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Abstract: A chemical investigation of the Arctic-derived fungus Eutypella sp. D-1 based on the OS-
MAC (one strain many compounds) approach resulted in the isolation of five cytosporin polyketides
(compounds 1–3 and 11–12) from rice medium and eight cytosporins (compounds 2 and 4–11) from
solid defined medium. The structures of the seven new compounds, eutypelleudesmane A (1), cy-
tosporin Y (2), cytosporin Z (3), cytosporin Y1 (4), cytosporin Y2 (5), cytosporin Y3 (6), and cytosporin
E1 (7), were elucidated by analyzing their detailed spectroscopic data. Structurally, cytosporin Y1 (4)
may be a key intermediate in the biosynthesis of the isolated cytosporins, rather than an end product.
Compound 1 contained a unique skeleton formed by the ester linkage of two moieties, cytosporin F
(12) and the eudesmane-type sesquiterpene dihydroalanto glycol. Additionally, the occurrence of
cyclic carbonate moieties in compounds 6 and 7 was found to be rare in nature. The antibacterial,
immunosuppressive, and cytotoxic activities of all compounds derived from Eutypella sp. D-1 were
evaluated. Unfortunately, only compounds 3, 6, 8, and 10–11 displayed immunosuppressive activity,
with inhibitory rates of 62.9%, 59.5%, 67.8%, 55.8%, and 68.7%, respectively, at a concentration of
5 µg/mL.

Keywords: cytosporin; arctic fungus; Eutypella sp.; immunosuppressive activity

1. Introduction

Fungi have proven to be a valuable source of new secondary metabolites with a wide
spectrum of biological activities [1]. Natural products from Polar fungi remain the non-
negligible sources of pharmacologically active compounds [1]. Cytosporins are a family of
hexahydrobenzopyran metabolites derived from fungi with a distinct heptene side chain
residue [2]. Initially isolated from endophytic Cytospora sp. in 1996, cytosporins were
recognized as inhibitors of angiotensin II binding inhibitors [2]. To date, nearly 30 natural
cytosporins of this structural class have been predominantly isolated from four genera of
fungi: Cytospora sp. [2], Pestalotiopsis sp. [3], Eutypella sp. [4,5], and Pseudopestalotiopsis sp. [6].
The cytosporin family exhibits diverse bioactive effects, including cytotoxic, antibacterial,
and antagonistic activity [2,4]. Besides cytosporins, Eutypella species have been extensively
investigated as a rich source of various bioactive compounds, pimarane diterpenes, γ-
lactones, benzopyrans, ent-eudesmanes, cytochalasins, and dipeptides, which display a
spectrum of bioactivities [7–9].

The OSMAC approach has emerged as a powerful tool in the field of natural product
biodiscovery, stimulating the production of a wider range of new metabolites [10]. During
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our exploration of structurally diverse bioactive natural products from polar fungi, we
discovered a series of terpenoids with unique skeleton characteristics from the talented
Arctic fungus strain Eutypella sp. D-1 [5,7,9]. This strain has proven to be a prolific source
of metabolites with diverse biological activities [7,9]. To enhance the chemical diversity
of Eutypella sp. D-1, we employed the one strain many compounds (OSMAC) strategy,
utilizing different culture conditions. Through high-performance liquid chromatography
(HPLC) analysis, some structural analogs during fermentation on two distinct media,
solid rice medium and defined solid medium, were dramatically discovered. Subsequent
chemical investigation led to the isolation of 12 cytosporin derivatives, including seven
new cytosporins—eutypelleudesmane A (1), cytosporin Y (2), cytosporin Z (3), cytosporin
Y1 (4), cytosporin Y2 (5), cytosporin Y3 (6), and cytosporin E1 (7)—together with five
known biogenetic-related analogs—cytosporin X (8), cytosporin E (9), cytosporin L (10),
and cytosporins D and F (11–12) (Figure 1). Herein, we present the detailed purification,
structure elucidation, and bioactive evaluation of these compounds.
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2. Results

Eutypelleudesmane A (1) was isolated as a light-brown oil. The molecular formula
was determined as C36H56O7 from HRESIMS and NMR data (Table 1), indicating the
presence of nine degrees of unsaturation. The IR spectra confirmed the presence of hydroxy
(3357 cm−1) and carbonyl (1741 cm−1) groups [3–5]. Additionally, the 13C NMR analysis
revealed one ester carbonyl signal (δC 171.0) and six double-bond carbon signals (δC 121.2,
124.7, 125.1, 134.1, 135.6, and 136.4), accounting for four degrees of unsaturation. The
remaining five degrees of unsaturation were attributed to the pentacyclic ring structure
present in the molecule.
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Table 1. 1H (500 MHz) and 13C NMR (125 MHz) spectroscopic data of 1 in CDCl3.

Position δC δH, mult. (J in Hz) Position δC δH, mult. (J in Hz)

2 76.6, C 20 14.0, CH3 0.89, t (7.0)
3 73.8, CH 3.72, m 21 171.0, C

4α 35.5, CH2 1.72, dd (12.5, 5.0) 22 20.9, CH3 2.08, s
4β 2.27, t (12.0) 23 37.5, CH2 1.35, m
5 55.7, C 24 22.7, CH2 1.99, m
6 59.7, CH 3.32, s 25 121.2, CH 5.31, brs
7 64.6, CH 4.73, s 26 134.1, C
8 135.6, C 27 46.3, CH 1.97, m
9 125.1, C 28α 28.5, CH2 1.66, m

10 67.5, CH 4.38, s 28β 1.23, m
11 16.0, CH3 1.30, s 29 49.7, CH 1.50, m
12 27.7, CH3 1.29, s 30 66.7, CH 3.87, td (11.0, 5.0)
13a 61.5, CH2 4.67, d (12.5) 31α 49.4, CH2 1.15, m
13b 4.81, d (12.5) 31β 1.79, dd (12.5, 5.0)
14 124.7, CH 6.33, d (16.0) 32 33.7, C
15 136.4, CH 6.16, m 33 39.0, CH 1.87, m
16 33.5, CH2 2.17, m 34 67.5, CH2 3.67, dd (7.5, 4.0)
17 28.8, CH2 1.42, m 35 11.9, CH3 1.01, d (7.0)
18 31.4, CH2 1.27, m 36 16.5, CH3 0.79, s
19 22.5, CH2 1.28, m 37 21.2, CH3 1.61, s

Upon comparing the 1D NMR data of compound 1 and cytosporin F (12), it was
observed that one set of signals was similar to compound 12, while the remaining signals
resembled a derivative of eudesmane-type sesquiterpene, dihydroalanto glycol. By utilizing
2D NMR correlations (Figure 2), these two structural fragments, labeled as A and B, were
deduced. The COSY spectrum revealed the presence of seven continuous spin systems:
(a) C-3−C-4, (b) C-6−C-7, (c) C-14–C-15–C-16–C-17–C-18–C-19–C-20, (d) C-23–C-24–C-25,
(e) C-27–C-28–C-29–C-30–C-31, (f) C-29–C-33–C-34, and (g) C-33–C-35 (Figure 2). Fragment
A, comprising C-2 to C-22, exhibited similarity to compound 12 based on a comparison
of their 1D NMR spectra. HMBC correlations from H-4α to C-2, C-5, C-6, and C-10; from
H-6 to C-8; from H-7 to C-5, C-8, and C-9; from H-10 to C-5, C-6, C-8, and C-9; from H3-11
and H3-12 to C-2 and C-3; and from H2-13 to C-8, C-9, and C-10 were detected. These
correlations, along with the chemical shift of C-2 (δC 76.6) and C-10 (δC 67.5), indicated
the formation of two six-membered rings by connecting C-5 (δC 55.7) with C-10 and C-2
with C-10 via an O-atom, as well as the location of the two methyl groups CH3-11 and
CH3-12 both at C-2 and one methylene group CH2-13 at C-9. The presence of an oxirane
resulting from the conjugation of C-5 and C-6 via O-atom was supported by the downfield
shift of C-5 and C-6 (δC 59.7) [3,4]. Furthermore, the direct linkage between C-8 and C-14
was established by HMBC correlations from H-14 to C-7, C-8, and C-9. An additional
acetyl group was identified to be connected to C-13 based on the HMBC correlations from
H-13 and H-22 to C-21 and the chemical shift of C-13 (δC 61.5). Fragment B, spanning
from C-23 to C-37, exhibited characteristics of a eudesmane-type sesquiterpene moiety, as
deduced from the analysis of the remaining 1H and 13C NMR data. HMBC correlations
from H-31α and H-31β to C-27 and C-32; from H2-23 to C-27 and C-32; and from H3-36
to C-23, C-27, C-31, and C-32 confirmed the presence of a linkage of C-23, C-27, and C-31
via the quaternary carbon C-32, and placed the methyl group CH3-36 at C-32 as well. The
methyl group CH3-37 was demonstrated to be connected to C-25 and C-27 via C-26 by the
HMBC correlations from H3-37 to C-25, C-26, and C-27. The linkage of fragments A with B
through C-3 (δC 73.8) and C-30 (δC 66.7) via an O-atom was supported by the downfield
resonance of C-3 and C-30, along with HMBC correlations from H-30 to C-3. Additionally,
the connection of two hydroxyl groups with a downfield carbon shift at C-7 (δC 64.6) and
C-34 (δC 67.5) were determined to satisfy the molecular formula. Consequently, the planar
structure of 1 was established as depicted.
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The relative configuration of 1 was established by analyzing coupling constants and
NOESY experiments [9]. The trans configuration of the conjugated C-14/C-15 double bond
was inferred based on the large coupling constant (16.0 Hz) and the NOESY correlations
of H-14/H2-16. The observed similarity in the NMR chemical shift values and NOESY
correlations of H-7/H-10, H-10/H3-12, H3-12/H-4β, H-4α/H-6, and H-3/H3-11 indicated
that the relative configurations of fragment A in 1 were identical to those of 12 [3–5].
Additional NOESY correlations of H-30/H3-35, H-30/H-36β, and H-31β/H-36β and those
of H-27/H-29, H-27/H-31α, and H-27/H-33 indicated the β-orientation and α-orientation
of these protons in fragment B, respectively (Figure 3). Furthermore, the absence of a
NOESY correlation between H-3 and H-30 supported the trans relationship between these
two protons [5]. Thus, the relative structure of 1 was determined. Furthermore, the
characteristic positive Cotton effect at 242 nm in the CD spectrum of 1 was virtually
identical to that of cytosporins D and F (11–12) (Figure 4) [5], which suggested the absolute
configuration of 1 was assigned as 3S,5R,6S,7R,10S,27S,29S,30R,32S,33R.

Cytosporin X (2) was obtained as a light-brown oil and determined to have a molecular
formula of C19H30O4 based on HRESIMS and NMR data, corresponding to an unsaturation
index of 5. The presence of hydroxy functionality was indicated by IR absorption bands at
3359 cm−1. The 13C NMR (Table 2) and DEPT spectra revealed the presence of 19 carbons,
including six double-bond carbon signals (δC 117.3, 124.6, 131.4, 131.6, 135.4, and 135.9)
and five oxygenated carbon signals (δC 57.4, 59.3, 62.2, 64.3, and 69.5). The COSY spectrum
of 2 showed three distinct spin systems: C-2/C-3, C-7/C-8/C-9/C-10/C-11/C-12/C-13,
and C-15/C-16 (Figure 2). HMBC correlations from H-2 to C-4 and C-6; from H-3 to
C-1 and C-4; from H-6 to C-1, C-2, and C-4; and from H2-14 to C-4, C-5, and C-6, along
with the comparison of the chemical shifts of C-1 (δC 59.3) and C-2 (δC 57.5) to those of
cytosporins D and F [3,4], determined the oxirane-fused cyclohexene moiety with one
methylene group (CH2-14) attached at C-5. The isoamylene group was connected to C-1
based on the HMBC correlations from H2-15 to C-1, C-2, and C-6, as well as from H3-18
and H3-19 to C-16 and C-17. Further HMBC correlations from H-7 to C-3, C-4, and C-5
established the connectivity of C-4 and C-7. With this assignment secured, each of the three
oxygenated carbon at C-3 (δC 64.3), C-6 (δC 69.5), and C-14 (δC 62.2) had to be substituted
with a hydroxy group to satisfy the molecular formula. The relative stereocenter of 2 was
determined from NOESY correlations and coupling constants in comparison with those
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of 11 and 12 [3,4]. The conjugated C-7/C-8 double bond was assigned as trans upon its
large coupling constant (16.0 Hz). The NOESY correlations of H-2/H2-15 and H-6/H2-15
in CDCl3 and 3-OH/H-6 in DMSO-d6 (Figure S16), combined with the similarity between
the calculated and the experimental ECD spectra, confirmed the absolute configurations of
2 as 1R,2S,3R,6R (Figure 4).

Table 2. 1H (500 MHz) and 13C NMR (125 MHz) spectroscopic data of 2 and 3 in CDCl3.

2 3

Position δC δH, mult. (J in Hz) Position δC δH, mult. (J in Hz)

1 59.3, C 2 77.2, C
2 57.5, CH 3.29, s 3 69.7, CH 3.79, t (5.0)
3 64.3, CH2 4.72, s 4α 31.5, CH2 3.03, dd (17.0, 5.0)
4 131.6, C 4β 2.72, dd (17.0, 5.0)
5 131.4, C 5 118.8, C
6 69.5, CH 4.45, s 6 115.1, CH 6.61, s
7 124.6, CH 6.28, d (16.0) 7 146.7, C
8 135.4, CH 6.05, m 8 123.6, C
9 33.5, CH2 2.15, m 9 126.8, C

10 28.9, CH2 1.41, m 10 144.8, C
11 31.5, CH2 1.28, m 11 22.4, CH3 1.36, s
12 22.5, CH2 1.29, m 12 24.9, CH3 1.32, s
13 14.0, CH3 0.88, t (6.0) 13 58.8, CH2 4.66, s
14a 62.2, CH2 4.57, d (12.0) 14 122.7, CH 6.35, d (16.5)
14b 4.06, d (12.0) 15 140.0, CH 5.95, m
15α 29.7, CH2 2.82, dd (15.0, 8.0) 16 33.4, CH2 2.27, m
15β 2.30, dd (15.0, 8.0) 17 29.0, CH2 1.50, m
16 117.3, CH 5.20, t (7.0) 18 31.5, CH2 1.35, m
17 135.9, C 19 22.6, CH2 1.35, m
18 18.0, CH3 1.66, s 20 14.1, CH3 0.91, t (7.0)
19 25.9, CH3 1.73, s

Cytosporin Y (3) exhibited a negative HRESIMS with a pseudomolecular ion at m/z
319.1912 [M − H]−, consistent with the molecular formula of C19H28O4. The similarity of
the 1H and 13C NMR data between 3 and 11 indicated that compound 3 was the derivative
of 11. The presence of a pentasubstituted benzene moiety (δH 6.61 (1H, s); δC 115.1 (CH),
118.8 (C), 123.6 (CH), 126.8 (C), 144.8 (C), and 146.7 (C)) instead of the oxirane-fused
cyclohexene moiety in 11 was suggested by the 1H and 13C NMR spectra. This was further
confirmed by the further HMBC correlations from H-4β to C-5, C-6, and C-10; from H-
6 to C-7, C-8, and C-10; from H2-13 to C-8, C-9, and C-10; and from H-14 to C-7, C-8,
and C-9 (Figure 2). Additionally, one hydroxy group was attached to C-7, as evidenced
by its chemical shift (δC 146.7) and the molecular formula. The conjugated C-14/C-15
double bond in 3 was assigned as trans based on the similar 1H NMR chemical shift
values and coupling constants (16.5 Hz) observed in 3 and 2. To determine the absolute
configuration at C-3 in compound 3, the specific rotation ([α]25

D +12.3, MeOH, c 0.1 and
[α]25

D +1.9, CDCl3, c 0.1) was measured. The configuration of C-3 could be assigned as
S by comparison to the literature data for synthetic (R)-2,2-dimethylchromane-3,7-diol
([α]20

D −1.2, MeOH, c 0.03) [11] and (S)-2,2-dimethylchromane-3,7-diol ([α]23
D +11.5, CHCl3,

c 1.0) [12] (differences in measured versus literature values likely stem from the different
concentration and solvent).
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Cytosporin Y1 (4), in the form of a light-yellow oil, had a molecular formula of
C19H32O5 based on HRESIMS (m/z 363.2139 [M + Na]+), which is larger than that of
cytosporin Y (2) by 18 amu. The NMR data of 4 (Table 3) were nearly identical to those
of 2, indicating the same carbon skeleton. Considering the degrees of unsaturation of 4,
the observed downfield shift of one quaternary carbon (δC 59.3) and one methine (δH/δC
3.29/57.5) in 2 to δC 74.3 and δH/δC 3.76/75.0 in 4, respectively, suggested that 4 was the
oxirane ring-opening product of 2. This hypothesis was further supported by further COSY
and key HMBC correlations, as shown in Figure 2. The E-geometry of the ∆7,8 double bond
was deduced from a NOESY correlation between H-7 and H2-9, as well as the coupling
constants (16.5 Hz). Additional NOESY correlations of H-2/H2-15, H-2/H-6, H-3/H-6, and
H-6/H2-15 indicated the same orientation of these protons. Furthermore, the comparison
of the calculated and the experimental ECD spectra confirmed the absolute configurations
of 4 as 1S,2R,3R,6S (Figure 5).
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Table 3. 1H (500 MHz) and 13C NMR (125 MHz) spectroscopic data of 4 and 5 in MeOD-d4.

4 5

Position δC δH, mult. (J in Hz) δC δH, mult. (J in Hz)

1 74.3, C 84.4, C
2 75.0, CH 3.76, d (4.5) 71.3, CH 3.94, d (4.5)
3 69.6, CH 4.49, d (4.5) 68.6, CH 4.41, d (4.5)
4 135.8, C 138.3, C
5 134.5, C 127.3, C
6 73.6, CH 3.88, s 76.9, CH 5.15, s
7 126.6, CH 6.24, d (16.0) 124.8, CH 6.41, d (16.0)
8 137.2, CH 6.01, m 136.7, CH 6.12, dt (16.0, 7.0)
9 35.0, CH2 2.17, m 33.1, CH2 2.21, m
10 30.5, CH2 1.46, m 28.6, CH2 1.47, m
11 32.9, CH2 1.28, m 31.2, CH2 1.33, m
12 23.9, CH2 1.34, m 22.2, CH2 1.33, m
13 14.7, CH3 0.91, t (7.0) 13.0, CH3 0.91, t (7.0)

14a 61.1, CH2 4.25, d (13.0) 58.1, CH2 4.13, d (13.0)
14b 4.38, d (13.0) 4.51, d (13.0)
15a 35.7, CH2 2.60, m 31.8, CH2 2.53, dd (15.0, 8.5)
15b 2.66, dd (15.0, 7.0)
16 119.8, CH 5.40, m 115.3, CH 5.25, m
17 136.1, C 137.7, C
18 26.7, CH3 1.76, s 24.9, CH3 1.77, s
19 18.6, CH3 1.70, s 16.9, CH3 1.68, s
20 154.8, C
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Cytosporin Y2 (5) was obtained as a light-yellow oil. Extensive NMR analyses and
HRESIMS data (m/z 389.1928 [M + Na]+) led to the determination of its molecular formula
as C20H30O6. The overall NMR data of 5 indicated a structure similar to 4, with the notable
difference of an additional quaternary carbon. This carbon was identified as a carbonate
moiety based on the strong IR absorption at 1647 cm−1 and the diagnostic 13C NMR signal
at δC 154.8 [4]. Another significant difference was observed for C-1 and C-2, resonating at δC
74.3 and 75.0 in compound 4, whereas in compound 5, these signals resonated at δC 84.4 and
71.3, respectively (Table 3). This observation, along with the key HMBC correlations from
H-2 to C-20, led to the linkage of the carbonyl to both oxygen atoms at C-1 and C-2 to form
a cyclic carbonate moiety. The relative configurations of 5 were determined via a detailed
analysis of the NOESY correlations of H-2/H-15a, H-3/H-15b, H-6/H-15a, H-6/H-15b,
and H-7/H2-9, as well as the coupling constants (16.5 Hz) of H-7/H2-9. Furthermore,
the calculated ECD spectrum of 5 exhibited a close resemblance to the experimental one,
confirming the absolute configuration as 1R,2R,3R,6S (Figure 5).
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Cytosporin Y3 (6) was isolated as a light-yellow oil. Its molecular formula was
determined to be C20H30O6, the same as that of 5, based on HRESIMS data. A comparison
of the IR, UV, and NMR data (Table 4) of 6 with those of 5 suggested that 6 was an isomer of
5. Further analysis of the 13C NMR chemical shift of C-2 (δC 79.2) and C-3 (δC 75.2), along
with the unambiguous HMBC correlations from H-2 and H-3 to C-20 of 2, revealed that
the cyclic carbonate moiety was fused with C-2-C-3 in 6. The relative configuration and
E-geometry of the ∆7,8 double bond in 6 were determined from the NOESY correlations
of H-2/H-3, H-2/H-6, H-3/H-6, H-2/H-15b, H-6/H-15a, H-6/H-15b, and H-7/H2-9. The
absolute configuration of 6 was subsequently determined to be 1R,2S,3S,6R based on the
opposite CD spectra (Figure 6) and a comparison of the specific rotation ([α]20

D +37.8, MeOH,
c 0.1) with that of 4 ([α]20

D −15.8, MeOH, c 0.1) and 5 ([α]20
D −60.1, MeOH, c 0.1) (Figure 6).

Table 4. 1H (500 MHz) and 13C NMR (125 MHz) spectroscopic data of 6 and 7 in CDCl3.

6 7

Position δC δH, mult. (J in Hz) Position δC δH, mult. (J in Hz)

1 72.3, C 2 77.7, C
2 79.2, CH 4.71, dd (8.0, 2.0) 3 71.6, CH 3.96, dd (12.0, 5.0)
3 75.2, CH 5.55, d (8.0) 4α 42.7, CH2 1.89, dd (12.0, 5.0)
4 129.1, C 4β 2.25, d (12.0)
5 139.4, C 5 68.0, C
6 71.5, CH 4.14, d (2.0) 6 81.3, CH 4.66, dd (8.0, 2.0)
7 126.1, CH 6.52, d (16.0) 7 78.5, CH 5.23, d (8.0)
8 136.6, CH 6.03, dt (16.0, 7.0) 8 133.3, C
9 34.9, CH2 2.21, dd (14.0, 7.0) 9 135.6, C

10 30.4, CH2 1.45, m 10 69.7, CH 4.17, d (2.0)
11 32.9, CH2 1.34, m 11 16.9, CH3 1.26, s
12 23.9, CH2 1.34, m 12 28.5, CH3 1.21, s
13 14.7, CH3 0.91, t (7.0) 13a 60.2, CH2 4.09, d (12.0)
14a 60.8, CH2 4.29, d (12.5) 13b 4.29, d, (12.0)
14b 4.43, d (12.5) 14 31.0, CH2 2.26, m
15a 35.0, CH2 2.51, dd (15.0, 6.5) 15 30.0, CH2 1.49, m
15b 2.71, dd (15.0, 8.5) 16 31.1, CH2 2.25, m
16 118.8, CH 5.38, m 17 30.5, CH2 1.35, m
17 136.9, C 18 33.3, CH2 1.31, m
18 26.7, CH3 1.77, s 19 24.0, CH2 1.32, m
19 18.6, CH3 1.71, s 20 14.7, CH3 0.9, t (7.0)
20 156.8, C 21 156.3, C
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Cytosporin E1 (7) was also purified as a light-yellow oil and exhibited a HRESIMS ion
peak at m/z 407.2034 [M + Na]+, consistent with the molecular formula C20H32O7 with five
degrees of unsaturation. The 1H and 13C NMR data of 7 (Table 4) closely resembled those
of the known compound cytosporin E (9), except for two additional methylenes (δC/δH
31.0/2.26 and 30.0/1.49) in 7 and the absence of two olefinic methines (δC/δH 123.5/6.39
and 137.1/6.03) in 9. These observations indicated that C-8 in 7 was substituted by a heptane
subunit instead of the 1-heptene part in 9, which was also confirmed by COSY correlations
of H2-14 (δH 2.26)/H2-15 (δH 1.49), H2-15/H2-16 (δH 2.25), H2-16/H2-17 (δH 1.35), H2-
17/H2-18 (δH 1.31), H2-18/H2-19 (δH 1.32), and H2-19/H3-20 (δH 0.90), as well as HMBC
correlations from H2-14 to C-7 (δC 78.5) and C-8 (δC 133.3). The relative configuration
of 7 was inferred to be different from that of compound 9 through a comparison of the
13C NMR data between 7 (C-6 δC 81.3 and C-7 δC 78.5) and 9 (C-6 δC 81.0 and C-7 δC
75.3), as well as the analysis of NOESY correlations of H-3/H3-11, H-4α/H-6, H-4α/H-7,
H-4β/H-10, H-4β/H3-12, and H-10/H3-12 in MeOD-d4 and 3-OH/H-10 and 5-OH/H-10
in DMSO-d6 (Figure S75). The absolute configurations of 7 were subsequently assigned as
3S,5R,6S,7S,10S based on the similarity of its calculated and the experimental ECD spectra
(Figure 6).

In addition to the seven new compounds 1–7, the five known cytosporins—cytosporin
X (8) [13], cytosporin E (9) [4], cytosporin L (10) [14], cytosporin D (11) [4], and cytosporin F
(12) [3]—were also isolated and identified through a comparison of its NMR spectroscopic
data with reported values in the literature.

Structurally, considering the close relationship in biosynthesis among compounds
1–12, a biosynthetic pathway different from the previous literature for these compounds
is proposed (Figure 7) [3]. The possible precursor originated from phenylmethanol [3].
The subsequent addition of an isoprenyl unit, followed by hydroxylation and the addition
of an aliphatic chain, would give the intermediate i. The hydroxylation of the C-1/C-6
double bond in i gave rise to the key intermediate 4. Compound 2 was derived from 4 via a
dehydration cyclization reaction. Compound 3 was generated from i via the epoxidation
of the C-16/C-17 double bond and a cyclization reaction. Compounds 5 and 6 were
derived from the dehydration reaction of compound 4 with carbonic acid by different attack
directions and substitution positions, respectively. Compounds 7, 10, and 11 were obtained
from 6, 4, and 2 via the same cyclization reaction as 3, respectively. Compound 9 was
derived from 10 via the carbonic acid substitution, while compound 8 was formed through
the hydrogenation of 11. The cyclization of compound 2, followed by an acetylation reaction,
resulted in the formation of compound 12. Another possible precursor, the eudesmane-type
sesquiterpene dihydroalanto glycol, was generated from farnesyl pyrophosphate with two
steps of cyclization, dehydrogenation, and hydroxylation reaction [15]. Then, 1 was formed
from the above two precursors, ii and 12, via a condensation reaction.

All the isolated compounds 1–12 were evaluated for their cytotoxicity against four
human cancer cell lines, including DU145, SW1990, Huh7, and PANC-1, and antibacterial
activity against Staphylococcus aureus, Escherichia coli, and Bacillus subtilis. Unfortunately,
all compounds were not active during the above test, with IC50 values higher than 50 µM
or MIC values higher than 128 µg/mL. Additional immunosuppressive activity against
ConA-induced T cell proliferation for 1–12 was also tested. However, only compounds 3,
6, 8, and 10–11 displayed immunosuppressive activity, demonstrating inhibitory rates of
62.9%, 59.5%, 67.8%, 55.8%, and 68.7%, respectively, at a concentration of 5 µg/mL.
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3. Materials and Methods
3.1. General Experimental Procedures

Specific rotations and IR (KBr) data were measured on a PerkinElmer model 341 po-
larimeter (Perkin-Elmer Inc., Waltham, MA, USA) and Jasco FTIR400 spectrometer (Jasco
Inc., Tokyo, Japan), respectively. CD and UV spectra were obtained on a Jasco J-715 spec-
tropolarimeter (Jasco Inc., Tokyo, Japan) and UV-8000 spectrophotometer (Shanghai Metash
instruments Co., Shanghai, China) in MeOH, respectively. 1D and 2D NMR spectra were ac-
quired using a Bruker AMX-500 instrument (500 MHz for 1H NMR, 125 MHz for 13C NMR)
(Bruker Biospin Corp., Billerica, MA, USA) at room temperature. HRESIMS data were
measured on an Agilent 6210 LC/MSD TOF mass spectrometer (Agilent Technologies Inc.
Lake Forest, CA, USA). HPLC separation was performed using a YMC-Pack Pro C18 (5 µm)
column (YMC Co. Ltd., Kyoto, Japan) using a Waters 1525 separation module equipped
with a Waters 996 Photodiode Array (PDA) detector (Waters Corp., Milford, MA, USA).
Column chromatographic purifications were performed on silica gel 60 (200–300 mesh,
Qingdao Ocean Chemical Co., Qingdao, China), ODS (50 µm, YMC Co. Ltd., Kyoto, Japan),
and Sephadex LH-20 (Pharmacia Co., Piscataway, NJ, USA).

3.2. Fungal Material

The fungus Eutypella sp. D-1 (GenBank accession number FJ430580) was separated
from the sample collected near London Island of Kongsfjorden in the Ny-Ålesund District
of the Arctic area and recognized based on 18S rDNA gene sequence analysis. The strain
(No. D-1) was deposited in the Department of Marine Biomedicine and Polar Medicine,
Naval Medical Center of PLA, Naval Medical University.

3.3. Fermentation, Extraction, and Isolation

The fungal strain Eutypella sp. D-1 was cultivated in seed medium (PDB 100 mL) in
250 mL Erlenmeyer flasks on a rotatory shaker (180 rpm) at 20 ◦C for 3 days. Subsequently,
seed medium (10 mL) was transferred into 60 × 250 mL Erlenmeyer flasks (40 g of rice
and 60 mL of water) and 60 plates of about 20 cm diameter (sucrose 51.4 g, NaNO3 3.3 g,
K2HPO4·3H2O 0.07 g, MgSO4·7H2O 0.4 g, KCl 0.625 g, yeast extract 0.7 g, CoCl2·6H2O
0.003125 g, FeSO4 0.01875 g, CaCl2 0.0065 g, and L-ornithine hydrochloride 15 g, and agar
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20.0 g, dissolved in 1 L of water), respectively, and then cultured under static conditions at
20 ◦C for 45 days.

The rice fermentation was combined and then extracted with CH2Cl2−MeOH (1:1,
1 L) three times. The organic solvent was concentrated under reduced pressure and
partitioned with EtOAc and H2O to yield the EtOAc extract (24.5 g). The EtOAc extract
was subjected to vacuum liquid chromatography (VLC) on silica gel via gradient elution
using CH2Cl2/MeOH (80:1, 60:1, 40:1, 20:1, 15:1, 10:1, 0:1, v/v) as the solvent to give seven
fractions (A–G). Fraction B (1.23 g) was chromatographed on a Sephadex LH-20 column
using CH2Cl2−MeOH (1:1) as mobile phase to afford three subfractions (Fr. B1−B3), and
subfraction B1 was further purified by reversed-phase HPLC eluting 43% MeCN/H2O
at a flow rate of 2 mL/min to afford 1 (3.2 mg, tR = 16.6 min). Compounds 2 (7.3 mg,
tR = 23.4 min) and 3 (1.4 mg, tR = 46.6 min) were isolated using reversed-phase HPLC
(63% MeOH/H2O) from subfraction B2. Fraction F (3.75 g) was separated using MPLC
on an ODS (50 µm) column to give seven fractions (Fr. F1–F7). Fr. F3 was subjected to
reversed-phase HPLC (65% MeOH/H2O, 2 mL/min) to afford 11 (15.3 mg, tR = 15.3 min).
Fr. F4 was separated with reversed-phase HPLC (40% CH3CN/H2O, 2 mL/min) to give 12
(40.1 mg, tR = 11.3 min).

The defined medium fermentation was combined and then extracted with CH2Cl2−MeOH
(1:1, 1 L) three times. The organic solvent was concentrated under reduced pressure to yield
the extract (6.86 g). The extract was subjected to silica gel VLC, eluting with a gradient of
petroleum ether/EtOAc (100:1, 80:1, 50:1, 30:1, 20:1, 10:1, 5:1, 3:1, 2:1, 1:1, v/v) to obtain
20 fractions (Fr.A−Fr.T). Fraction O (0.4 g) was subjected to an ODS (50 µm) column via
MPLC (MeOH/H2O, 50–100%) to give eight fractions, Fr. O1−Fr.O8. Fr. O6 (17.1 mg) was
then purified with semipreparative HPLC (MeOH/H2O, 63:37, v/v; 2.0 mL/min) at 250 nm
to afford 5 (6.2 mg, tR = 32.1 min). Fr. P (0.42 g) was separated with MPLC (MeOH/H2O,
60–100%) to afford five fractions, Fr. P1−Fr. P5. Fr. P4 (27.2 mg) and Fr. P5 (19.5 mg) were
purified with HPLC on an RP C18 column to give 4 (7.4 mg, MeCN/H2O 40:60, 2.0 mL/min,
tR = 24.9 min) and 6 (6.3 mg, MeCN/H2O 50:50, 2.0 mL/min, tR = 30.1 min), respectively.
Fr. Q (0.15 g) was separated with reversed-phase ODS (50 µm) MPLC eluting with a
MeOH/H2O gradient (from 60% to 100%) to afford six subfractions, Fr.Q1−Fr.Q6. Fr. Q5
(17.2 mg) was purified on an RP C18 column with HPLC (80% MeOH/H2O, 2.0 mL/min),
yielding 2 (2.4 mg, tR = 28.8 min). Fr. R (1.04 g) was chromatographed over ODS via
MPLC using a gradient elution of MeOH−H2O (from 50% to 100%) to get five fractions (Fr.
R1−R5). Fr. R3 (475.1 mg) was then subjected to a silica gel CC (petroleum ether/EtOAc,
3:1, v:v) to give five fractions, Fr. R3a−Fr. R3e. Fr. R3c (168.0 mg) was then purified with
semipreparative HPLC on an RP C18 ODS (CH3CN/H2O, 30:70, v/v; 2.0 mL/min) to afford
8 (3.5 mg, tR = 52.2 min) and 11 (116.8 mg, tR = 60.5 min). Fr. R3d (275.7 mg) was further
purified with 37% CH3CN via HPLC (2.0 mL/min) to afford 7 (6.8 mg, tR = 33.0 min)
and 9 (174.0 mg, tR = 39.8 min). Fr. S (0.55 g) was chromatographed over ODS using a
gradient elution of MeOH/H2O (from 50% to 100%) to obtain three fractions (Fr. S1−S3).
Fr. S3 (322.0 mg) was further purified with 35% CH3CN via HPLC to afford compound 10
(243.8 mg, tR = 18.6 min).

Eutypelleudesmane A (1): light-brown oil; [α]25
D –23.0 (c 0.10, MeOH); UV (MeOH)

(log ε) λmax 241 (4.07) nm; CD (MeOH) (∆ε) 242 (+17.1); IR (KBr) νmax 3357, 2956, 2929, 2873,
1741, 1650, 1455, 1438, 1376, 1232, 1153, 1116, 1068, 1024, 958, 883,850,719 cm−1; 1H and 13C
NMR data, see Table 1; HRESIMS m/z 601.4074 [M + H]+ (calcd for C36H57O7, 601.4104).

Cytosporin Y (2): light brown oil; [α]25
D +14.0 (c 0.10, MeOH); UV (MeOH) (log ε) λmax

241 (3.89) nm; CD (MeOH) (∆ε) 238 (+9.1); IR (KBr) νmax 3359, 2956, 2927, 2857, 1454, 1376,
1261, 1014, 842, 725 cm−1; 1H and 13C NMR data, see Table 2; HRESIMS m/z 367.2125 [M +
COOH]− (calcd for C20H31O6, 367.2121).

Cytosporin Z (3): light-brown oil; [α]25
D +12.3 (c 0.10, MeOH), [α]25

D +1.9 (c 0.1, CDCl3);
UV (MeOH) (log ε) λmax 210 (5.37), 312 (3.13) nm; IR (KBr) νmax 3378, 2954, 2927, 2856, 1708,
1614, 1513, 1434, 1380, 1369, 1255, 1218, 1184, 1143, 1064, 1029, 977, 852 cm−1; 1H and 13C
NMR data, see Table 2; HRESIMS m/z 319.1912 [M − H]− (calcd for C19H27O4, 319.1909).
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Cytosporin Y1 (4): light-yellow oil; [α]25
D –15.8 (c 0.1, MeOH); UV (MeOH) λmax

(log ε) 221 (3.71), 240 (3.77) nm; IR νmax 3367, 2955, 2926, 2857, 1743, 1601, 1378, 1072,
1023 cm−1; CD (MeOH) (∆ε) 208 (–6.4); 1H NMR and 13C NMR, see Table 3; HRESIMS m/z
363.2139 [M + Na]+ (calcd for C19H32O5Na, 363.2142).

Cytosporin Y2 (5): light-yellow oil; [α]25
D –60.1 (c 0.1, MeOH); UV (MeOH) λmax (log

ε) 214 (3.96), 244 (4.28) nm; IR νmax 3381, 2956, 2926, 2857, 1786, 1647, 1344, 1219, 1049,
1023, 1001, 822, 760 cm−1; CD (MeOH) (∆ε) 222 (–13.2); 1H NMR and 13C NMR, see Table 3;
HRESIMS m/z 389.1928 [M + Na]+ (calcd for C20H30O6Na, 389.1935).

Cytosporin Y3 (6): light-yellow oil, [α]25
D +37.8 (c 0.1, MeOH); UV (MeOH) λmax (log ε)

217 (3.64), 241 (3.81) nm; IR νmax 3383, 2956, 2928, 2858, 1783, 1595, 1361, 1270, 1182, 1068,
907, 770, 737 cm−1; CD (MeOH) (∆ε) 241 (+4.87); 1H NMR and 13C NMR, see Table 4;
HRESIMS m/z 389.1928 [M + Na]+ (calcd for C20H30O6Na, 389.1935).

Cytosporin E1 (7): light-yellow oil, [α]25
D +12.9 (c 0.1, MeOH), UV (MeOH) λmax (log ε)

200 (4.10) nm; IR νmax 3393, 2926, 2856, 1783, 1464, 1361, 1184, 1158, 1086, 1058, 1023,
917, 772, 629 cm−1; CD (MeOH) (∆ε) 210 (+14.2) nm; 1H NMR and 13C NMR, see Table 4;
HRESIMS m/z 363.2145 407.2034 [M + Na]+ (calcd for C20H32O7Na, 407.2040).

3.4. Biological Assay

The antimicrobial activities of compounds 1–12 against Staphylococcus aureus, Es-
cherichia coli, and Bacillus subtilis were evaluated using a previous method [16], and lev-
ofloxacin was used as a positive control. The cytotoxicities of compounds 1–12 against
DU145, SW1990, Huh7, and PANC-1 human cancer cell lines were determined using the
CCK-8 method [17], with cisplatin used as a positive control. The immunosuppressive
activities of compounds 1–12 against ConA-induced T cell proliferation were performed as
previously described [18], with cyclosporin A as a positive control.

4. Conclusions

In summary, the utilization of the OSMAC (one strain many compounds) culture
strategy effectively modified the chemical profile of the Arctic-derived fungus Eutypella
sp. D-1 when cultivated in different media. This approach resulted in the production of
five cytosporin polyketides (compounds 1–3 and 11–12) from a rice medium and eight
cytosporins (compounds 2 and 4–11) from a solid defined medium. Remarkably, compound
1 contained a unique skeleton formed by the ester linkage of two moieties: cytosporin F
(12) and the eudesmane-type sesquiterpene dihydroalanto glycol. Compounds 6 and 7,
characterized by a cyclic carbonate-fused cytosporin skeleton, were found to be rare in
nature. However, these metabolites only exhibited weak immunosuppressive inhibitory
activity against ConA-induced T cell proliferation in the antimicrobial, cytotoxic, and
immunosuppressive evaluation. Collectively, this work showcased that changing the
fermentation medium could be an effective strategy to trigger the production of secondary
metabolites from fungi derived from the polar extreme environment.
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