Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = European Chemicals Agency (ECHA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1512 KiB  
Article
Ambient Levels of Carbonyl Compounds and Ozone in a Golf Course in Ciudad Real, Spain: A ProtoPRED QSAR (Eco) Toxicity Evaluation
by Alberto Moreno, Yoana Rabanal-Ruiz, Andrés Moreno-Cabañas, Carlos Sánchez Jiménez and Beatriz Cabañas
Air 2025, 3(1), 2; https://doi.org/10.3390/air3010002 - 6 Jan 2025
Viewed by 1239
Abstract
It is well known that carbonyl compounds play an important role in air pollution and the formation of secondary pollutants, such as peroxyacetyl nitrates (PAN). Additionally, airborne carbonyls have been described as cytotoxic, mutagenic and carcinogenic. In this research, several carbonyl compounds, including [...] Read more.
It is well known that carbonyl compounds play an important role in air pollution and the formation of secondary pollutants, such as peroxyacetyl nitrates (PAN). Additionally, airborne carbonyls have been described as cytotoxic, mutagenic and carcinogenic. In this research, several carbonyl compounds, including aldehydes and ketones, as well as ozone, were monitored during a campaign conducted in July and September-October 2023 at Golf Ciudad Real, a golf course located in a non-industrial area of a south-central province in Spain. Extraction and analysis were carried out following procedures outlined by Radiello®. Analyses were performed using HPLC-DAD and UV-Visible spectrophotometry. Ozone shows seasonal variation (temperature-dependent) concentrations displaying lower values in September/October. Among all the identified carbonyls, butanal was the most abundant, accounting for 40% of the total concentration. The C1/C2 and C2/C3 ratios were also calculated to provide information about the main emissions sources of the analyzed carbonyl compounds, indicating that mainly anthropogenic sources contribute to air quality in the area. The data were further supported by Quantitative Structure-Activity Relationship (QSAR) models using the ProtoPRED online server, which employs in silico methods based on European Chemicals Agency (ECHA) regulations to assess the (eco)toxicity of the measured carbonyl compounds. Full article
Show Figures

Figure 1

16 pages, 2492 KiB  
Article
Miniaturizing Nanotoxicity Assays in Daphnids
by Dimitrios Kakavas, Konstantinos Panagiotidis, Keith D. Rochfort and Konstantinos Grintzalis
Animals 2024, 14(14), 2046; https://doi.org/10.3390/ani14142046 - 12 Jul 2024
Cited by 2 | Viewed by 1189
Abstract
The rapid progress of the modern world has resulted in new materials and products created at an accelerating pace. As such, nanoparticles have widespread applications and often find their way into the aquatic ecosystem. In the case of freshwater ecosystems, one of the [...] Read more.
The rapid progress of the modern world has resulted in new materials and products created at an accelerating pace. As such, nanoparticles have widespread applications and often find their way into the aquatic ecosystem. In the case of freshwater ecosystems, one of the commonly used bioindicators species used for pollution assessment is Daphnid magna. The Organization for Economic Co-operation and Development (OECD), and other organizations such as the European Chemicals Agency (ECHA) and Environmental Protection Agency (EPA), have set guidelines for acute toxicity testing in daphnids that are severely lacking in terms of information on the characteristics of the exposure vessel when studying the adverse effects of nanoparticles (NPs). Understanding the toxicity mechanisms of nanomaterials is imperative given the scarcity of information on their adverse effects. Furthermore, miniaturization of nanotoxicity assays can reduce the number of daphnids used, as well as the cost and nanomaterial waste, and provide results even at the individual animal level with enhanced reproducibility of testing. In this study, the impact of the exposure vessel on the observed physiological changes of daphnids was investigated for a silver nano ink. Exposures in eleven commercially available vessels; nine made of plastic and two made of glass were compared for 24 h. The effect of surface to volume ratio of the exposure vessel and the animal number or “crowding” during exposure was investigated in the context of miniaturizing biomarker assays as alternatives to traditional experimental setups in Daphnid magna. Toxicity curves showed differences depending on the vessel used, while a novel feeding rate assay and the activity of key enzymes were assessed as physiology endpoints. Full article
(This article belongs to the Special Issue Ecotoxicology in Aquatic Animals)
Show Figures

Figure 1

14 pages, 653 KiB  
Article
More Than 30 Years of PVC Recycling—Need for Regulation
by Uwe Lahl and Barbara Zeschmar-Lahl
Sustainability 2024, 16(12), 4891; https://doi.org/10.3390/su16124891 - 7 Jun 2024
Cited by 3 | Viewed by 2390
Abstract
Building on our “Critical Inventory”, we analyse the need for the regulation of PVC plastics in the EU and its member states. To this end, we checked the three phases of the life cycle of PVC plastics: production, use and end-of-life. In the [...] Read more.
Building on our “Critical Inventory”, we analyse the need for the regulation of PVC plastics in the EU and its member states. To this end, we checked the three phases of the life cycle of PVC plastics: production, use and end-of-life. In the production phase, we focus on the economic relationships between PVC and chlor-alkali electrolysis, in particular, the dependence on the chlorine market and PVC sales. For the use phase, the health and environmental risks posed by many PVC additives are particularly relevant. The European Chemicals Agency (ECHA) has submitted well-founded proposals for the regulation of individual or defined groups of substances (e.g., ortho-phthalates), which we support. Problems that put a ban on the agenda stem in particular from the end-of-life phase of PVC plastics (PVC compounds), especially in the construction sector. Due to their long service life, a stock of around 160 million tonnes of PVC products in the EU has built up, increasingly finding its way into the waste management sector. Currently, there are no waste management infrastructures or facilities capable of disposing of these amounts. Without a phasing-out the production of virgin PVC (“PVC ban”), these quantities will continue to increase. We, therefore, come to the conclusion that post-consumer PVC should be collected separately and canalized into a disposal infrastructure designed for chlorine recovery. The European PVC industry “would welcome to make this separate collection mandatory”. Including the associated costs, PVC will probably lose its status as a particularly economically favourable plastic. Full article
(This article belongs to the Special Issue Sustainability: Resources and Waste Management)
Show Figures

Figure 1

29 pages, 3186 KiB  
Review
Meeting Contemporary Challenges: Development of Nanomaterials for Veterinary Medicine
by Oleksii Danchuk, Anna Levchenko, Rochelly da Silva Mesquita, Vyacheslav Danchuk, Seyda Cengiz, Mehmet Cengiz and Andriy Grafov
Pharmaceutics 2023, 15(9), 2326; https://doi.org/10.3390/pharmaceutics15092326 - 15 Sep 2023
Cited by 17 | Viewed by 6050
Abstract
In recent decades, nanotechnology has been rapidly advancing in various fields of human activity, including veterinary medicine. The review presents up-to-date information on recent advancements in nanotechnology in the field and an overview of the types of nanoparticles used in veterinary medicine and [...] Read more.
In recent decades, nanotechnology has been rapidly advancing in various fields of human activity, including veterinary medicine. The review presents up-to-date information on recent advancements in nanotechnology in the field and an overview of the types of nanoparticles used in veterinary medicine and animal husbandry, their characteristics, and their areas of application. Currently, a wide range of nanomaterials has been implemented into veterinary practice, including pharmaceuticals, diagnostic devices, feed additives, and vaccines. The application of nanoformulations gave rise to innovative strategies in the treatment of animal diseases. For example, antibiotics delivered on nanoplatforms demonstrated higher efficacy and lower toxicity and dosage requirements when compared to conventional pharmaceuticals, providing a possibility to solve antibiotic resistance issues. Nanoparticle-based drugs showed promising results in the treatment of animal parasitoses and neoplastic diseases. However, the latter area is currently more developed in human medicine. Owing to the size compatibility, nanomaterials have been applied as gene delivery vectors in veterinary gene therapy. Veterinary medicine is at the forefront of the development of innovative nanovaccines inducing both humoral and cellular immune responses. The paper provides a brief overview of current topics in nanomaterial safety, potential risks associated with the use of nanomaterials, and relevant regulatory aspects. Full article
(This article belongs to the Special Issue Biodegradable Nanomaterials for Targeted Drug Delivery)
Show Figures

Figure 1

13 pages, 814 KiB  
Review
The EU’s Per- and Polyfluoroalkyl Substances (PFAS) Ban: A Case of Policy over Science
by Francesca Spyrakis and Tommaso A. Dragani
Toxics 2023, 11(9), 721; https://doi.org/10.3390/toxics11090721 - 22 Aug 2023
Cited by 37 | Viewed by 8091
Abstract
The proposal by the European Chemicals Agency (ECHA) to ban over 12,000 per- and polyfluoroalkyl substances (PFAS) has sparked a debate about potential consequences for the economy, industry, and the environment. Although some PFAS are known to be harmful, a blanket ban may [...] Read more.
The proposal by the European Chemicals Agency (ECHA) to ban over 12,000 per- and polyfluoroalkyl substances (PFAS) has sparked a debate about potential consequences for the economy, industry, and the environment. Although some PFAS are known to be harmful, a blanket ban may lead to significant problems in attempting to replace PFAS-based materials for environmental transition, as well as in medical devices and everyday products. Alternative materials may potentially be less safe, as a rush to replace PFAS would reduce the time needed for toxicological analyses. Studies have shown that PFAS exhibit a diverse range of mechanisms of action, biopersistence, and bioaccumulation potential, and should thus not be treated as a single group. This is particularly true for the class of fluoropolymers. A targeted approach that considers the specific risks and benefits of each chemical may be more effective. Moreover, the proposed ban may also have unintended consequences for the environment as PFAS use is also associated with benefits such as reducing greenhouse-gas emissions and improving energy efficiency. Policymakers must carefully weigh up the potential consequences before making a final decision on the ban. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Figure 1

29 pages, 2531 KiB  
Review
Magnetic Iron Nanoparticles: Synthesis, Surface Enhancements, and Biological Challenges
by Jesús Roberto Vargas-Ortiz, Carmen Gonzalez and Karen Esquivel
Processes 2022, 10(11), 2282; https://doi.org/10.3390/pr10112282 - 4 Nov 2022
Cited by 45 | Viewed by 11335
Abstract
This review focuses on the role of magnetic nanoparticles (MNPs), their physicochemical properties, their potential applications, and their association with the consequent toxicological effects in complex biologic systems. These MNPs have generated an accelerated development and research movement in the last two decades. [...] Read more.
This review focuses on the role of magnetic nanoparticles (MNPs), their physicochemical properties, their potential applications, and their association with the consequent toxicological effects in complex biologic systems. These MNPs have generated an accelerated development and research movement in the last two decades. They are solving a large portion of problems in several industries, including cosmetics, pharmaceuticals, diagnostics, water remediation, photoelectronics, and information storage, to name a few. As a result, more MNPs are put into contact with biological organisms, including humans, via interacting with their cellular structures. This situation will require a deeper understanding of these particles’ full impact in interacting with complex biological systems, and even though extensive studies have been carried out on different biological systems discussing toxicology aspects of MNP systems used in biomedical applications, they give mixed and inconclusive results. Chemical agencies, such as the Registration, Evaluation, Authorization, and Restriction of Chemical substances (REACH) legislation for registration, evaluation, and authorization of substances and materials from the European Chemical Agency (ECHA), have held meetings to discuss the issue. However, nanomaterials (NMs) are being categorized by composition alone, ignoring the physicochemical properties and possible risks that their size, stability, crystallinity, and morphology could bring to health. Although several initiatives are being discussed around the world for the correct management and disposal of these materials, thanks to the extensive work of researchers everywhere addressing the issue of related biological impacts and concerns, and a new nanoethics and nanosafety branch to help clarify and bring together information about the impact of nanoparticles, more questions than answers have arisen regarding the behavior of MNPs with a wide range of effects in the same tissue. The generation of a consolidative framework of these biological behaviors is necessary to allow future applications to be manageable. Full article
(This article belongs to the Special Issue Magnetic Materials for Environmental and Biomedical Applications)
Show Figures

Graphical abstract

13 pages, 673 KiB  
Communication
Theoretical Background of Occupational-Exposure Models—Report of an Expert Workshop of the ISES Europe Working Group “Exposure Models”
by Urs Schlüter, Susan Arnold, Francesca Borghi, John Cherrie, Wouter Fransman, Henri Heussen, Michael Jayjock, Keld Alstrup Jensen, Joonas Koivisto, Dorothea Koppisch, Jessica Meyer, Andrea Spinazzè, Celia Tanarro, Steven Verpaele and Natalie von Goetz
Int. J. Environ. Res. Public Health 2022, 19(3), 1234; https://doi.org/10.3390/ijerph19031234 - 22 Jan 2022
Cited by 16 | Viewed by 5384
Abstract
On 20 October 2020, the Working Group “Exposure Models” of the Europe Regional Chapter of the International Society of Exposure Science (ISES Europe) organised an online workshop to discuss the theoretical background of models for the assessment of occupational exposure to chemicals. In [...] Read more.
On 20 October 2020, the Working Group “Exposure Models” of the Europe Regional Chapter of the International Society of Exposure Science (ISES Europe) organised an online workshop to discuss the theoretical background of models for the assessment of occupational exposure to chemicals. In this report, participants of the workshop with an active role before and during the workshop summarise the most relevant discussion points and conclusions of this well-attended workshop. ISES Europe has identified exposure modelling as one priority area for the strategic development of exposure science in Europe in the coming years. This specific workshop aimed to discuss the main challenges in developing, validating, and using occupational-exposure models for regulatory purposes. The theoretical background, application domain, and limitations of different modelling approaches were presented and discussed, focusing on empirical “modifying-factor” or “mass-balance-based” approaches. During the discussions, these approaches were compared and analysed. Possibilities to address the discussed challenges could be a validation study involving alternative modelling approaches. The wider discussion touched upon the close relationship between modelling and monitoring and the need for better linkage of the methods and the need for common monitoring databases that include data on model parameters. Full article
(This article belongs to the Special Issue Modeling Tools for Occupational Exposure Assessment)
Show Figures

Figure 1

22 pages, 401 KiB  
Review
Validity of Tier 1 Modelling Tools and Impacts on Exposure Assessments within REACH Registrations—ETEAM Project, Validation Studies and Consequences
by Urs Schlueter and Martin Tischer
Int. J. Environ. Res. Public Health 2020, 17(12), 4589; https://doi.org/10.3390/ijerph17124589 - 26 Jun 2020
Cited by 9 | Viewed by 3410
Abstract
In the last years, the evaluation and validation of exposure modelling tools for inhalation exposure assessment at workplaces received new and highly increased attention by different stakeholders. One important study in this regard is the ETEAM (Evaluation of Tier 1 [...] Read more.
In the last years, the evaluation and validation of exposure modelling tools for inhalation exposure assessment at workplaces received new and highly increased attention by different stakeholders. One important study in this regard is the ETEAM (Evaluation of Tier 1 Exposure Assessment Models) project that evaluated exposure assessment tools under the European REACH regulation (Registration, Evaluation, Authorisation and Restriction of Chemicals), (but next to the ETEAM project—as a project publicly funded by the German Federal Institute for Occupational Safety and Health (BAuA)—it is a rather new development that research groups from universities in Europe, but also internationally, investigated this issue. These other studies focused not only on REACH tier 1 tools but also investigated other tools and aspects of tool validity. This paper tries to summarise the major findings of studies that explored the different issues of tool validity by focusing on the scientific outcomes and the exposure on the science community. On the other hand, this publication aims to provide guidance on the choice and use of tools, addressing the needs of tool users. The consequences of different stakeholders under REACH are discussed from the results of the validation studies. The major stakeholders are: (1) REACH registrants or applicants for REACH authorisations, meaning those companies, consortia or associations who are subject to REACH; (2) Evaluating authorities within the scope of REACH, meaning the ECHA (European Chemicals Agency) secretariat and committees, but also the competent authorities of the member states or the European Union; (3) Developers of the different models and tools; (4) Users of the different models and tools. Full article
(This article belongs to the Special Issue Modeling Tools for Occupational Exposure Assessment)
18 pages, 7389 KiB  
Article
Attachment Efficiency of Nanomaterials to Algae as an Important Criterion for Ecotoxicity and Grouping
by Kerstin Hund-Rinke, Tim Sinram, Karsten Schlich, Carmen Nickel, Hanna Paula Dickehut, Matthias Schmidt and Dana Kühnel
Nanomaterials 2020, 10(6), 1021; https://doi.org/10.3390/nano10061021 - 27 May 2020
Cited by 15 | Viewed by 3618
Abstract
Engineered nanomaterials (ENMs) based on CeO2 and TiO2 differ in their effects on the unicellular green alga Raphidocelis subcapitata but these effects do not reflect the physicochemical parameters that characterize such materials in water and other test media. To determine whether [...] Read more.
Engineered nanomaterials (ENMs) based on CeO2 and TiO2 differ in their effects on the unicellular green alga Raphidocelis subcapitata but these effects do not reflect the physicochemical parameters that characterize such materials in water and other test media. To determine whether interactions with algae can predict the ecotoxicity of ENMs, we studied the attachment of model compounds (three subtypes of CeO2 and five subtypes of TiO2) to algal cells by light microscopy and electron microscopy. We correlated our observations with EC50 values determined in growth inhibition assays carried out according to the Organisation for Economic Co-operation and Development (OECD) test guideline 201. Light microscopy revealed distinct patterns of ENM attachment to algal cells according to the type of compound, with stronger interactions leading to greater toxicity. This was confirmed by electron microscopy, which allowed the quantitative assessment of particle attachment. Our results indicate that algal extracellular polymeric substances play an important role in the attachment of ENMs, influencing the formation of agglomerates. The attachment parameters in short-term tests predicted the toxicity of CeO2 and TiO2 ENMs and can be considered as a valuable tool for the identification of sets of similar nanoforms as requested by the European Chemicals Agency in the context of grouping and read-across. Full article
(This article belongs to the Special Issue Toxicology and Biocompatibility of Nanomaterials)
Show Figures

Figure 1

19 pages, 697 KiB  
Article
Urinary Mercapturic Acids to Assess Exposure to Benzene and Other Volatile Organic Compounds in Coke Oven Workers
by Gianfranco Frigerio, Laura Campo, Rosa Mercadante, Danuta Mielżyńska-Švach, Sofia Pavanello and Silvia Fustinoni
Int. J. Environ. Res. Public Health 2020, 17(5), 1801; https://doi.org/10.3390/ijerph17051801 - 10 Mar 2020
Cited by 9 | Viewed by 4556
Abstract
Coke production was classified as carcinogenic to humans by the International Agency for Research on Cancer. Besides polycyclic aromatic hydrocarbons, coke oven workers may be exposed to benzene and other volatile organic compounds (VOCs). The aim of this study was to assess the [...] Read more.
Coke production was classified as carcinogenic to humans by the International Agency for Research on Cancer. Besides polycyclic aromatic hydrocarbons, coke oven workers may be exposed to benzene and other volatile organic compounds (VOCs). The aim of this study was to assess the exposure to several VOCs in 49 coke oven workers and 49 individuals living in the same area by determining urinary mercapturic acids. Active tobacco smoking was an exclusion criterion for both groups. Mercapturic acids were investigated by a validated isotopic dilution LC-MS/MS method. Linear models were built to correct for different confounding variables. Urinary levels of N-acetyl-S-phenyl-L-cysteine (SPMA) (metabolite of benzene), N-acetyl-S-(2-hydroxy-1/2-phenylethyl)-L-cysteine (PHEMA) (metabolite of styrene), N-acetyl-S-(2-cyanoethyl)-L-cysteine (CEMA) (metabolite of acrylonitrile), N-acetyl-S-[1-(hydroxymethyl)-2-propen-1-yl)-L-cysteine and N-acetyl-S-(2-hydroxy-3-buten-1-yl)-L-cysteine (MHBMA) (metabolites of 1,3-butadiene) were 2–10 fold higher in workers than in controls (p < 0.05). For SPMA, in particular, median levels were 0.02 and 0.31 µg/g creatinine in workers and controls, respectively. Among workers, coke makers were more exposed to PHEMA and SPMA than foremen and engine operators. The comparison with biological limit values shows that the exposure of workers was within 20% of the limit values for all biomarkers, moreover three subjects exceeded the restrictive occupational limit value recently proposed by the European Chemicals Agency (ECHA) for SPMA. Full article
(This article belongs to the Special Issue Human Biomonitoring of Environmental and Occupational Exposures)
Show Figures

Figure 1

Back to TopTop