Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = Eurofer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5551 KiB  
Article
Primary and Low-Strain Creep Models for 9Cr Tempered Martensitic Steels Including the Effects of Irradiation Softening and High-Helium Re-Hardening
by Md Ershadul Alam, Takuya Yamamoto and George Robert Odette
Metals 2025, 15(4), 354; https://doi.org/10.3390/met15040354 - 24 Mar 2025
Viewed by 485
Abstract
Primary and low-strain creep represents a very important integrity challenge to large, complex structures, like fusion reactors. Here, we develop a predictive empirical primary creep model for 9Cr tempered martensitic steels (TMS), relating the applied stress (σ) to strain (ε), time (t) and [...] Read more.
Primary and low-strain creep represents a very important integrity challenge to large, complex structures, like fusion reactors. Here, we develop a predictive empirical primary creep model for 9Cr tempered martensitic steels (TMS), relating the applied stress (σ) to strain (ε), time (t) and temperature (T). The most accurate model is based on the applied σ normalized by the steel’s T-dependent ultimate tensile stress (σo), σ/σo(T). The model, fit to 17 heats of 9Cr TMS, yielded a σ root mean square error (RMSE) of ≈±11 MPa. Notably, the model also provides robust predictions for all the other TMS, when calibrated only by the fusion candidate Eurofer97 database. The model was extended to explore two possible effects of neutron irradiation, which produces both displacements per atom (dpa) and helium (He in atomic parts per million, appm) damage. These effects, which have not been previously considered, include: (a) softening, as a function of dpa, at T > ≈400–450 °C, in low-He fission environments (<1 He/dpa); and (b) subsequent re-hardening in high-He (≥10 He/dpa) fusion first-wall environments. The irradiation effect models predict (a) accelerated primary creep due to irradiation softening; and (b) fully arrested creep due to high-He re-hardening. Full article
(This article belongs to the Special Issue Manufacture, Properties and Applications of Advanced Nuclear Alloys)
Show Figures

Figure 1

12 pages, 6486 KiB  
Article
Exploring FAST Technique for Diffusion Bonding of Tungsten to EUROFERE97 in DEMO First Wall
by María Sánchez, Javier de Prado, Ignacio Izaguirre, Andrei Galatanu and Alejandro Ureña
Materials 2024, 17(11), 2624; https://doi.org/10.3390/ma17112624 - 29 May 2024
Cited by 2 | Viewed by 1209
Abstract
The European Fusion Reactor (DEMO, Demonstration Power Plant) relies significantly on joining technologies in its design. Current research within the EUROfusion framework focuses on developing materials for the first wall and divertor applications, emphasizing the need for suitable joining processes, particularly for tungsten. [...] Read more.
The European Fusion Reactor (DEMO, Demonstration Power Plant) relies significantly on joining technologies in its design. Current research within the EUROfusion framework focuses on developing materials for the first wall and divertor applications, emphasizing the need for suitable joining processes, particularly for tungsten. The electric field-assisted sintering technique (FAST) emerges as a promising alternative due to its high current density, enabling rapid heating and cooling rates for fast sintering or joining. In this study, FAST was employed to join tungsten and EUROFERE97 steel, the chosen materials for the first wall, using 50-µm-thick Cu foils as interlayers. Three distinct joining conditions were tested at 980 °C for 2, 5, and 9 min at 41.97 MPa to optimize joint properties and assess FAST parameters influence. Hardness measurements revealed values around 450 HV0.1 for tungsten, 100 HV0.1 for copper, and 390 HV0.1 for EUROFER97 under all joining conditions. Increasing bonding time improved joint continuity along the EUROFER97/Cu and W/Cu interfaces. Notably, the 5 min bonding time resulted in the highest shear strength, while the 9 min sample exhibited reduced strength, possibly due to Kirkendall porosity accumulation at the EUROFER97/Cu interface. This porosity facilitated crack initiation and propagation, diminishing interfacial adhesion properties. Full article
Show Figures

Figure 1

40 pages, 20187 KiB  
Article
Neutronics Assessment of the Spatial Distributions of the Nuclear Loads on the DEMO Divertor ITER-like Targets: Comparison between the WCLL and HCPB Blanket
by Simone Noce, Davide Flammini, Pasqualino Gaudio, Michela Gelfusa, Giuseppe Mazzone, Fabio Moro, Francesco Romanelli, Rosaria Villari and Jeong-Ha You
Appl. Sci. 2023, 13(3), 1715; https://doi.org/10.3390/app13031715 - 29 Jan 2023
Cited by 5 | Viewed by 1865
Abstract
The Plasma Facing Components (PFCs) of the divertor target contribute to the fundamental functions of heat removal and particle exhaust during fusion operation, being subjected to a very hostile and complex loading environment characterized by intense particles bombardment, high heat fluxes (HHF), varying [...] Read more.
The Plasma Facing Components (PFCs) of the divertor target contribute to the fundamental functions of heat removal and particle exhaust during fusion operation, being subjected to a very hostile and complex loading environment characterized by intense particles bombardment, high heat fluxes (HHF), varying stresses loads and a significant neutron irradiation. The development of a well-designed divertor target, which represents a crucial step in the realization of DEMO, needs the assessment of all these loads as accurately as possible, to provide pivotal data and indications for the design and structural performance prediction of the PFCs. In a particular way, this study is fully devoted to the comprehension of the distributions on the divertor target of the main nuclear loads due to neutron irradiation, performed for the first time using an extremely detailed approach. This work has been carried-out considering the latest configuration of the DEMO reactor, including the updated design of the divertor and ITER-Like PFCs geometry, varying the blanket layout (Water Cooled Lithium Lead—WCLL and Helium Cooled Pebble Bed—HCPB), thus evaluating the impact of the different blanket concept on the above-mentioned distributions. Neutronics analyses have been performed with MCNP5 Monte Carlo code and JEFF3.3 nuclear data libraries. 3D DEMO MCNP models have been created, focusing in particular on a thorough representation of the divertor and PFCs, allowing for the assessment of the distributions of the main nuclear loads: radiation damage (dpa/FPY), He-production rate (appm/FPY) and nuclear heating density (W/cm3) and total nuclear power deposition (MW). These results are presented by means of 2D maps and plots for each PFCs sub-component both for WCLL and HCPB blanket case: W-monoblocks, Cu-interlayers\CuCrZr-pipe and PFC-CB (Cassette Body) supports made of Eurofer steel. Full article
Show Figures

Figure 1

8 pages, 1247 KiB  
Article
Titanium and Tantalum Used as Functional Gradient Interlayer to Join Tungsten and Eurofer97
by Marianne Richou, Isabelle Chu, Geoffrey Darut, Raphael Maestracci, Manda Ramaniraka and Erick Meillot
J. Nucl. Eng. 2022, 3(4), 453-460; https://doi.org/10.3390/jne3040031 - 13 Dec 2022
Cited by 2 | Viewed by 1961
Abstract
For the DEMO reactor, tungsten is considered as an armor material. Eurofer97 is planned to be used as a structural material for the first wall and in the divertor region, especially for the shielding liner component. To date, several joining solutions between W [...] Read more.
For the DEMO reactor, tungsten is considered as an armor material. Eurofer97 is planned to be used as a structural material for the first wall and in the divertor region, especially for the shielding liner component. To date, several joining solutions between W and Eurofer97 have been developed (copper brazing, W and Eurofer97 functional gradient material (FGM), etc.). Each existing joining solution has its own advantages (joining material, improved manufacturing process). In the present study, the choice of the joining material is driven, among other constraints, by a desire to minimize the thermal stresses at the materials’ interface. In this regard, FGM represents a promising solution. Another constraint that is taken into account in this study concerns the manufacturing process involved, which should be an improved industrial process. The present study proposes a joining solution, based on FGM, which, additionally to the advantages of the existing solutions, could reduce the long-term activation of the joining material. The development of a joining solution via Ti and Ta as materials constituting the FGM (Ti/Ta FGM) is presented in this paper. Due to the achieved density and the composition’s accuracy, the cold spray process is shown to be adapted for the Ti/Ta FGM’s manufacturing. Based on the feedback on the experience of joining between W, W/Cu FGM and CuCrZr, the final joining between W, Ti/Ta FGM and Eurofer97 is achieved using hot isostatic pressing, followed by a thermal treatment to recover Eurofer97’s mechanical properties, resulting in good joining quality. Full article
Show Figures

Figure 1

13 pages, 15807 KiB  
Article
Potential Use of IFMIF-DONES Target Back-Plate for Material Specimens
by Yuefeng Qiu, Frederik Arbeiter, Davide Bernardi, Manuela Frisoni, Sergej Gordeev, Rebeca Hernández and Arkady Serikov
J. Nucl. Eng. 2022, 3(4), 385-397; https://doi.org/10.3390/jne3040025 - 25 Nov 2022
Cited by 5 | Viewed by 2019
Abstract
In the IFMIF-DONES facility of the future, the back-plate behind the Li target will receive strong irradiation from high-energy neutrons. The potential use of the back-plate for material specimens is attractive with respect to providing complementary irradiation data for Eurofer. In this work, [...] Read more.
In the IFMIF-DONES facility of the future, the back-plate behind the Li target will receive strong irradiation from high-energy neutrons. The potential use of the back-plate for material specimens is attractive with respect to providing complementary irradiation data for Eurofer. In this work, DPA (displacement per atom) and gas production rates as well as DPA gradients and temperature distributions have been studied for the center segment of the back-plate, using both a nominal beam and a reduced beam footprint. It is shown that specimens can be produced with high DPA in similar conditions to the DEMO first-wall. Based on the size of the SSTT (small specimen test technology) specimens, the limited number of samples obtainable from the adopted arrangement scheme is driven by a major constraint: the thickness of the back-plate. A parametric study of the back-plate’s thickness provides an alternative arrangement scheme; thus, the DPA and gradient of the specimens are remarkably improved. Full article
Show Figures

Figure 1

14 pages, 3661 KiB  
Article
Design of the CIEMAT Corrosion Loop for Liquid Metal Experiments
by Elisabetta Carella, David Rapisarda and Stephan Lenk
Appl. Sci. 2022, 12(6), 3104; https://doi.org/10.3390/app12063104 - 18 Mar 2022
Cited by 3 | Viewed by 3127
Abstract
The main components of a liquid breeder blanket in a fusion power reactor are lead lithium alloy (PbLi) and the steel structure in which the liquid is enclosed (EUROFER). Several compatibility tests have shown that structural materials always suffer from corrosion attacks. The [...] Read more.
The main components of a liquid breeder blanket in a fusion power reactor are lead lithium alloy (PbLi) and the steel structure in which the liquid is enclosed (EUROFER). Several compatibility tests have shown that structural materials always suffer from corrosion attacks. The governing mechanism can be attributed to the dissolution of the steel by the liquid breeder and is strongly related to the PbLi chemistry, velocity profile, and temperature. A new facility, CiCLo-C (CIEMAT Corrosion Loop, Internally Coated), is dedicated to the study of corrosion in materials under the severe breeding blanket condition. An effort was made to design an experimental facility with a specific test section able to work at quite ambitious operation parameters: up to 550 °C and a 1 m/s flow of PbLi. Furthermore, an innovative tantalum coating was introduced in the whole loop to avoid impurities coming from the pipeline, which can disturb the measurements, and to better preserve the installation. Full article
(This article belongs to the Special Issue Nuclear Fusion Engineering)
Show Figures

Figure 1

16 pages, 4407 KiB  
Article
Activities in Divertor Reflector and Linear Plates Using WCLL and HCPB Breeding Blanket Concepts
by Simona Breidokaite and Gediminas Stankunas
Energies 2021, 14(24), 8305; https://doi.org/10.3390/en14248305 - 9 Dec 2021
Viewed by 2684
Abstract
In fusion devices, such as European Demonstration Fusion Power Reactor (EU DEMO), primary neutrons can cause material activation due to the interaction between the source particles and the targeting material. Subsequently, the reactor’s inner components become activated. For safety and safe performance purposes, [...] Read more.
In fusion devices, such as European Demonstration Fusion Power Reactor (EU DEMO), primary neutrons can cause material activation due to the interaction between the source particles and the targeting material. Subsequently, the reactor’s inner components become activated. For safety and safe performance purposes, it is necessary to evaluate neutron-induced activities. Activities results from divertor reflector and liner plates are presented in this work. The purpose of liner shielding plates is to protect the vacuum vessel and magnet coils from neutrons. As for reflector plates, the function is to shield the cooling components under plasma-facing components from alpha particles, thermal effects, and impurities. Plates are made of Eurofer with a 3 mm layer of tungsten, while the water is used for cooling purposes. The calculations were performed using two EU DEMO MCNP (Monte Carlo N-Particles) models with different breeding blanket configurations: helium-cooled pebble bed (HCPB) and water-cooled lithium lead (WCLL). The TENDL–2017 nuclear data library has been used for activation reactions cross-sections and nuclear reactions. Activation calculations were performed using the FISPACT-II code at the end of irradiation for cooling times of 0 s–1000 years. Radionuclide analysis of divertor liner and reflector plates is also presented in this paper. The main radionuclides, with at least 1% contribution to the total value of activation characteristics, were identified for the previously mentioned cooling times. Full article
Show Figures

Figure 1

47 pages, 22193 KiB  
Article
Technological Processes for Steel Applications in Nuclear Fusion
by Michael Rieth, Michael Dürrschnabel, Simon Bonk, Ute Jäntsch, Thomas Bergfeldt, Jan Hoffmann, Steffen Antusch, Esther Simondon, Michael Klimenkov, Carsten Bonnekoh, Bradut-Eugen Ghidersa, Heiko Neuberger, Jörg Rey, Christian Zeile, Gerald Pintsuk and Giacomo Aiello
Appl. Sci. 2021, 11(24), 11653; https://doi.org/10.3390/app112411653 - 8 Dec 2021
Cited by 17 | Viewed by 3720
Abstract
Plasma facing components for energy conversion in future nuclear fusion reactors require a broad variety of different fabrication processes. We present, along a series of studies, the general effects and the mutual impact of these processes on the properties of the EUROFER97 steel. [...] Read more.
Plasma facing components for energy conversion in future nuclear fusion reactors require a broad variety of different fabrication processes. We present, along a series of studies, the general effects and the mutual impact of these processes on the properties of the EUROFER97 steel. We also consider robust fabrication routes, which fit the demands for industrial environments. This includes heat treatment, fusion welding, machining, and solid-state bonding. Introducing and following a new design strategy, we apply the results to the fabrication of a first-wall mock-up, using the same production steps and processes as for real components. Finally, we perform high heat flux tests in the Helium Loop Karlsruhe, applying a few hundred short pulses, in which the maximum operating temperature of 550 °C for EUROFER97 is finally exceeded by 100 K. Microstructure analyses do not reveal critical defects or recognizable damage. A distinct ferrite zone at the EUROFER/ODS steel interface is detected. The main conclusions are that future breeding blankets can be successfully fabricated by available industrial processes. The use of ODS steel could make a decisive difference in the performance of breeding blankets, and the first wall should be completely fabricated from ODS steel or plated by an ODS carbon steel. Full article
(This article belongs to the Special Issue Breeding Blanket: Design, Technology and Performance)
Show Figures

Figure 1

17 pages, 9154 KiB  
Article
Grain Refinement and Improved Mechanical Properties of EUROFER97 by Thermo-Mechanical Treatments
by Giulia Stornelli, Andrea Di Schino, Silvia Mancini, Roberto Montanari, Claudio Testani and Alessandra Varone
Appl. Sci. 2021, 11(22), 10598; https://doi.org/10.3390/app112210598 - 11 Nov 2021
Cited by 33 | Viewed by 3581
Abstract
EUROFER97 steel plates for nuclear fusion applications are usually manufactured by hot rolling and subsequent heat treatments: (1) austenitization at 980 °C for 30 min, (2) rapid cooling and (3) tempering at 760 °C for 90 min. An extended experimental campaign was carried [...] Read more.
EUROFER97 steel plates for nuclear fusion applications are usually manufactured by hot rolling and subsequent heat treatments: (1) austenitization at 980 °C for 30 min, (2) rapid cooling and (3) tempering at 760 °C for 90 min. An extended experimental campaign was carried out with the scope of improving the strength of the steel without a loss of ductility. Forty groups of samples were prepared by combining cold rolling with five cold reduction ratios (20, 40, 50, 60 and 80%) and heat treatments at eight different temperatures in the range 400–750 °C (steps of 50 °C). This work reports preliminary results regarding the microstructure and mechanical properties of all the cold-rolled samples and the effects of heat treatments on the samples deformed with the greater CR ratio (80%). The strength of deformed samples decreased as heat treatment temperature increased and the change was more pronounced in the samples cold-rolled with greater CR ratios. After heat treatments at temperature up to 600 °C yield stress (YS) and ultimate tensile strength (UTS) of samples deformed with CR ratio of 80% were significantly larger than those of standard EUROFER97 but ductility was lower. On the contrary, the treatment at 650 °C produced a fully recrystallized structure with sub-micrometric grains which guarantees higher strength and comparable ductility. The work demonstrated that EUROFER97 steel can be strengthened without compromising its ductility; the most effective process parameters will be identified by completing the analyses on all the prepared samples. Full article
Show Figures

Figure 1

15 pages, 7334 KiB  
Article
Application of Inelastic Method and Its Comparison with Elastic Method for the Assessment of In-Box LOCA Event on EU DEMO HCPB Breeding Blanket Cap Region
by Anoop Retheesh, Francisco A. Hernández and Guangming Zhou
Appl. Sci. 2021, 11(19), 9104; https://doi.org/10.3390/app11199104 - 30 Sep 2021
Cited by 6 | Viewed by 2194
Abstract
The Helium Cooled Pebble Bed (HCPB) breeding blanket, being developed by the Karlsruhe Institute of Technology (KIT) and its partners is one of the two driver blanket candidates to be selected for the European demonstration fusion power plant (EU DEMO). The in-box Loss [...] Read more.
The Helium Cooled Pebble Bed (HCPB) breeding blanket, being developed by the Karlsruhe Institute of Technology (KIT) and its partners is one of the two driver blanket candidates to be selected for the European demonstration fusion power plant (EU DEMO). The in-box Loss of Coolant Accident (LOCA) is a postulated initiating event of the breeding blanket (BB) that must be accounted within the design basis. In this paper, the BB cap region is analyzed for its ability to withstand an in-box LOCA event. Initially, an assessment is performed using conventional elastic design codes for nuclear pressure vessels. However, it is thought that the elastic rules are not ‘equipped’ to assess the material damage modes which are essentially inelastic. Therefore, a non-linear inelastic analysis is further performed to better understand the damage in the material. Two predominant inelastic failure modes are thought to be relevant and addressed: exhaustion of ductility and plastic flow localization. While the design of HCPB BB has been predominantly based on the elastic design-by-analysis studies, results from the present study show that the elastic rules may be overly conservative for the given material and loading and could lead to inefficient designs. To our knowledge, this study is the first attempt to investigate the structural integrity of the European DEMO blankets under in-box LOCA conditions using the inelastic methods. Full article
(This article belongs to the Special Issue Structural and Thermo-Mechanical Analyses in Nuclear Fusion Reactors)
Show Figures

Figure 1

15 pages, 9136 KiB  
Article
Brazing Tungsten/Tantalum/RAFM Steel Joint for DEMO by Fully Reduced Activation Brazing Alloy 48Ti-48Zr-4Be
by Diana Bachurina, Alexey Suchkov, Julia Gurova, Vladislav Kliucharev, Vladimir Vorkel, Maxim Savelyev, Pavel Somov and Oleg Sevryukov
Metals 2021, 11(9), 1417; https://doi.org/10.3390/met11091417 - 7 Sep 2021
Cited by 8 | Viewed by 2994
Abstract
To create a DEMO reactor, it is necessary to develop high-quality technology to join tungsten with reduced-activation ferritic-martensitic (RAFM) steel (Rusfer, Eurofer, CLF-1, etc.). Difficulties arise in their direct connection due to the large difference in the coefficient of thermal expansion (CTE). To [...] Read more.
To create a DEMO reactor, it is necessary to develop high-quality technology to join tungsten with reduced-activation ferritic-martensitic (RAFM) steel (Rusfer, Eurofer, CLF-1, etc.). Difficulties arise in their direct connection due to the large difference in the coefficient of thermal expansion (CTE). To suppress the difference of CTE, intermediate interlayers are usually used, such as vanadium or tantalum, and brazing is a prospective technology to conduct the joining. The vast majority of works represent copper- or nickel-based brazing alloys, but their applicability is under significant discussion due to their activation properties. That is why, in this work, fully reduced activation 48Ti-48Zr-4Be wt.% brazing alloy was used. The following joint was made: Rusfer steel/48Ti-48Zr-4Be/Ta/48Ti-48Zr-4Be/W. The brazing was successfully carried out under a mode providing thermal heat treatment of Rusfer. Through EDS and EBSD analysis, the microstructure of the joint was determined. Shear strength of the as-joined composition was measured as 127 ± 20 MPa. The joint endured 200 thermocycles in the temperature range between 300–600 °C, but the fillet regions degraded. Full article
(This article belongs to the Special Issue Tungsten and Tungsten Alloys)
Show Figures

Figure 1

19 pages, 2116 KiB  
Article
Preliminary Assessment of Cooling Water Chemistry for Fusion Power Plants
by Eugenio Lo Piccolo, Raffaele Torella, Nicholas Terranova, Luigi Di Pace, Claudia Gasparrini and Mauro Dalla Palma
Corros. Mater. Degrad. 2021, 2(3), 512-530; https://doi.org/10.3390/cmd2030027 - 31 Aug 2021
Cited by 9 | Viewed by 4596
Abstract
The determination of the water chemistry for cooling systems of nuclear fusion plants is under debate. It should be tailored for different types of fusion reactors: either experimental, e.g., ITER, JT-60SA, and DTT, or aimed at power generation, e.g., DEMO, given the different [...] Read more.
The determination of the water chemistry for cooling systems of nuclear fusion plants is under debate. It should be tailored for different types of fusion reactors: either experimental, e.g., ITER, JT-60SA, and DTT, or aimed at power generation, e.g., DEMO, given the different operation requirements. This paper presents the dual approach involving experiments and computer simulations chosen for the definition of DEMO water chemistry. Experimental work was performed to assess the corrosion susceptibility of reduced activation ferritic martensitic EUROFER 97 and AISI 316L in different water chemistry regimes. At the same time, the low corrosivity requirement brings an additional safety aspect for the radiation protection since some neutron-activated corrosion products (ACPs) create a gamma radiation when deposited outside the plasma chamber in components accessible to operators and these must be minimized. To evaluate the ACP inventory for DEMO, assessments were carried out using a reference computer code. Preliminary experimental activities to define the water chemistry of DTT under construction at ENEA were also conducted. The comparison of code results with experiments is two-fold important: for the validation of the computer code models and to determine data that are necessary to perform calculations. Full article
Show Figures

Figure 1

23 pages, 5654 KiB  
Review
Residue Valorization in the Iron and Steel Industries: Sustainable Solutions for a Cleaner and More Competitive Future Europe
by Johannes Rieger, Valentina Colla, Ismael Matino, Teresa Annunziata Branca, Gerald Stubbe, Andrea Panizza, Carlo Brondi, Mohammadtaghi Falsafi, Johannes Hage, Xuan Wang, Bernhard Voraberger, Thomas Fenzl, Victoria Masaguer, Eros Luciano Faraci, Loredana di Sante, Filippo Cirilli, Florian Loose, Christoph Thaler, Aintzane Soto, Piero Frittella, Gianpaolo Foglio, Cosmo di Cecca, Mattia Tellaroli, Marco Corbella, Marta Guzzon, Enrico Malfa, Agnieszka Morillon, David Algermissen, Klaus Peters and Delphine Snaetadd Show full author list remove Hide full author list
Metals 2021, 11(8), 1202; https://doi.org/10.3390/met11081202 - 28 Jul 2021
Cited by 51 | Viewed by 10466
Abstract
The steel industry is an important engine for sustainable growth, added value, and high-quality employment within the European Union. It is committed to reducing its CO2 emissions due to production by up to 50% by 2030 compared to 1990′s level by developing [...] Read more.
The steel industry is an important engine for sustainable growth, added value, and high-quality employment within the European Union. It is committed to reducing its CO2 emissions due to production by up to 50% by 2030 compared to 1990′s level by developing and upscaling the technologies required to contribute to European initiatives, such as the Circular Economy Action Plan (CEAP) and the European Green Deal (EGD). The Clean Steel Partnership (CSP, a public–private partnership), which is led by the European Steel Association (EUROFER) and the European Steel Technology Platform (ESTEP), defined technological CO2 mitigation pathways comprising carbon direct avoidance (CDA), smart carbon usage SCU), and a circular economy (CE). CE approaches ensure competitiveness through increased resource efficiency and sustainability and consist of different issues, such as the valorization of steelmaking residues (dusts, slags, sludge) for internal recycling in the steelmaking process, enhanced steel recycling (scrap use), the use of secondary carbon carriers from non-steel sectors as a reducing agent and energy source in the steelmaking process chain, and CE business models (supply chain analyses). The current paper gives an overview of different technological CE approaches as obtained in a dedicated workshop called “Resi4Future—Residue valorization in iron and steel industry: sustainable solutions for a cleaner and more competitive future Europe” that was organized by ESTEP to focus on future challenges toward the final goal of industrial deployment. Full article
Show Figures

Figure 1

7 pages, 6281 KiB  
Article
Bubble Swelling in Ferritic/Martensitic Steels Exposed to Radiation Environment with High Production Rate of Helium
by Stanislav Sojak, Jarmila Degmova, Pavol Noga, Vladimir Krsjak, Vladimir Slugen and Tielong Shen
Materials 2021, 14(11), 2997; https://doi.org/10.3390/ma14112997 - 1 Jun 2021
Cited by 11 | Viewed by 2463
Abstract
Reduced-activativon ferritic/martensitic (RAFM) steels are prospective structural materials for fission/fusion nuclear applications because their radiation and swelling resistance outperforms their austenitic counterparts. In radiation environments with a high production rate of helium, such as fusion or spallation applications, these materials suffer from non-negligible [...] Read more.
Reduced-activativon ferritic/martensitic (RAFM) steels are prospective structural materials for fission/fusion nuclear applications because their radiation and swelling resistance outperforms their austenitic counterparts. In radiation environments with a high production rate of helium, such as fusion or spallation applications, these materials suffer from non-negligible swelling due to the inhibited recombination between vacancy and interstitial-type defects. In this work, swelling in helium-implanted Eurofer 97 steel is investigated with a focus on helium production rates in a wide range of helium/dpa ratios. The results show virtually no swelling incubation period preceding a steady-state swelling of about 2 × 10−4%/He-appm/dpa. A saturation of swelling above 5000 He-appm/dpa was observed and attributed to helium bubbles becoming the dominant sinks for new vacancies and helium atoms. Despite a relatively low irradiation temperature (65 ± 5 °C) and a rather high concentration of helium, transmission electron microscope (TEM) results confirmed a microstructure typical of ferritic/martensitic steels exposed to radiation environments with high production rates of helium. Full article
Show Figures

Figure 1

11 pages, 23482 KiB  
Article
Microstructure Study of Pulsed Laser Beam Welded Oxide Dispersion-Strengthened (ODS) Eurofer Steel
by Jia Fu, Ian Richardson and Marcel Hermans
Micromachines 2021, 12(6), 629; https://doi.org/10.3390/mi12060629 - 28 May 2021
Cited by 7 | Viewed by 3124
Abstract
Oxide dispersion-strengthened (ODS) Eurofer steel was laser welded using a short pulse duration and a designed pattern to minimise local heat accumulation. With a laser power of 2500 W and a duration of more than 3 ms, a full penetration can be obtained [...] Read more.
Oxide dispersion-strengthened (ODS) Eurofer steel was laser welded using a short pulse duration and a designed pattern to minimise local heat accumulation. With a laser power of 2500 W and a duration of more than 3 ms, a full penetration can be obtained in a 1 mm thick plate. Material loss was observed in the fusion zone due to metal vaporisation, which can be fully compensated by the use of filler material. The solidified fusion zone consists of an elongated dual phase microstructure with a bimodal grain size distribution. Nano-oxide particles were found to be dispersed in the steel. Electron backscattered diffraction (EBSD) analysis shows that the microstructure of the heat-treated joint is recovered with substantially unaltered grain size and lower misorientations in different regions. The experimental results indicate that joints with fine grains and dispersed nano-oxide particles can be achieved via pulsed laser beam welding using filler material and post heat treatment. Full article
Show Figures

Figure 1

Back to TopTop