A–C (13), together with a known compound, eutypenoid C (4), were isolated from the culture extract of Eutypella sp. D-1 derived from the Arctic region. Compounds 13 possessed an uncommon tetrahydrofuran-fused pimarane diterpene skeleton. The structures of all compounds were determined by detailed spectroscopic analysis, electronic circular dichroism (ECD) analysis, as well as a comparison with the literature data. Antibacterial, antifungal, and cytotoxic activities of these compounds were evaluated. Compound 2 displayed antibacterial activity against Staphylococcus aureus and Escherichia coli with MIC values of 8 and 8 μg/mL, respectively. Additionally, compound 2 showed antifungal activity against Candida parapsilosis, Candida albicans, Candida glabrata, and Candida tropicalis with MIC values of 8, 8, 16, and 32 μg/mL, respectively. Furthermore, compound 2 exhibited moderate cytotoxic activity against HCT-116 cell line with IC50 value of 3.7 μM. Full article
(This article belongs to the Special Issue Terpenoids from Marine Organisms)
Show Figures

Graphical abstract

9 pages, 1830 KiB  
Article
Eutypenoids A–C: Novel Pimarane Diterpenoids from the Arctic Fungus Eutypella sp. D-1
by Liu-Qiang Zhang, Xiao-Chong Chen, Zhao-Qiang Chen, Gui-Min Wang, Shi-Guo Zhu, Yi-Fu Yang, Kai-Xian Chen, Xiao-Yu Liu and Yi-Ming Li
Mar. Drugs 2016, 14(3), 44; https://doi.org/10.3390/md14030044 - 7 Mar 2016
Cited by 27 | Viewed by 6036
Abstract
Eutypenoids A–C (13), pimarane diterpenoid alkaloid and two ring A rearranged pimarane diterpenoids, were isolated from the culture of Eutypella sp. D-1 obtained from high-latitude soil of the Arctic. Their structures, including absolute configurations, were authenticated on the basis [...] Read more.
Eutypenoids A–C (13), pimarane diterpenoid alkaloid and two ring A rearranged pimarane diterpenoids, were isolated from the culture of Eutypella sp. D-1 obtained from high-latitude soil of the Arctic. Their structures, including absolute configurations, were authenticated on the basis of the mass spectroscopy (MS), nuclear magnetic resonance (NMR), X-ray crystallography, and electronic circular dichroism (ECD) analysis. The immunosuppressive effects of eutypenoids A–C (13) were studied using a ConA-induced splenocyte proliferation model, which suggested that 2 exhibited potent immunosuppressive activities. Full article
Show Figures

Graphical abstract

Back to TopTop