Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Eonycteris spelaea

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1386 KiB  
Article
Genomic Characterization of a Relative of Mumps Virus in Lesser Dawn Bats of Southeast Asia
by Adrian C. Paskey, Xiao Fang Lim, Justin H. J. Ng, Gregory K. Rice, Wan Ni Chia, Casandra W. Philipson, Randy Foo, Regina Z. Cer, Kyle A. Long, Matthew R. Lueder, Lindsay Glang, Kenneth G. Frey, Theron Hamilton, Ian H. Mendenhall, Gavin J. Smith, Danielle E. Anderson, Lin-Fa Wang and Kimberly A. Bishop-Lilly
Viruses 2023, 15(3), 659; https://doi.org/10.3390/v15030659 - 28 Feb 2023
Cited by 2 | Viewed by 2700
Abstract
The importance of genomic surveillance on emerging diseases continues to be highlighted with the ongoing SARS-CoV-2 pandemic. Here, we present an analysis of a new bat-borne mumps virus (MuV) in a captive colony of lesser dawn bats (Eonycteris spelaea). This report [...] Read more.
The importance of genomic surveillance on emerging diseases continues to be highlighted with the ongoing SARS-CoV-2 pandemic. Here, we present an analysis of a new bat-borne mumps virus (MuV) in a captive colony of lesser dawn bats (Eonycteris spelaea). This report describes an investigation of MuV-specific data originally collected as part of a longitudinal virome study of apparently healthy, captive lesser dawn bats in Southeast Asia (BioProject ID PRJNA561193) which was the first report of a MuV-like virus, named dawn bat paramyxovirus (DbPV), in bats outside of Africa. More in-depth analysis of these original RNA sequences in the current report reveals that the new DbPV genome shares only 86% amino acid identity with the RNA-dependent RNA polymerase of its closest relative, the African bat-borne mumps virus (AbMuV). While there is no obvious immediate cause for concern, it is important to continue investigating and monitoring bat-borne MuVs to determine the risk of human infection. Full article
(This article belongs to the Special Issue Bat-Borne Viruses Research)
Show Figures

Figure 1

12 pages, 7622 KiB  
Brief Report
Presence of Recombinant Bat Coronavirus GCCDC1 in Cambodian Bats
by Feng Zhu, Veasna Duong, Xiao Fang Lim, Vibol Hul, Tanu Chawla, Lucy Keatts, Tracey Goldstein, Alexandre Hassanin, Vuong Tan Tu, Philippe Buchy, October M. Sessions, Lin-Fa Wang, Philippe Dussart and Danielle E. Anderson
Viruses 2022, 14(2), 176; https://doi.org/10.3390/v14020176 - 18 Jan 2022
Cited by 6 | Viewed by 4288
Abstract
Bats have been recognized as an exceptional viral reservoir, especially for coronaviruses. At least three bat zoonotic coronaviruses (SARS-CoV, MERS-CoV and SARS-CoV-2) have been shown to cause severe diseases in humans and it is expected more will emerge. One of the major features [...] Read more.
Bats have been recognized as an exceptional viral reservoir, especially for coronaviruses. At least three bat zoonotic coronaviruses (SARS-CoV, MERS-CoV and SARS-CoV-2) have been shown to cause severe diseases in humans and it is expected more will emerge. One of the major features of CoVs is that they are all highly prone to recombination. An extreme example is the insertion of the P10 gene from reoviruses in the bat CoV GCCDC1, first discovered in Rousettus leschenaultii bats in China. Here, we report the detection of GCCDC1 in four different bat species (Eonycteris spelaea, Cynopterus sphinx, Rhinolophus shameli and Rousettus sp.) in Cambodia. This finding demonstrates a much broader geographic and bat species range for this virus and indicates common cross-species transmission. Interestingly, one of the bat samples showed a co-infection with an Alpha CoV most closely related to RsYN14, a virus recently discovered in the same genus (Rhinolophus) of bat in Yunnan, China, 2020. Taken together, our latest findings highlight the need to conduct active surveillance in bats to assess the risk of emerging CoVs, especially in Southeast Asia. Full article
(This article belongs to the Special Issue Bats and Coronaviruses)
Show Figures

Figure 1

12 pages, 2509 KiB  
Article
Seasonal Activity of Fruit Bats in a Monoculture Rubber and Oil Palm Plantation in the Southern Philippines
by Krizler C. Tanalgo, Tuanjit Sritongchuay and Alice C. Hughes
Conservation 2021, 1(3), 258-269; https://doi.org/10.3390/conservation1030020 - 20 Sep 2021
Cited by 9 | Viewed by 5674
Abstract
The increasing expansion of monoculture plantations poses a major threat to Asian tropical biodiversity. Yet, in many countries such as the Philippines, the ability of species to persist within plantations has never been explored. We studied the seasonal activity and response of fruit [...] Read more.
The increasing expansion of monoculture plantations poses a major threat to Asian tropical biodiversity. Yet, in many countries such as the Philippines, the ability of species to persist within plantations has never been explored. We studied the seasonal activity and response of fruit bats in two types of monocultural plantations (rubber and oil palm) in the Southern Philippines from 2016–17 for 12 months. Our mist-netting and monitoring data showed that both plantations can support cosmopolitan species of fruit bats (Cynopterus brachyotis, Eonycteris spelaea, Macroglossus minimus, Ptenochirus jagori, and Rousettus amplexicaudatus), yet a significant variation in the abundance and guild distribution between plantations was observed. Rubber hosted a higher bat abundance than oil palm, which may be influenced by better habitat structure of the matrix (e.g., presence of orchard and fruit plantations) and practices occurring in the rubber plantation. We find that, among seasonal climatic variables, temperature showed significant negative effects on fruit bat abundance. Our results suggest that although monoculture plantations host low diversity (i.e., richness and endemism) they still support generalists which are still ecologically important species. Furthermore, wildlife-friendly commercial plantation practices could both enhance economic growth and biodiversity conservation in the Philippines. Our data both provide the potential for long-term monitoring in the Philippines and highlight the need for more comprehensive monitoring of other bat functional groups and their ability to transverse plantations to provide a more in-depth understanding of the roles and impacts of plantations and other land-use changes. Full article
Show Figures

Figure 1

2 pages, 154 KiB  
Abstract
Novel Insights for Biosurveillance of Bat-Borne Viruses
by Adrian C. Paskey, Justin H. J. Ng, Gregory K. Rice, Wan Ni Chia, Casandra W. Philipson, Randy J. H. Foo, Regina Z. Cer, Kyle A. Long, Matthew R. Lueder, Kenneth G. Frey, Theron Hamilton, Ian H. Mendenhall, Gavin J. Smith, Lin-Fa Wang and Kimberly A. Bishop-Lilly
Proceedings 2020, 50(1), 47; https://doi.org/10.3390/proceedings2020050047 - 15 Jun 2020
Viewed by 1535
Abstract
Bats are rich reservoirs of viruses, including several high consequence zoonoses. In this study, high throughput sequencing was used to characterize the virome through a longitudinal study of a captive colony of lesser dawn bats, species Eonycteris spelaea, in Singapore. This study [...] Read more.
Bats are rich reservoirs of viruses, including several high consequence zoonoses. In this study, high throughput sequencing was used to characterize the virome through a longitudinal study of a captive colony of lesser dawn bats, species Eonycteris spelaea, in Singapore. This study utilized viral RNA extracted from swabs of four body sites per bat per timepoint. Swabs of the exterior of the bat (head and body) were used to evaluate virus populations and demonstrate utility as a sample site for future surveillance to extrapolate population-level infection. Through unbiased shotgun and target-enrichment sequencing, we identified both the known and previously unknown viruses of zoonotic relevance and defined the population persistence and temporal patterns of viruses from families that have the capacity to jump the species barrier. We observed the population persistence of three zoonotic-related viral families that are known to be associated with spillover from bats to humans: Paramyxoviridae, Reoviridae, and Coronaviridae. To our knowledge, this is the first study that combines probe-based viral enrichment with high-throughput sequencing or that creates a viral profile from multiple swab sites on individual bats and their cohorts. This work demonstrates temporal patterns of the lesser dawn bat virome, including several novel viruses. Noninvasive surveillance methods that target the body of bats not only detect viruses shed within the colony but can also represent viral populations dispersed throughout the entire colony. New knowledge of persistent viral families should inform future directions for the biosurveillance of viruses that have the potential to cross the species barrier from bats to humans or other amplifying hosts. Full article
(This article belongs to the Proceedings of Viruses 2020—Novel Concepts in Virology)
11 pages, 1699 KiB  
Article
Detection of Recombinant Rousettus Bat Coronavirus GCCDC1 in Lesser Dawn Bats (Eonycteris spelaea) in Singapore
by Adrian C. Paskey, Justin H. J. Ng, Gregory K. Rice, Wan Ni Chia, Casandra W. Philipson, Randy J.H. Foo, Regina Z. Cer, Kyle A. Long, Matthew R. Lueder, Xiao Fang Lim, Kenneth G. Frey, Theron Hamilton, Danielle E. Anderson, Eric D. Laing, Ian H. Mendenhall, Gavin J. Smith, Lin-Fa Wang and Kimberly A. Bishop-Lilly
Viruses 2020, 12(5), 539; https://doi.org/10.3390/v12050539 - 14 May 2020
Cited by 14 | Viewed by 5626
Abstract
Rousettus bat coronavirus GCCDC1 (RoBat-CoV GCCDC1) is a cross-family recombinant coronavirus that has previously only been reported in wild-caught bats in Yúnnan, China. We report the persistence of a related strain in a captive colony of lesser dawn bats captured in Singapore. Genomic [...] Read more.
Rousettus bat coronavirus GCCDC1 (RoBat-CoV GCCDC1) is a cross-family recombinant coronavirus that has previously only been reported in wild-caught bats in Yúnnan, China. We report the persistence of a related strain in a captive colony of lesser dawn bats captured in Singapore. Genomic evidence of the virus was detected using targeted enrichment sequencing, and further investigated using deeper, unbiased high throughput sequencing. RoBat-CoV GCCDC1 Singapore shared 96.52% similarity with RoBat-CoV GCCDC1 356 (NC_030886) at the nucleotide level, and had a high prevalence in the captive bat colony. It was detected at five out of six sampling time points across the course of 18 months. A partial segment 1 from an ancestral Pteropine orthoreovirus, p10, makes up the recombinant portion of the virus, which shares high similarity with previously reported RoBat-CoV GCCDC1 strains that were detected in Yúnnan, China. RoBat-CoV GCCDC1 is an intriguing, cross-family recombinant virus, with a geographical range that expands farther than was previously known. The discovery of RoBat-CoV GCCDC1 in Singapore indicates that this recombinant coronavirus exists in a broad geographical range, and can persist in bat colonies long-term. Full article
(This article belongs to the Special Issue Pathogenesis of Human and Animal Coronaviruses)
Show Figures

Figure 1

18 pages, 711 KiB  
Article
Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris spelaea)
by Ian H Mendenhall, Dolyce Low Hong Wen, Jayanthi Jayakumar, Vithiagaran Gunalan, Linfa Wang, Sebastian Mauer-Stroh, Yvonne C.F. Su and Gavin J.D. Smith
Viruses 2019, 11(3), 250; https://doi.org/10.3390/v11030250 - 12 Mar 2019
Cited by 23 | Viewed by 7208
Abstract
Bats are unique mammals, exhibit distinctive life history traits and have unique immunological approaches to suppression of viral diseases upon infection. High-throughput next-generation sequencing has been used in characterizing the virome of different bat species. The cave nectar bat, Eonycteris spelaea, has [...] Read more.
Bats are unique mammals, exhibit distinctive life history traits and have unique immunological approaches to suppression of viral diseases upon infection. High-throughput next-generation sequencing has been used in characterizing the virome of different bat species. The cave nectar bat, Eonycteris spelaea, has a broad geographical range across Southeast Asia, India and southern China, however, little is known about their involvement in virus transmission. Here we investigate the diversity and abundance of viral communities from a colony of Eonycteris spelaea residing in Singapore. Our results detected 47 and 22 different virus families from bat fecal and urine samples, respectively. Among these, we identify a large number of virus families including Adenoviridae, Flaviviridae, Reoviridae, Papillomaviridae, Paramyxoviridae, Parvoviridae, Picornaviridae, and Polyomaviridae. In most cases, viral sequences from Eonycteris spelaea are genetically related to a group of bat viruses from other bat genera (e.g., Eidolon, Miniopterus, Rhinolophus and Rousettus). The results of this study improve our knowledge of the host range, spread and evolution of several important viral pathogens. More significantly, our findings provide a baseline to study the temporal patterns of virus shedding and how they correlate with bat phenological trends. Full article
(This article belongs to the Special Issue Viruses and Bats 2019)
Show Figures

Figure 1

Back to TopTop