Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = Eustigmatophyceae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4496 KB  
Article
Further Insights into Influence of Light Intensities on the Production of Long-Chain Hydroxy Fatty Acids, Fatty Diols and Fatty Alcohols in Nannochloropsis oceanica
by Martina Blasio, Adele Cutignano, Angela Sardo, Stefan Schouten and Sergio Balzano
Phycology 2026, 6(1), 11; https://doi.org/10.3390/phycology6010011 - 8 Jan 2026
Viewed by 241
Abstract
Microalgae can modify their metabolic pathways as a response to environmental stimuli such as light, temperature, salinity, and nutrient availability, which critically influence the synthesis of lipids and other biomolecules. While extensive studies have focused on the impact of these environmental variables on [...] Read more.
Microalgae can modify their metabolic pathways as a response to environmental stimuli such as light, temperature, salinity, and nutrient availability, which critically influence the synthesis of lipids and other biomolecules. While extensive studies have focused on the impact of these environmental variables on the accumulation of valuable compounds such as polyunsaturated fatty acids (PUFAs) and triacylglycerols (TAGs), information on the biosynthesis of specialized metabolites, including long-chain hydroxy fatty acids (LCHFAs), long-chain diols (LCDs), and long-chain alkenols (LCAs) is scarce. These metabolites are thought to contribute to the structural integrity of cell walls in certain microalgae, such as Nannochloropsis spp. (Eustigmatophyceae), where they make up a biopolymer known as algaenan. This study investigates how varying light intensities affect the production of LCHFAs, LCDs, and LCAs in Nannochloropsis oceanica over a 12 h light/dark cycle. Our findings provide insights into the lipid biosynthetic pathways in microalgae, revealing that light strongly drives the production of LCHFAs, whereas LCDs and LCAs are less light-dependent and show more variable responses to different light intensities. Full article
Show Figures

Figure 1

13 pages, 11558 KB  
Article
Adaptation to Long-Term Nitrogen Starvation in a Biocrust-Derived Microalga Vischeria sp. WL1: Insights into Cell Wall Features and Desiccation Resistance
by Wensheng Liang, Xiang Gao, Yang She, Xin Jing, Xiaolong Yuan and Derui Zhu
Microorganisms 2025, 13(4), 903; https://doi.org/10.3390/microorganisms13040903 - 14 Apr 2025
Cited by 2 | Viewed by 911
Abstract
In drylands, microalgae dwelling in the biocrust are inevitably confronted with nitrogen deficiency and desiccation stress, despite the protection afforded by the soil biological complex. However, the environmental adaptive features and mechanisms of these microalgae remain largely unknown. In this study, we explored [...] Read more.
In drylands, microalgae dwelling in the biocrust are inevitably confronted with nitrogen deficiency and desiccation stress, despite the protection afforded by the soil biological complex. However, the environmental adaptive features and mechanisms of these microalgae remain largely unknown. In this study, we explored the adaptive changes of a biocrust-derived unicellular microalga, Vischeria sp. WL1 (Eustigmatophyceae), in the face of long-term nitrogen deficiency. Attention was focused on the alterations in cell wall properties and the associated desiccation resistance. After exposure to long-term nitrogen deficiency, the cell walls of Vischeria sp. WL1 thickened substantially, accompanied by enhanced rigidity and an improvement in desiccation resistance. In contrast, Vischeria sp. WL1 cells cultivated under nitrogen-replete conditions were highly vulnerable to desiccation stress. Additional cell wall alterations after nitrogen starvation included distinct surface sculpturing, variations in monosaccharide composition, and changes in functional groups. Collectively, this study provides valuable insights into the survival strategies of biocrust-derived microalgae in nitrogen-deficient dryland environments. Full article
(This article belongs to the Special Issue Molecular Ecology of Microalgae and Cyanobacteria)
Show Figures

Figure 1

14 pages, 2519 KB  
Article
Effects of the Diurnal Light and Temperature Fluctuations on the Growth, Photosynthesis and Biochemical Composition of Terrestrial Oleaginous Microalga Vischeria sp. WL1 (Eustigmatophyceae)
by Xinhong Guo, Zhengke Li, Daxi Wang, Xiaolong Yuan, Xiaojiao Wang, Huidan Xue, Qiao Zeng and Xiang Gao
Diversity 2025, 17(2), 135; https://doi.org/10.3390/d17020135 - 16 Feb 2025
Viewed by 1113
Abstract
Dynamic changes in diurnal light and temperature are a natural phenomenon, particularly pronounced in arid environments. However, it remains unclear whether the coupling of diurnal light and temperature fluctuations contributes to the capability and evolution of lipid accumulation in arid terrestrial microalgae. Here, [...] Read more.
Dynamic changes in diurnal light and temperature are a natural phenomenon, particularly pronounced in arid environments. However, it remains unclear whether the coupling of diurnal light and temperature fluctuations contributes to the capability and evolution of lipid accumulation in arid terrestrial microalgae. Here, we characterized the effects of diurnal light and temperature fluctuations on the growth, photosynthesis, lipids, carbohydrates, proteins and fatty acids in Vischeria sp. WL1, an oil-producing Eustigmatophyceae microalga sourced from an arid steppe. The photosynthetic activity parameters (Fv/Fm, PIabs, ψ0 and φE0) were the highest, while parameters of damage and energy dissipation (Wk and DIO/RC) were the lowest, under the diurnal light cycle (DLC) among all conditions and then followed by the diurnal light–temperature cycle (DLTC). DLTC led to reduced growth and biomass but enhanced lipid accumulation, with lipid content reaching a maximum of 54.7% on day 4. This observation may suggest a carbon reallocation from carbohydrates toward lipid synthesis. DLTC resulted in an increase in the saturated fatty acids (SFA) content on day 12 and only in C18:2 among polyunsaturated fatty acids (PUFA) on day 4 while lowering eicosapentaenoic acid (EPA) concentration and content on day 12. Together, our findings will contribute to the understanding of the adaptive strategies of terrestrial microalgae to the arid environment, as well as the beneficial clues for exploring terrestrial microalgae for oil production. Full article
(This article belongs to the Special Issue Studies on Biodiversity and Ecology of Algae in China—2nd Edition)
Show Figures

Figure 1

23 pages, 8858 KB  
Article
Algal Biodiversity of Nine Megaliths in South-East Bulgaria
by Maya Stoyneva-Gärtner, Miroslav Androv, Blagoy Uzunov, Kristian Ivanov and Georg Gärtner
Life 2024, 14(8), 948; https://doi.org/10.3390/life14080948 - 28 Jul 2024
Cited by 4 | Viewed by 2740
Abstract
This paper presents the first data on the biodiversity of lithophytic algae from Bulgarian megaliths obtained after the application of the direct sampling method, subsequent cultivation, and processing by light microscopy. A rich algal flora was found: 90 species and 1 variety of [...] Read more.
This paper presents the first data on the biodiversity of lithophytic algae from Bulgarian megaliths obtained after the application of the direct sampling method, subsequent cultivation, and processing by light microscopy. A rich algal flora was found: 90 species and 1 variety of 65 genera from Cyanoprokaryota/Cyanobacteria (29 species, 13 genera), Chlorophyta (40 species and 1 variety, 38 genera), Streptophyta (5 species, 1 genus), and Ochrophyta (16 species, 13 genera). Among them were the globally rare Pseudodictyochloris multinucleata (Chlorophyta), found for the first time in such lowland and warm habitats, and Scotiella tuberculata (Chlorophyta), for which this is the first finding in the country. Three of the recorded species are conservationally important. The low floristic similarity between the sites (0–33%) shows the diversity of the algal flora, with no common species found for all the megaliths studied. The most widespread were the strongly adaptive and competitive Stichococcus bacillaris, Apatococcus lobatus, and Chloroidium ellipsoidium (Chlorophyta). The correlations estimated between the species number and substrate temperature (18.1–49.6 °C) suggest the prospect of future research related to the impact of global warming. In addition, the study points to the safety aspects as it revealed species from nine potentially toxin-producing cyanoprokaryotic genera that could be harmful to visitors’ health. Full article
(This article belongs to the Special Issue Algae—a Step Forward in the Sustainability of Resources)
Show Figures

Figure 1

28 pages, 10668 KB  
Article
Diversity of the Summer Phytoplankton of 43 Waterbodies in Bulgaria and Its Potential for Water Quality Assessment
by Maya P. Stoyneva-Gärtner, Jean-Pierre Descy, Blagoy A. Uzunov, Peter Miladinov, Katerina Stefanova, Mariana Radkova and Georg Gärtner
Diversity 2023, 15(4), 472; https://doi.org/10.3390/d15040472 - 23 Mar 2023
Cited by 6 | Viewed by 3624
Abstract
The general awareness of the threats on biodiversity and water quality raised the number of studies that use phytoplankton in assessment procedures. Since most metrics require obtaining mean values, this paper presents data that may help speed up field work and find indicators [...] Read more.
The general awareness of the threats on biodiversity and water quality raised the number of studies that use phytoplankton in assessment procedures. Since most metrics require obtaining mean values, this paper presents data that may help speed up field work and find indicators for a rapid water quality assessment based on single samplings, allowing simultaneous work on many sites. The phytoplankton from 43 Bulgarian waterbodies collected during three summer campaigns (2018, 2019, 2021) at sites selected after drone observations was studied by conventional light microscopy (LM) and an HPLC analysis of marker pigments. Our results allowed us to recommend drones and the HPLC application as reliable methods in rapid water quality assessments. In total, 787 algae from seven phyla (53 alien, new for Bulgaria) were identified. Chlorophyta was the taxonomically richest group, but Cyanoprokaryota dominated the biomass in most sites. New PCR data obtained on anatoxin and microcystin producers confirmed the genetic diversity of Cuspidothrix and Microcystis and provided three new species for the country’s toxic species, first identified by LM. A statistical analysis revealed significant correlations of certain algal phyla and classes with different environmental variables, and their species are considered promising for future search of bioindicators. This is especially valid for the class Eustigmatophyceae, which, as of yet, has been almost neglected in water assessment procedures and indices. Full article
Show Figures

Figure 1

22 pages, 2023 KB  
Article
Antioxidant Status and Biotechnological Potential of New Vischeria vischeri (Eustigmatophyceae) Soil Strains in Enrichment Cultures
by Aleksandr Yakoviichuk, Zinaida Krivova, Svetlana Maltseva, Angelica Kochubey, Maxim Kulikovskiy and Yevhen Maltsev
Antioxidants 2023, 12(3), 654; https://doi.org/10.3390/antiox12030654 - 6 Mar 2023
Cited by 8 | Viewed by 2790
Abstract
The functional state of enrichment cultures of the Eustigmatophycean strains Vischeria vischeri MZ–E3 and MZ–E4 after 25-day cultivation in the BBM medium was studied. The concentrations of chlorophyll a, total carotenoids, protein, vitamins A and E, fatty acid peroxidation product content, an [...] Read more.
The functional state of enrichment cultures of the Eustigmatophycean strains Vischeria vischeri MZ–E3 and MZ–E4 after 25-day cultivation in the BBM medium was studied. The concentrations of chlorophyll a, total carotenoids, protein, vitamins A and E, fatty acid peroxidation product content, an antioxidant enzyme, and succinate dehydrogenase activity were measured. MZ–E3 succinate dehydrogenase activity was significantly higher by 2.21 times; the MZ–E4 strain had 2.94 times higher glutathione peroxidase activity. The MZ–E3 antioxidant activity index and the MZ–E3 unsaturation of fatty acids were 1.3 and 1.25 times higher than the MZ–E4. The retinol and α-tocopherol content of the MZ–E3 was 28.6% and 38.76% higher than MZ–E4. The main fatty acid profile differences were the 3.46-fold and 3.92-fold higher stearic and eicosapentaenoic acid content in the MZ–E4 biomass. MZ–E3 had higher antioxidant, energy, and metabolic and photosynthetic status than MZ–E4. The antioxidant status of the studied strains showed the dependence of the adaptive mechanisms of each, associated with differences in the ecological conditions of the biotopes from which they were isolated. These strains are promising for producing α-tocopherol and biomass enriched with omega-3 and omega-6 fatty acids. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

18 pages, 4484 KB  
Article
Monogalactosyldiacylglycerol and Sulfolipid Synthesis in Microalgae
by Gennaro Riccio, Daniele De Luca and Chiara Lauritano
Mar. Drugs 2020, 18(5), 237; https://doi.org/10.3390/md18050237 - 1 May 2020
Cited by 46 | Viewed by 5881
Abstract
Microalgae, due to their huge taxonomic and metabolic diversity, have been shown to be a valuable and eco-friendly source of bioactive natural products. The increasing number of genomic and transcriptomic data will give a great boost for the study of metabolic pathways involved [...] Read more.
Microalgae, due to their huge taxonomic and metabolic diversity, have been shown to be a valuable and eco-friendly source of bioactive natural products. The increasing number of genomic and transcriptomic data will give a great boost for the study of metabolic pathways involved in the synthesis of bioactive compounds. In this study, we analyzed the presence of the enzymes involved in the synthesis of monogalactosyldiacylglycerols (MGDGs) and sulfoquinovosyldiacylglycerols (SQDG). Both compounds have important biological properties. MGDGs present both anti-inflammatory and anti-cancer activities while SQDGs present immunostimulatory activities and inhibit the enzyme glutaminyl cyclase, which is involved in Alzheimer’s disease. The Ocean Global Atlas (OGA) database and the Marine Microbial Eukaryotic Transcriptome Sequencing Project (MMETSP) were used to search MGDG synthase (MGD), UDP-sulfoquinovose synthase (SQD1), and sulfoquinovosyltransferase (SQD2) sequences along microalgal taxa. In silico 3D prediction analyses for the three enzymes were performed by Phyre2 server, while binding site predictions were performed by the COACH server. The analyzed enzymes are distributed across different taxa, which confirms the importance for microalgae of these two pathways for thylakoid physiology. MGD genes have been found across almost all analyzed taxa and can be separated in two different groups, similarly to terrestrial plant MGD. SQD1 and SQD2 genes are widely distributed along the analyzed taxa in a similar way to MGD genes with some exceptions. For Pinguiophyceae, Raphidophyceae, and Synurophyceae, only sequences coding for MGDG were found. On the contrary, sequences assigned to Ciliophora and Eustigmatophyceae were exclusively corresponding to SQD1 and SQD2. This study reports, for the first time, the presence/absence of these enzymes in available microalgal transcriptomes, which gives new insights on microalgal physiology and possible biotechnological applications for the production of bioactive lipids. Full article
Show Figures

Figure 1

16 pages, 898 KB  
Article
Isolation and Characterization of Two Microalgal Isolates from Vietnam with Potential for Food, Feed, and Biodiesel Production
by Thao Nguyen Luu, Zouheir Alsafra, Amélie Corato, Daniele Corsaro, Hung Anh Le, Gauthier Eppe and Claire Remacle
Energies 2020, 13(4), 898; https://doi.org/10.3390/en13040898 - 18 Feb 2020
Cited by 10 | Viewed by 4784
Abstract
Microalgae are promising feedstock for the production of biodiesel and diverse medium- and high-value products such as pigments and polyunsaturated fatty acids. The importance of strain selection adapted to specific environments is important for economical purposes. We characterize here two microalgal strains, isolated [...] Read more.
Microalgae are promising feedstock for the production of biodiesel and diverse medium- and high-value products such as pigments and polyunsaturated fatty acids. The importance of strain selection adapted to specific environments is important for economical purposes. We characterize here two microalgal strains, isolated from wastewater of shrimp cultivation ponds in Vietnam. Based on the 18S rDNA-ITS region, one strain belongs to the Eustigmatophyceae class and is identical to the Nannochloropsis salina isolate D12 (JX185299.1), while the other is a Chlorophyceae belonging to the Desmodesmus genus, which possesses a S516 group I intron in its 18S rDNA gene. The N. salina strain is a marine and oleaginous microalga (40% of dry weight (DW) at stationary phase) whole oil is rich in saturated fatty acids (around 45% of C16:0) suitable for biodiesel and contains a few percent of eicosapentaenoic acid (C20:5). The Desmodesmus isolate can assimilate acetate and ammonium and is rich in lutein. Its oil contains around 40%–50% α-linolenic acid (C18:3), an essential fatty acid. Since they tolerate various salinities (10% to 35‰), both strains are thus interesting for biodiesel or aquaculture valorization in coastal and tropical climate where water, nutrient, and salinity availability vary greatly depending on the season. Full article
Show Figures

Figure 1

17 pages, 1422 KB  
Article
The Contribution of Carotenoids, Phenolic Compounds, and Flavonoids to the Antioxidative Properties of Marine Microalgae Isolated from Mediterranean Morocco
by Imane Haoujar, Francesco Cacciola, Jamal Abrini, Domenica Mangraviti, Daniele Giuffrida, Yassine Oulad El Majdoub, Ayoub Kounnoun, Natalizia Miceli, Maria Fernanda Taviano, Luigi Mondello, Francesca Rigano and Nadia Skali Senhaji
Molecules 2019, 24(22), 4037; https://doi.org/10.3390/molecules24224037 - 7 Nov 2019
Cited by 119 | Viewed by 7981
Abstract
This study aimed to investigate the potential of four sea water microalgae, isolated and cultivated at M′diq Bay in Morocco, as a new source of natural antioxidants. These microalgae belong to different classes, including Phaedactylium tricornitum (Bacillariophyceae), Nannochloropsis gaditana (Eustigmatophyceae), Nannochloris sp (Trebouxiophyceae), [...] Read more.
This study aimed to investigate the potential of four sea water microalgae, isolated and cultivated at M′diq Bay in Morocco, as a new source of natural antioxidants. These microalgae belong to different classes, including Phaedactylium tricornitum (Bacillariophyceae), Nannochloropsis gaditana (Eustigmatophyceae), Nannochloris sp (Trebouxiophyceae), and Tetraselmis suecica (Chlorodendrophycea). The antioxidant properties were screened by the use of in vitro assays, namely 2,2-difenil-1-picrylhydrazyl, Ferric reducing antioxidant power, and Ferrous ions chelating activity, and compoundidentification was carried out in methanol and acetone extracts of both dried and fresh microalgae biomass by HPLC–PDA–MS analysis. Among the investigated microalgae, Phaedactylium tricornutum was the richest one regarding its carotenoid (especially all-E-fucoxanthin) and phenolic (especially protocatechuic acid) contents, as well as antioxidant activity (65.5%), followed by Nannochloris sp, Tetraselmis suicica, and Nannochloropsis gaditana, with antioxidant activity of 56.8%, 54.9%, and 51.1%, respectively. Full article
(This article belongs to the Special Issue Bioactive Phenolic and Polyphenolic Compounds)
Show Figures

Figure 1

13 pages, 1477 KB  
Article
Optimum Production Conditions, Purification, Identification, and Antioxidant Activity of Violaxanthin from Microalga Eustigmatos cf. polyphem (Eustigmatophyceae)
by Feifei Wang, Luodong Huang, Baoyan Gao and Chengwu Zhang
Mar. Drugs 2018, 16(6), 190; https://doi.org/10.3390/md16060190 - 1 Jun 2018
Cited by 51 | Viewed by 6771
Abstract
Violaxanthin is a major xanthophyll pigment in the microalga Eustigmatos cf. polyphem, but the amount produced after propagation can vary depending upon culture conditions. In this study, the effects of cultivation time, nitrogen concentration, light intensity, and culture mode on violaxanthin production [...] Read more.
Violaxanthin is a major xanthophyll pigment in the microalga Eustigmatos cf. polyphem, but the amount produced after propagation can vary depending upon culture conditions. In this study, the effects of cultivation time, nitrogen concentration, light intensity, and culture mode on violaxanthin production were investigated. The results showed that this microalga vigorously grew and maintained a high level of violaxanthin in the fed-batch culture, and the highest violaxanthin productivity of 1.10 ± 0.03 mg L−1 d−1 was obtained under low light illumination with 18 mM of initial nitrogen supply for ten days. Additionally, violaxanthin was purified from E. cf. polyphem by silica gel chromatography and preparative high-performance liquid chromatography (PHPLC), and identified with high-resolution mass spectrometry (HRMS). The antioxidant activity of the purified violaxanthin was evaluated by three tests in vitro: reducing power assay, 2,2-diphenyl-1-picrylhydrazyl (DPPH), and 2,2-azobis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical assays. The strongest inhibition of purified violaxanthin occurred during the scavenging of ABTS+ radicals, with EC50 of 15.25 μg mL−1. In conclusion, this is the first report to investigate the effects of different culture conditions on violaxanthin accumulation in E. cf. polyphem and provide a novel source for the production of violaxanthin that can be used for food and pharmaceutical applications. Full article
Show Figures

Figure 1

18 pages, 1075 KB  
Article
Carotenoids, Phenolic Compounds and Tocopherols Contribute to the Antioxidative Properties of Some Microalgae Species Grown on Industrial Wastewater
by Hamed Safafar, Jonathan Van Wagenen, Per Møller and Charlotte Jacobsen
Mar. Drugs 2015, 13(12), 7339-7356; https://doi.org/10.3390/md13127069 - 11 Dec 2015
Cited by 414 | Viewed by 17946
Abstract
This study aimed at investigating the potential of microalgae species grown on industrial waste water as a new source of natural antioxidants. Six microalgae from different classes, including Phaeodactylum sp. (Bacillariophyceae), Nannochloropsis sp. (Eustigmatophyceae), Chlorella sp., Dunaniella sp., and Desmodesmus sp. (Chlorophyta), were [...] Read more.
This study aimed at investigating the potential of microalgae species grown on industrial waste water as a new source of natural antioxidants. Six microalgae from different classes, including Phaeodactylum sp. (Bacillariophyceae), Nannochloropsis sp. (Eustigmatophyceae), Chlorella sp., Dunaniella sp., and Desmodesmus sp. (Chlorophyta), were screened for their antioxidant properties using different in vitro assays. Natural antioxidants, including pigments, phenolics, and tocopherols, were measured in methanolic extracts of microalgae biomass. Highest and lowest concentrations of pigments, phenolic compounds, and tocopherols were found in Desmodesmus sp. and Phaeodactylum tricornuotom microalgae species, respectively. The results of each assay were correlated to the content of natural antioxidants in microalgae biomass. Phenolic compounds were found as major contributors to the antioxidant activity in all antioxidant tests while carotenoids were found to contribute to the 1,1-diphenyl-2-picryl-hydrazil (DPPH) radical scavenging activity, ferrous reduction power (FRAP), and ABTS-radical scavenging capacity activity. Desmodesmus sp. biomass represented a potentially rich source of natural antioxidants, such as carotenoids (lutein), tocopherols, and phenolic compounds when cultivated on industrial waste water as the main nutrient source. Full article
(This article belongs to the Special Issue Green Chemistry Approach to Marine Products)
Show Figures

Graphical abstract

Back to TopTop