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Abstract: The increasing expansion of monoculture plantations poses a major threat to Asian tropical
biodiversity. Yet, in many countries such as the Philippines, the ability of species to persist within
plantations has never been explored. We studied the seasonal activity and response of fruit bats in
two types of monocultural plantations (rubber and oil palm) in the Southern Philippines from 2016–17
for 12 months. Our mist-netting and monitoring data showed that both plantations can support
cosmopolitan species of fruit bats (Cynopterus brachyotis, Eonycteris spelaea, Macroglossus minimus,
Ptenochirus jagori, and Rousettus amplexicaudatus), yet a significant variation in the abundance and
guild distribution between plantations was observed. Rubber hosted a higher bat abundance than oil
palm, which may be influenced by better habitat structure of the matrix (e.g., presence of orchard
and fruit plantations) and practices occurring in the rubber plantation. We find that, among seasonal
climatic variables, temperature showed significant negative effects on fruit bat abundance. Our results
suggest that although monoculture plantations host low diversity (i.e., richness and endemism) they
still support generalists which are still ecologically important species. Furthermore, wildlife-friendly
commercial plantation practices could both enhance economic growth and biodiversity conservation
in the Philippines. Our data both provide the potential for long-term monitoring in the Philippines
and highlight the need for more comprehensive monitoring of other bat functional groups and their
ability to transverse plantations to provide a more in-depth understanding of the roles and impacts
of plantations and other land-use changes.
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1. Introduction

The destruction and degradation of natural ecosystems is a major driver of species loss,
at both global and local scales [1–4]. The deforestation rates in Southeast Asia are amongst
the highest of any region in the tropics, and as much as three-quarters of forests may be
lost by the end of the century if rates of forest loss do not decrease [5,6]. Habitat loss is one
of the main threats to tropical bats [7]. A substantial proportion of bat fauna is dependent
on intact stands of forest for foraging and roosting, and thus the loss of forest is a major
threat [7]. The conversion of natural habitats to agricultural use and its current expansion
rate in previously forested or protected areas is a growing threat to tropical biodiversity,
leading to both a direct loss of habitats and fragmentation of remaining intact habitats [8,9].
Numerous studies and models have shown evidence of the negative impacts of plantations
on biodiversity and ecosystem service provision, yet the expansion of commercial planta-
tions into native systems is continuing [5,10–12]. Monoculture plantations such as rubber
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and oil palm are major threats to intact ecosystems in the Indomalayan region [5,13–15]. In
the Philippines, both rubber and oil palm are expanding [16], particularly in the Southern
and Western parts of the Archipelago (Philippine Bureau of Agricultural Statistics, 2012).

Biodiversity within plantations is lower than more intact ecosystems such as primary
forests [17,18]. Yet, plantations can host generalist bat species [17,19], and the ability of bats
to pass through plantations is crucial to enabling their continued survival in increasingly
fragmented landscapes. The existence of clear baseline data on the impacts of plantations
on Philippine wildlife including bats is limited [16,20], and the understanding of the
negative effects of these land modifications is often neglected [16,21]. A large proportion
of mammal fauna (~48% of native species) in the Philippines consists of bats, and the
majority depend on intact forest and cave systems [16]. Agricultural conversion is second
to logging as a major threat to at least 71% and 48% of Philippine bats, respectively [16].
Nonetheless, roughly half of species (47%) occur in agricultural areas, yet their ability
to persist long-term and their response to the environmental conditions requires further
study [22,23].

Most monitoring in agricultural habitats involves insectivorous bat activities [24].
However, there are little Philippine bat call data, and the availability of sampling resources
is limited, which hinders the ability to assess the impacts of land-use changes on bats [20,25].
Philippine fruit bats (Family: Pteropodidae) are the most well-known group because they
are relatively well-studied [20] and widely distributed in agroecosystems, making their
assemblage a useful indicator of impacts of monoculture habitats such as oil palm and
rubber plantation [19]. In this paper, we aim to compare seasonal activities and responses
of five common fruit bat species (Cynopterus brachyotis, Eonycteris spelaea, Macroglossus
minimus, Ptenochirus jagori, and Rousettus amplexicaudatus) to seasonal changes of climate
variables in two lowland monoculture plantations. We also discuss the effects of regional
long-term atmospheric temperature, humidity, precipitation, and plantation types on
species-specific abundance responses.

2. Materials and Methods
2.1. The Study Site

Philippine oil palm and rubber plantations are chiefly located in the Southern part of
the Philippines [16]. We monitored and collected data for fruit bat abundance each month
from May 2016 to May 2017 in two small-scale commercial monoculture plantations in
Makilala (6◦55′40.24′′ N; 124◦59′7.68′′ E) and Tulunan (6◦50′48.35′′ N; 124◦51′50.08′′ E) for
rubber and oil palm plantations, respectively (Figure 1). Two plantations in close vicinity
were selected to reduce variability between sites (landscape structure, climate, access to
caves and other roosts, etc.) which could have confounded assessments of the impact of
the plantation on bat abundance and diversity. A paired assessment enables exploring
the impact of crop-type alone, with minimal impact from variation in the surrounding
landscape. Large contiguous plantations are not common in the region, therefore we
selected our monitoring sites with at least≥ 50-hectare land area of the same plantation age
and management practices. Both plantations are private small-holdings in the lowlands
of North Cotabato Province with similar climatic conditions, surrounding land-use types,
and topography (Figure 1). The climate is dry from December to May and wet from
June to November. During our sampling period (May 2016 to May 2017), the Philippines
experienced El Nino Southern Oscillation (ENSO) [26,27], which severely affected the
southern part of the country, and irregularities in weather patterns within the sampling
period may affect our monitoring records (Figure 2). During this period, the provincial
maximum temperature ranged from 30.18 to 34.06 ◦C (Figure 2) while the precipitation
(i.e., rainfall) pattern fluctuated throughout the year. Maximum air temperature and
precipitation showed a significant negative correlation (ρ = −0.41, p < 0.001).

Between the two plantations, the rubber plantation was surrounded by locally man-
aged coffee plantation (Coffea arabica), rice paddies (Oryza sativa), and patches of fruit crops
such as Jackfruit (Artocarpus heterophyllus), Pomelo (Citrus maxima), and Papaya (Carica
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papaya), as well as bat pollinated plants such as Durian (Durio zibethinus). The sampling site
for oil palm plantation is 16.6 km south of the rubber plantation and was characterised by
cleared ground, potentially for further expansion. It was surrounded by small patches of
banana plantations and other fruit crops such as Papaya and Pomelo. The invasive Spiked
pepper (Piper aduncum) covers the edges and roadsides of the oil palm plantations. Canopy
plants and vines have low levels of abundance or are absent in both plantations, whereas
these were observed before the El Nino [28]. Furthermore, little or no ground vegetation
exists in the plantations. Temporary streams and ponds exist but were dry for most months
of the sampling period.
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Figure 1. Map showing the monoculture oil palm and rubber plantation (right: marked aerial view) monitoring sites in
North Cotabato province, Southern Philippines.

2.2. Sampling Design and Environmental Variables

We used 30 nets per night for three sequential nights per month in favourable weather.
Nets were up between 1800 H and 0000 H, and 0400 H and 0700 H. We used 20 12 × 6 metre
nets and 10 10 × 6 metre nets on each night to standardise capture effort [29,30]. Because
of the limited area for contiguous plantations (>50 hectares) in the province, we sampled
bats in a single plantation site for oil palm and rubber plantations. To reduce the bias
of site replications, mist nets were redistributed to different parts of the plantation each
month. We placed mist-nets with at least 50 m intervals in open areas which represented
feasible flight paths such as pathways, roads, and plantation edges are more open than
naturally forested areas. Mist nets were checked at least every 20 min from 1800 H to 0000 H
and 0400 H to 0700 H to avoid injury and mortality of trapped fruit bats. The captured
individuals were carefully untangled from the nets and placed in clean, moisture free
cloth-bags for identification at the campsite. All captured bats were identified to species
level using the keys of Ingle and Heaney [31], and were classified into two feeding guilds
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within the Old World fruit bats frugi-nectarivorous (C. brachyotis, P. jagori and Rousettus
amplexicaudatus) or nectarivorous (E. spelaea and M. minimus) [32]. Since all were common
and identifiable species, we included adults and juvenile individuals in the abundance
calculations. After the bats were identified, individuals were marked with non-toxic nail
polish on the right digits to avoid recounting any recaptured individuals. Insectivorous
bats that were accidentally captured in the nets were immediately released.

We used records from the nearest weather station for the seasonal climatic changes
to assess the effects of long-term provincial (i.e., monthly average temporal resolution)
climatic conditions on fruit bat seasonal activities between plantations, e.g., Erickson and
West [33] (Figure 2). We calculated minimum (min), mean, and maximum (max) daily
historical daily air temperature (◦C), relative humidity (%), and precipitation/rainfall (mm)
(1 May 2016, to 31 May 2017) data from the nearest weather monitoring station in our study
sites based in Weather Underground API using ‘weatherdata’ package in R studio [34].

Conservation 2021, 1, 20 261 
 

 

moisture free cloth-bags for identification at the campsite. All captured bats were identi-

fied to species level using the keys of Ingle and Heaney [31], and were classified into two 

feeding guilds within the Old World fruit bats frugi-nectarivorous (C. brachyotis, P. jagori 

and Rousettus amplexicaudatus) or nectarivorous (E. spelaea and M. minimus) [32]. Since all 

were common and identifiable species, we included adults and juvenile individuals in the 

abundance calculations. After the bats were identified, individuals were marked with 

non-toxic nail polish on the right digits to avoid recounting any recaptured individuals. 

Insectivorous bats that were accidentally captured in the nets were immediately released. 

We used records from the nearest weather station for the seasonal climatic changes 

to assess the effects of long-term provincial (i.e., monthly average temporal resolution) 

climatic conditions on fruit bat seasonal activities between plantations, e.g., Erickson and 

West [33] (Figure 2). We calculated minimum (min), mean, and maximum (max) daily 

historical daily air temperature (°C), relative humidity (%), and precipitation/rainfall 

(mm) (1 May 2016, to 31 May 2017) data from the nearest weather monitoring station in 

our study sites based in Weather Underground API using ‘weatherdata’ package in R stu-

dio [34]. 

 

Figure 2. Seasonal monthly variation in seasonal changes in climate: temperature (°C), relative hu-

midity (%), and precipitation (mm) during the sampling months in North Cotabato province, South-

ern Philippines. The circle (•) and error bars represent the monthly mean and min−max values re-

spectively. 

2.3. Data Analysis 

We corrected and standardised our monthly total bat abundance data to individuals 

per mist net nights before data analysis. We tested data normality and performed data 

transformation (log10) to improve distribution. However, the data normality was not con-

sistent between plantations and seasons; therefore, we used a non-parametric test 

throughout the analyses. First, we implemented a Mann–Whitney U test to compare and 

determine the significant differences in overall capture rate and species-specific abun-

dance (log10) between plantations. We then used a Kruskal–Wallis test for each plantation 

to compare monthly species abundance (log10) and evenness. 

We used a generalised linear model (GLM) with Poisson distribution (log-link) to 

determine the link between seasonal bat activity and regional climatic data between plan-

tations using the GAMLj module in the Jamovi program [35]. We used monthly mean 

values of air temperature (°C), humidity (%), and precipitation (mm) as covariates. 

Whereas guild, plantation type, and months were cofactors, we considered five models 

(Table 1)and selected the best model based on minimum values of corrected Akaike’s In-

Figure 2. Seasonal monthly variation in seasonal changes in climate: temperature (◦C), relative
humidity (%), and precipitation (mm) during the sampling months in North Cotabato province,
Southern Philippines. The circle (·) and error bars represent the monthly mean and min−max values
respectively.

2.3. Data Analysis

We corrected and standardised our monthly total bat abundance data to individuals
per mist net nights before data analysis. We tested data normality and performed data
transformation (log10) to improve distribution. However, the data normality was not
consistent between plantations and seasons; therefore, we used a non-parametric test
throughout the analyses. First, we implemented a Mann–Whitney U test to compare and
determine the significant differences in overall capture rate and species-specific abundance
(log10) between plantations. We then used a Kruskal–Wallis test for each plantation to
compare monthly species abundance (log10) and evenness.

We used a generalised linear model (GLM) with Poisson distribution (log-link) to
determine the link between seasonal bat activity and regional climatic data between planta-
tions using the GAMLj module in the Jamovi program [35]. We used monthly mean values
of air temperature (◦C), humidity (%), and precipitation (mm) as covariates. Whereas
guild, plantation type, and months were cofactors, we considered five models (Table 1)
and selected the best model based on minimum values of corrected Akaike’s Information
Criterion (AICc) and Akaike weights (wAICc) [36]. We visualised and interpreted the
effects in the best model by plotting the predicted effects at a 95% confidence interval.
Using the same modelling approach, we modelled species-specific effects of temperature,
precipitation, and plantation types. All other data analyses and visualisation were per-
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formed using the open software Jamovi 1.6 [37] and GraphPad Prism 8 [38], respectively.
We set significance at p < 0.05.

3. Results

We captured a total of 2589 individual fruit bats of seven species, including Cynopterus
brachyotis, Eonycteris spelaea, Ptenochirus jagori, Macroglossus minimus and Rousettus am-
plexicaudatus, in both plantations (Figure 3). Other fruit bat species (Megaerops wetmorei
and Haplonycteris fischeri) that were occasionally captured in rubber plantations were ex-
cluded from analysis due to low sample sizes. Overall, the combined relative abundance
of captured fruit bats was significantly different between oil palm and rubber plantations
(Kruskal–Wallis: χ2 = 10.57, df = 1, p < 0.001), among species (Kruskal–Wallis: χ2 = 69.13,
df = 4, p < 0.001), and feeding guild (Kruskal–Wallis: χ2 = 36.7, df = 1, p < 0.001). The
rubber plantation (mean = 8.09 ± 4.86) showed an average of 31% more individuals overall
than oil palm plantations (mean= 4.33 ± 3.40) (Figures 3 and 4).
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Figure 3. The species-specific proportion of overall monthly fruit bat abundance between two plantations ((a) rubber,
(b) oil palm).

At a species level (Figure 4), only two species showed a significant difference between
plantations (Figure 3). The frugivorous C. brachyotis was the most recorded species in both
plantation types, but only marginally higher in the rubber plantation (mean = 15.14 ± 5)
than in oil palm (mean = 11.14 ± 1.87) (Mann–Whitney U test: W = 39, p = 0.06). The
nectarivorous E. spelaea was the second most abundant species and had a significantly
higher abundance in rubber plantation (mean = 7.33 ± 1.31) than in oil palm plantation
(mean = 3.39± 1.30) (Mann–Whitney U test: W = 0.00, p < 0.01). Similarly, the least recorded
species, M. minimus, was significantly higher in rubber plantation (Mann–Whitney U test:
W = 26, p = 0.008), whereas endemic frugivore P. jagori and R. amplexicaudatus did not show
a significant difference in abundance between the two plantations (Figure 4).

Bat abundance peaked between September and February (Figures 3 and 4), when the
temperature is relatively lower (Figure 4). This observation was supported by the best
performing model showing seasonal changes in climate predicting bat abundance. We
showed that temperature, precipitation, plantation types, and guild were linked to bat
seasonal abundance (Table 2, Figure 5B). Both temperature and precipitation were nega-
tively linked to bat abundance, although the regression slopes of temperature (β = −0.18,
SE = 0.006, p = 0.002) showed higher in contrast to precipitation, which was not significant
(precipitation: β = −0.03, SE = 0.02, p = 0.151). Similarly, with previous results, rubber
plantation showed a significant positive seasonal change in abundance, which was higher
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than in oil palm plantation (Figure 5A). Frugi-nectarivorous bats showed a higher nega-
tive response to seasonal changes in climate than nectarivorous bats. In species-specific
analyses (Figure 5B), precipitation did not show significant effects on all species, how-
ever, temperature only showed significant effects to C. brachyotis (β = −0.2, SE = −0.39,
p = 0.02) and Rousettus amplexicaudatus (β = −0.32, SE = −0.59, p = 0.021). We found
positive interactions between guild and plantations (β = 0.37, SE = 0.17, p = 0.029) and
that rubber plantation performs better than oil palm plantation in supporting both guilds.
Frugi-nectarivores are significantly more common compared to nectarivorous bats in both
oil palm (Mann–Whitney U test: W = 32.50, p < 0.01) and rubber plantation (Mann–Whitney
U test: W = 226, p = 0.02) (Figure 6). While comparing between guilds across plantations,
only nectarivorous bats are significantly higher in rubber plantation compared to oil palm
plantation (Mann–Whitney U test: W = 202.50, p < 0.001) (Figure 6).

Table 1. List of candidates generalised linear models showing the link between bat abundance to seasonal changes in
climate (temperature (Temp), humidity (Hum), and precipitation (Prec)), plantation type (Plant), and guild (Gui).

Model Terms AICc dAICc RL wAICDc

1 Mon + Temp + Hum + Prec + Guild + Plant + Plant × Gui 660.71 38.47 0.00 <0.001
2 Temp + Hum + Prec + Guild + Plant + Plant × Gui 623.59 1.35 0.51 0.335
3 Temp + Prec + Guild + Plant + Plant × Gui 622.24 0.00 1.00 0.658
4 Prec + Guild + Plant + Plant × Gui 630.19 7.95 0.02 0.012
5 Temp + Hum + Prec + Plant 712.33 90.09 0.00 <0.001
6 Temp + Hum + Prec + Gui 651.64 29.40 0.00 <0.001

Table 2. Results of the best generalised linear models (model 3) for bat abundance to seasonal changes
in climate (temperature, humidity, and precipitation), plantation types, and guild. Relationships are
visualised in Figure 5.

Effects β SE z p

(Intercept) 1.75 0.04 41.23 <0.001
Precipitation (mm) −0.03 0.02 −1.44 0.151
Temperature (◦C) −0.18 0.06 −3.14 0.002

Guild (nectarivorous) −0.76 0.08 −9.02 <0.001
Plantation (rubber) 0.46 0.08 5.48 <0.001
Guild × Plantation 0.37 0.17 2.18 0.029

4. Discussion

This study highlights the important role of spatial variation for bat abundance in
rubber and oil palm plantations. Our monitoring showed that rubber significantly outper-
forms oil palm plantation in supporting seasonal abundance of fruit bats, with an apparent
decrease in nectarivorous bats versus frugi-nectarivorous bats. Our modelling showed
that seasonal changes in climate are associated with bat diversity, showing decreased
patterns in abundance with the increasing temperature. We discuss each of these elements,
including the conservation implications of monoculture expansion in the Philippines. Here,
we showed the value of common and abundant species to indicate habitat disparities in
both monoculture conditions. The observed overall patterns of fruit bat activity were
similar to previous plantation studies in Malaysia, such as that from Syafiq et al. [19];
for example, frugi-nectarivorous (e.g., Cynopterus brachyotis) were more abundant com-
pared to nectarivorous bats. However, our results differed from Azhar et al. [17], which
did not record Rousettus amplexicaudatus and Cynopterus sp. in small-holder plantations,
whereas Macroglossus spp. were absent in all plantations monitored. Rare species were
only recorded in rubber plantation and, likewise, general abundance was higher, showing
that they have a lower impact on species activity than oil palm.
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Our study shows that the type of plantation compared to seasonal changes in climate
has stronger effects on overall bat abundance and varies by species (Table 2, Figure 5B), sug-
gesting that common species could potentially indicate the quality of not only contrasting
habitats but also analogous habitats such as monoculture plantations. The rubber planta-
tion supports higher bat abundance than oil palm plantation. This variation in abundance
may relate to the availability of the common foraging resources and vegetation characteris-
tics of the plantations (i.e., remaining patches within each system) [39]; for example, in our
sampling sites, rubber plantation has relatively more understorey vegetation compared to
oil palm, which is often bare due to frequent de-weeding. In Malaysia, polyculture small-
holding plantations with more heterogeneous vegetation had 28% higher bat abundance
and species richness than homogenous large-scale plantations [19]. Increased plantation
crop density, the height of oil palm stands, and other direct activities have also been shown
to have a negative relationship with birds and fruit bats in Malaysia [17]. In our oil palm
site, we observed frequent clearings in ground vegetation and ‘deleafing’ (i.e., the processes
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of physically removing dead or excess palm oil leaves by the owners) every three-month
interval, and these could contribute to a poor vegetation structure in oil palm plantation
relative to rubber plantation, where some foraging plants and fruiting tress are still present.
In our study, the rubber plantation performed better than oil palm plantation, however, few
other studies have actively compared diversity in the two plantation types [40]. Although
Phommexay et al. [41] demonstrated that insectivorous bat activity and diversity in rubber
plantations is lower than in forested areas, due to lower insect biomass in rubber plantations.
However, bats can show high abundance in plantations or agroecosystems by utilising
various resources, for example, Piper species are abundant in edges of oil palm plantations
where generalist frugivores are often observed foraging [42]. Additionally, fruit crops were
often intercropped in rubber plantations, or they are surrounded by fruit orchards [28].
Between sites, we observed that generalist frugi-nectarivorous groups were significantly
higher in relative abundance than nectarivorous species, and this may be explained by the
lack of flowering plants. It may also suggest that the homogenous vegetation structure
in plantation habitats reduces pollinator communities (i.e., low proportion of food-source
for nectarivorous bats) [43]. Different guilds of fruit bats have varying abundances in the
agroecosystems based on their functional traits [39], where more generalist species with
broad foraging requirements can persist in extremely degraded habitats (i.e., with limited
vegetation) compared to those with narrow requirements. The remaining agroecosystem
matrices can support generalist bat species by providing foraging grounds and connecting
intact habitats; additionally, intercropping enables bats to decrease their risk of predation
whilst foraging [44].
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Wildlife using plantations may either be resident, commuting, or foraging, and the
degree of tolerance and adaptability varies between species [40,44,45]. This highlights
the importance of strategizing land-use management to promote more ‘wildlife friendly’
plantation systems (e.g., small-scale plantations that retain remnants) [40]. In Colombian
oil palm plantations, species composition was drastically altered in landscapes with 45–75%
oil palm cover relative to those with lower cover [45]. Alternatively, promoting small-scale
plantations may also have less severe impacts than large-scale commercial plantations, as
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they are more likely to have natural areas between them; for example, fruit harvesting,
fertilizer, and pesticides applications may occur at lower volumes and amounts in small-
scale plantations [17]. Though lower efficiency of production could displace larger areas
of forest.
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at p < 0.05.

The response of bats to seasonality is poorly understood in tropical systems [46] and,
in the Philippines, most bat studies are community surveys conducted during favourable
months (e.g., during dry summers), and do not account for seasonal differences. We found
significant variation in seasonal abundance for some groups, as has been found in other
studies in arid and temperate regions [24]. Although we did not find significant variation
in bat activity across the year for some groups, this is likely due to the equatorial climate
which enables a consistently high population. Furthermore, as hibernation is not known in
these groups and inter-island migration would be challenging, we may expect populations
to remain fairly consistent through the year if sufficient resources are available. Conversely,
the temperature was negatively correlated to seasonal bat variation between plantations.
This observation is contrary to patterns observed in tropical regions of Tanzania [47] and
Brazil [48] which found that bat activity and foraging activity were positively correlated
with temperature; however, as in our study, precipitation had no significant effect. The
more generalist species, Cynopterus brachyotis and Rousettus amplexicaudatus, were the most
abundant species in both plantation types. These medium fruit bats are widely recorded
in lowland and urban areas and are abundant in agricultural areas and show a decreased
abundance or occurrence in primary forests in North Cotabato Province [49,50]. Our study
further supports our argument that variation in abundance of common species could
provide potential indicators of environmental changes when more specialised species are
typically absent.

Previous studies showed that bat activity responses vary depending on either lo-
calised or regional weather conditions (i.e., extreme conditions experienced by species or
community). Erickson and West [33] showed that short-term weather conditions have less
effect on bat activity than long-term climatic conditions such as extreme temperature rise
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or change in precipitation conditions. Similar to our findings, they found that bat activity
is negatively correlated to temperature change. Previous studies showed that richness is
slightly lower during the dry season and this difference is influenced by few resources in
agricultural areas [46], which is predictable in cases of oil palm and rubber monoculture.

5. Conclusions: Implications to Conservation and Monoculture Expansion

The loss and modification of natural habitats is a major threat to tropical bats [51].
Extensive farming systems such as conversion to monoculture result in the reduction and
removal of native vegetation that supports a wide range of species. Around 60% of the
country’s land area has been converted for agricultural use, these include plantations and
agroecosystems. In 2000–2005 alone, 620 thousand ha or 8.7% of total forest cover annual
change has been converted in the Philippines [52]. Monoculture oil palm and rubber plan-
tations are rapidly expanding, particularly in the Southern Philippines’ Island of Mindanao,
with more than 200 thousand ha of rubber and oil palm plantation [53–55]. At present,
the Philippines is not a major oil palm producer in the ASEAN region but has roughly
90 thousand hectares of commercial palm oil lands and is largely concentrated in Palawan
and Mindanao Island, south of the Philippines [55–58]. However, monocultural areas will
continue to increase in the future as the government supports economic growth through
agricultural expansion. More than a quarter of Philippine bats are fruit bats, many of which
are endemic (~60%) or threatened (~25%) [16,20]. Changing climate coupled with land-use
changes may affect bat–plant interactions due to the altering of phenological patterns of
plants or the reduction of mutualistic interactions. Fruit bats are widely distributed across
the old-world tropics and provide crucial ecosystem services such as pollination and seed
dispersal for hundreds of economically and ecologically important plant species [59].

Our monitoring shows that plantations can still support common fruit bat species
such as those with more generalist environmental requirements. Between plantations,
rubber typically has a more diverse matrix than oil palm that can potentially host better
bat communities (e.g., especially nectarivores) than oil palm plantations. Seasonal changes
in climate (e.g., temperature) can affect fruit bat persistence and usage of different parts of
the landscape. We acknowledge that our study has some caveats, for example, the limited
sampling sites and lack of data on night specific conditions such as moon phase or weather,
and location-specific metrics such as vegetation cover and proximity to primary forest.
However, we encourage more standardised monitoring and comparative wildlife census to
serve as baseline evidence for establishing sustainable and wildlife-friendly plantations
prior to further monoculture plantation expansion in the Philippines [16,53,60].
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